ICOT Technical Memorandum: TM-0609

TM-060%
Transformation Rules for GHC Programs

by
K. Ueda and K. Furukawa

October, 1988

1988, 1CO1

Mita hokusar Bldy. 20F AR ARG -39 -5

" :D l 428 Mt 1-Chome Telex 1COT J22405

Manetto-ka Tolkyvo M Fapan

Institute for New Geﬁeration Computer Technology

TRANSFORMATION RULES FOR GHC PROGRAMS

Inuwunor: Ueda and Koichi Furukawa

[nzrituee [or hew Generation Computer Technolegy
2-9% Mita 1 cheme. Minato-ku, Tokvo 108, Japan

ABSTRACT

Transformation rules foc [Flat) G programs are pre-
sented, which refine the previous rules proposed by one
of the authors {Furnkawn oo ol 19870 The rules are
based on unfolding Malding and are novel il they
are stated in terms of idempolenl substitutions with
preferred directions of Lindings, They are more gen-
cral than the ald rules in that no mode sysiem s as-
sumed and that the rule of [lding is meluded. The
presentation of the rules suggests that idempotent sub-
slitutions with preferred directions of biadings are an
appropriate tool for medeling infocmation in {coneur-
rent) logic progravuuing A sermantic model 18 given
which associates a multizer of goals with the set of
passible finite sequances of transactions (via substitu-
Lions) with she multiset, A transformalion preserves
the set of teansaction sequences that are made without
the risk of the [uilure of unification. The medel also
deals with anemalous behavior such as the [ailure of
unification and deadleck. so il can be shown with the
same model Lhat the transformation cannot mtraduee
those anomalies. Applications of the translormation
technique inelude the Tusion of conmmunicating parallel
processes. Some familiarity with GHC is assumed

1 INTRODUCTION

1.1 Mativations

GHO [(Cuarded Horn Clauses) (Ueda 1925) (Ucda
198fia) iz a simple paraliel programuning language
for programming with eommunicating processes, It
has inlrodueed into Morn-clanse logic programming
the notion of guard o be used for two kinds of
control: synchronization and choeice nondeterminism
Synchronization is realized by restricting information
flow caused by unification, and introduces partial or-
der on bindings generated in the course of compula
Lion. A goal is viewed as a process thut communicates
with other processes by ohserving and generating sub-
stitutions. Readers who are unfamibiar with GHC pro-
pramming or parallel logic programming in general are
referred Lo { Ueda 1886h) and (Shapiro 1987).

Computation in GHC differs from computation i
ordinary logic programming in the ollowing ways:

(13 Tu is directed. A GHU program lias an iLi-
tended direction of computaticn. Morcover, it
does not svarch solutions by backtrackmg or OR
paralielism, The value of a vaniable vnee computed
15 never revoked.

(2} Tt may be nteractive, A process may interact with
other processes, this s the most important aspeel
of the language. Input and ontpul can be done
within the framework of the langnage by regarding
the outside world as a process,

{3) It may be infinite Tn an interactive program, each
interaction or sequence of interaclions is the main
concern and the program need not necessarily e
ke

Since & GHO program is just an ordinary logic pro-
gram if one forgets the aspect of control, it seems pos-
sible Lo define a set of translormatiom rules for GHOC
programs by adapting the set of rules developed for
logie programs [Tamaki and Sato 1084). Having a sel
of transformation rules will be wseful for deriving effi-
cicnt parallel programs from naive ones, For examnple,
it can be used for process fusiou by which we can ad-
just the granularity (of parallelism) of a program to the
gramilarity of an implementation (Furukawa and Ueda
1985). However, such transformation should preserve
the behavior of processes defined by the program, and
il hes not been elear how to guarantec the correctuess
ol transformation,

The goal of this paper is to give a sufliciently gen-
oral sei of transformation rules for (Flat) GHC pro-
grams based on unfolding and folding, and to justify it
using & simple semantic medel. Unfold/fold transfor
mation has been commonly used in lunctional and logic
programming; here we want to focus on the transfor-
mation of interactive, possibly non-terminating parallel
programs written in GHC. '

1.2 Approach and Related Works

Our set of transformalion rules is based ot two pre-

vious works: unfold/fold transformation [or ordinary
logic programs by Tamaki and Sato (1984) and unfold
transformation for Flat GHO programs by Furukawa
et al. (1987).

Tamaki and Sato showed that their rules preserve
the least Herbrand model of the program. Although
their framework gives us a good guideline, we have to
Ml an allernative to the least model semantics that
cannot be wsed for non-terminating progruns (which
tray not have base case clauses). In addition, the con-
trol structure of GHO must be Loken into account since
i1 15 an intepral part of the langnage.

The set of tules by Furukaws el ol Lakes control
into account, and is close io our set in its structure.
[However, it has severa] points to be improved, First,
a mode syatem that attaches either of the input and
outpul modes to each argument of a predicate is as-
surmed fe reasor abeout information flow, which loses
the generality of the rules to some extent. Second, the
set of rules uses the notion of ‘input relatedness’ to
Judge whether certain inforimation can come from the
caller, but this notion is hard to formalize correctly.
Third, the rule of folding does exist, but it is not pow-
erful enough to be used for process fusion. Fourth, the
discussion on correctness is informal, due to the lack of
formal tools.

We propose to solve the above problems from twa
approaches: the presentation of rules and the semantic
[ramework, For the presentation, we adopt idempotent
substitutions (Lassez et al. 1087) to model information
exchanged by processes, and we usge normal forms of
clauses o simplifv the roles.

For the semantic frameweork, we use the notion of a
partial answer suhstitotion (pas) to model a fragment
of a possibly infinite computation. An act of providing
a multizet of goals with a possibly empty input substi-
tution and getting an obscrvable output substitution
[— pas) is called a transaction, and a computation is
modeled ws w finite scquence of transactions. The set
of all possible computations of a multisct of goals con-
stitutes the model of that multiset. Any computation
made without the risk of the failure of unification s
preserved by the transformation rules. Anomalous be-
havior such as falure and deadlock is also modeled,
unlike the least Herbrand model which comprises suc-
cessful cases only. Thus the model can be used also
for showing that the transformation cannot introduce
those anomalies.

2 PRELIMINARIES

This section briefly introduces notions related to sub-
stitutiom and wnification, most of which can be found
elsewhere ((Lloyd 14984), for example).

A ferm and an afem{ic formula) are defined as
usual. We consider finite lerms and atoms only. An
infinite computation may create infinile structures in
the lumit, but we are concerned with transactions that
are of a fimite nature. By VAR we denote the denu-
merable set of all variables.

An erpression I8 a term, an atom, or a syntactic
eotity (legally) made up of terms, atoms and connec-
tives in GHC (*:=%, 1", *1"). By var{e} wo denote the
set of all the variables appearing in an expression &, A
simple crpression s either a term or an atom.

A substitulion is o mapping from the set of variables
to the set of terms, which iz extended to a mapping
from the set of expressions to the set of expressions in
the usnal manner. A sebstitubion wcis a3 an identity
except for fimitely many variables, so it s described as
& linile set of the form

{ipaty,. .. ve ey, n>0,
where v,'s are distinct variables, #'s are terms, and
w F bfor <4< m {We use = and # o denote
the syntactic equality and inequality of simple expres-
sions.) Each element of a substitution is called a bind-
ing.

Given a subatitution ¢ = {1;1 afy,. .., u, 4 "'n]'n
by domain(e) we denote the set {u, .. vy} and by
range{o) the set var{d,) U .- Uvar(t,).

The composition of two subslitutions is defined as
follows. Let o = {uy 981,. .. 2, 45, } and 7 = {1y @
t1,...,¥naly}. Then the composition or {substitutions
will be used as postfix operators throughout) is a finite
set obtained from {uy2s;7,. .., ug 48,7 }UT by deleting

(1) all the clements w; = 5,7 such that w = s;r and
(2} all the elements v, af; such that v, € domain(e).

A substitution o is said o be idempoient iff oo =
. An idempotent substitution enjoys the following
propecty {Lassez et al, 1987):

Frﬂpnﬁitinn 2.1, oo = 0 = du.mair.ll:t'}n

range{ o) = ¥ {empty set).

Idempotent substitutions are adequate for modeling in-
formation in logic programming. A won-idempotent
substitution introduces a variable whose occurrences
are about to be rewritlen, contrary to the single-
assignment property of logical variables. Fortunately,
the unification algorithms employed in most logic pro-
gramming systems calculate idempotent mgu's defined
below.

Now we define unification. A substitution ¢ 15 said
to be an idempotent most general unifier fidmgu) of
two simple expressions £ and 9 iff

(17 &8 = £28 and

{2} ¥oityr =dor — ¢ = s}

I is casy Lo see that if such & exists for 17 and ta, it
i5 idempotent and s an mgu in any other proposed
senses (Lasser et al. 1087 The following theoeem,
which direcily follows from the Unificalion Theorem in
{Rohinson 1078), guarantees thal we need only con-
sider idingu's:

Theorem 2.2, 1f two sinple expreazions §; and 15 are
unifiable then there is an idmgo of them.

Examnple. We consider varions unifiers of two vari-
ables X and Yo 4Xav) and {vax] are idngu’s: {XaW, Yav}
is an idempotent unifier that is nel most geoeral, and
{XaW Y aW Wa¥lis o nonidempotent, most general
unifier.

From now on, we assame afl the sulslitutions we con-
sider Lo be idempotent,

As the above exomple shows, an idmgu may not
be unique if we take the renaming of variables into
accounl. However, zoine idmgu’s may be prelecable Lo
others. For example, i SLD-resolution employiog a
selected goal plA) and a clause with the head pa), we
llElI:il.H}' prtl,'t:;r r::]}lul:'in& & 'I;} ¥ore the other WY arougcl
both on paper and impFP.mr—ll:laE.inn.

A:f.n['uli,rpg]y, we inbpeliee @ omweans fo obibain & sale-
stitution with preferable directions of bindings. Let T
be A sct of variabhles, A sobstitubion ¢ 13 sand to be
swallest unth respect fo V il ¥inat)Co{v € VAL E
FAR — 1 € V). Inother words, no variable-to-variable
binding in o can replace a variable in V° by a varinble
not in V',

Froposition 2.3. Given two simple expressions 1) and
ty and a set V of variables, there is an idmgu of ¢, and
ts smallest w.or.t. V iff t; and {2 are unifiable.

Iroof. By construction from an arbitrary idmgu of §
and ta. [|

Unification can be defined for a multiset of equa-
tions as wel] as for two simple expressions, Let 5§ =
{sy=ty,. . sa=1a}, where 5;'s are ;s are terms. Then
' is gaid to be an idmgn of 5 ff it iz an idmgu of two
teems fis;,. .., 8,0 and f(fy,. 4,0, f being an arbi-
trary n-ary function syinbol. The =et 5 s said to be
solvable 1tf 1t has an 1dmgo.

Some miscellanecus notions. Let & = U e ati).
Then by § we denote the set of equations L_j:_;l{n.- =t;:}.
It is easy to show that # is an idmgu of 8. Finally,

we define the restriction 8], of a substitution ¢ to an
expression ¢ as follows:

#l, = {{wat) € f [ve varle) |.

3 FLAT GHC
We first define a rather abstract syntax of GHC. A
GHC prograrm is a set of guarded clauses of the follow.

ing form:
-7 | B

where h iz an atom and & and B are multiscts of atoms,
The atom & is called the head and an atom i (5 or [
15 called a goal. Lhe part of a gouarded clause before
the commitment operator *|7 g called the guard and
Lhe part after *17 s called the body, 7 and & are mul
Lisets rather than sels becavse two syntactically iden-
tical goals may comnil o differcal clavses. Ooe pre-
defined hinary predicate. =", 15 provided for unifving
two terms.

A program is invoked by o goal clavse
=B
where B is a multiset of gr.-ais..

Flat GIIC imposes restriction on the guard goals
af each clause. A guard goal of a Fiat GHC program
st be either

o unification goal of the form) =iz, or

e a call to a fest predicate, where a test predicate is
made up of clavses with emply bodies.

Mote that o goal calling a test predicate never gets
imstantiated, and thal its resull [whether il succeeds or
not} i uniguely determined depending on the values of
the arguments.

For convenience, from now on we will use the fol
lowing notational conventions: (7 denotes the multi-
set of the unification goals in a guard, (7 denotes the
multiset of the non unification goals in a guard, By
denotes the multiset of the unilication goals in a body,
and By denoles the poltset of the pon-unification
goals in a body, Alse, by O we denote a clause
" of which €' 1s a variant using fresh variables.

MNow we describe an operationsl semantics of Flaf
GHC. Note that this doss nof specify how a Flat GHO
program must be executed.

To execute a multiset of goals means to executs
cach constituent goal in parallel. Tn this paper we as.
gsume that the goals in a multiset may be executed by
unfair seheduling, The multisel of goals suecesds when
the constibuent goals all succeed.

A unification goal 1y =1 tries to unify ¢, and {..
What complicates things i1s that it may possibly be ex-
eculed in parallel with other unification goals that may
instantiate ty and/for t5. However, here we adopt the
simplest scheme: #; =12 is executed as an atomic ac-
tion and their idmgu is applied to all the goals being

executed, This overspecification of the operational se
mantics will be compensated in the semantic madel in
Section 4. The goal 1) =ty succeeds (also said to be
reduced) when £ and {5 become identical.

The execution of a non-unification goal g proceeds
as follows: The goal g searches for a clause &0 (ko -
g WGy | B) such that

o {gf=h} UGy has an idmgu ¢ such that giic = gf
-ﬂ.]]d

o o succeeds,

where k3 a substitution given in the meantime by
other unification goals running in parallel with g. If
i finds such O, then g, now instantiated to g7, com-
migds do O oand it body Be is executed. We also sav
that gf &5 reduced te Be wsing . We assume that
if there are clauses to which gf can commit, gf will
eventually commit to one of them. "T'his is true even
if the guard of some clause falls into infinite compu
talion, Our computation is fair with respect to the
computation of gnards n this sense. Nole, howover,
that we still have choice nondeterminism in commit-
ment and some clause may be jgnored by every goal,
A nom-unification goal suceeeds if and when it commits
to some clause and its body succeeds,

Finally, we introduce notations for reducibility re-
lations between a non-unification goal g and a clause

Ciilh o= G UGy | B):

+ig,C} el 3, ({15 an idmgu of {y=k} U Cy)
Age = g) A Gy o succeeds))

~(g,C) & =30 4(g0,0)
g, C)E i (g, C) A3 +{g8,C)

They stand for “reducible as 8", “rreducible” and
“possibly reducible with more information”, respec-
tively, Exactly one of +, — and ¥ holds for g and .
When & = @, the definition of +(g, ') is simplified
o

delig = ha) Ay e succends)).

Scction 5.1 shows how to eliminate (7. Hecall that
in Flat GHC, it is uniguely determined whellier *Cye
succeeds” or not.

4 A SEMANTIC MODEL

This section gives a semantic model of & multiset of
goals with which the correctness of program transfor-
mation will he discussed

First of all, we clarily our approach io the semantic
model. We choose to model the parallel execution of
a multiset of goals as the set of all possible serialized

computations (simply called commputations here). Each
computation 15 considered to have two aspects: internal
{concrete) and external (abstract).

Internally, a computation is a possible sequence of
reductions to which substitutions may be inerementally
given from oulside. Consider the parallel exccution aof
two goals gy and go. The reduction of gy using <) must
precede the reduction of ge using Cs in any computa-
tion o the model contaning them iff the reduction of
ga using s needs directly or indirectly a substitution
generated by the body of O dertved from g,. If no
such dependency exists, those redoctions will appear
in any order.

Externally, a computation starting with a multisel
By of goals is viewsd as a sequence (o, Fi) o, Fa) ..
of tranzactions with Be. A [normael} transechon (o,
i) s an act of providing By with o possibly emply in-
pul subsiiinlion ay and getting an observable (see be
low) sutpuf subslatuction § Each normal transaction is
realized by a fimte number of reductions. Tn addition
to normal transactions, some special transactions are
introduced to model the falure of unification, deadlock
{the irreducibility of non-unification geals), and infinite
reductions without observable substitutions.

Communication between a multiset By of poals and
the rest of the goals is done only through the variables
in By, Suppose the first Lransaction (e, 8,) has been
made and By iz reduced to By that represents ‘the rest
of the computation’. Then, the next transaction must
be made through the variables in Boeeg 7 the van-
ables in £, % Hpo &) are not accessible. In general,
var{ Booy By ..o 5:) 18 ealled the enlerfazce for the rest
of the computation represented by B,

Now let us formalize the model of a multiset &; of
goals under a program P, with which substitutions are
communicated through an interface var{H}). The model
is denoted as [B| 4 1p. [B|g]yp i abbreviated to [B],.
[Bilglp is a set of finite sequences of transactions and
aatisfies the following properties. Sinece we may want
to make no transaction with B, we first have

(0) € € [Bilg]s, where ¢ 13 an empty sequence of trans-
actions.

We then consider all possible concrete computa-
tions of I} to which an input substitution a; ts given
initially but no subsequent input 1s given, and elassify
them into four cases (not mutually exclusive) according
te their prefixes:

{1} Novmal transaction. There i & sequence of redue-
tions

Bijoy = Bi,ﬁ b H{I:I _r = Bi,l = B|'+1

such that

e i an dngo of the mulbiset of all the um-
ficntion goals exceuted in the sequence that is
smallest w. r. Lovari Boyg), and

. 1 jek
o 3 e whservable, that is. 4 = 8l g, # 0.

Then. we divide 3 nte two (idempotent) substi-
tutions 3 and e sueh thal

(N1} & = (F10m) g, (thnd b5 iy ide and 3 have
Lhe same offect on Byl
(NI 3y = Kl T

; # @ [that s J; 05 obsery-
alaled. and 3 15 smallest w. v 4. x'nrl:Hn.-:l.

A e = .';',»_,!”H._,I .

{NA) Lhose variables in gy and for J bol not in 5
are all fresh variabdes

We can always funl ar least one auch pair of &
anel iy b lerting o - 3 and 3 — @, and there
may be many othera. Now for every possible pair
ol Fqoand S, we haae

vi(t'e [(Fie U Bisi g, 1o
— oy B} 1€ [Bilglp).

Y] Farlirr. There is a possibly empty sequence of re-
ductions B;a; - » Hip such that the mul-
figet of the unification goals in B4 is unsalvable,
Then

{ei. T) € [Hilplp

(3) Swecess and Dewdlock, There is a possibly empiy
sequence of reductions ey — --- — By such
that none of its prefixes (inchiding the whole se-
quence) canse wormal framsacfion or fadure and
that D, allows ne further reduction. Then

{ |'lf.'r“_j__.“ﬂ"} £ [-Bi |F|‘]'.I‘I i Bl‘i'l.I: lﬂ;
(e, Lasagtoen) € [Bilglp, otherwise.

{4} Davergence. There 15 an inlinile sequence of reduc-
tions oy —— -+ - such thatl none of 1ts prefizes
causge pormal fransaclion. Then

(o, Larveryemee! € IB’JH]‘P '

Now [Bilgle is defined as the smallest set (or the
intersection of all the sets) satisfying the ahove proper-
Lies, where we repard two or more sequences as identical
il their differences come only from the different naming
ol [rest variables {introduced in a sequence of reduc-
tions and i e division of 3). Note that different
abstract computations may be obtained from a con
crete computation, and that an abstract computation
may he obtained from different concrele computations.
Cur notion of an abstract computalion is ot o similar

level of abstraction to a fehavior in (Lichtenstein et al.
1957), but the definitions are quite different.

The transactions {o, 1), (&0 Lywceessts {0,
i 1 .

Logendroce) 800 (0. L giyergence) are called special trans-
petions, Of these sureess, deadlock and dimrgﬁnce
mean the inactividy of a multiset of goals and cannot
be distinguished {from outside. Therelare, we may cmis
the siubseripts of L when the differences are nod impor-
tant.

Some notes on the above model will be useful, First
of all, each element of amodel 15 o lioite sequenee, This
means that we are medeling a multiset of goals using
the zet of all ine transactions with it A consequence
of this i that we cannot handle some properties that
comled be ahserved onlv ab infinity. This. howewver, does
not mean that we cannot model perpedual proeessed;
il is quile possible to deal wilh programs that are nse-
ful but essentially non-terminaiing. This peint will be
discussed further in Section 8.

Licm (1) says thal we may observe the pesalt of
uoificalion ustng Lwo or more transactions even when
the unmification is specified by o single goal. We want
tor leave it to implementations how unification is per-
formed and how output substitutions are applied. A
variable being observed may be instantiated to an infi-
nile Lermm i Lhe T, Lot we reguiee that each trans
action be of a finite naturs; it should return a finite sat
of bindings alicr [inite compuiation

Since Hems (1) and (2) are nob esclusive, the pro-
cess of a computation may be observed from outside
even if it s dosted Lo Gl However, we liave given up
the 1dea of specifying precisely what can be observed
before a computation fails. This 15 because the behav-
or of a fuiliog oultisel of anification goals is hard to
define and not very important, Note that we have ‘oe-
cur check' as a consequence of the finitencss of terms.

Medeling inactivity as well as normal transactions
is important, because we wanl to distinguish between
a program that will eventually produce s pon-empty
oputput and one that may or may not produce it. For
example, let 7 be

{R(X) =01 {x=1]),(p(x) ;-0 1)}

arnel @ L
{(plxy =0 | {x=1))}.

Then, {B, 1) is in fp{X}]p but not in [p(X}],, while
{0, {X<1}} s both in [p(X)]5 and in {p(x)],-

Output substitutions & fFs, ...
computation (o, 8y} {og, Ha) .. are called partial an-
swer gubsiiluiions fpass), sioee o the computa-
tion ends with (o, Liycesss), the universal closure
Wi{Ba Jiaafs . o) is o logical consequence of the
declarative reading of the program.

i an abstract

The example below shows how the model cir-
cumvents the Brock-Ackerman anomasly [Brock and
Ackerman 1981}, Let P {in the svoiax fullowing DEC
10 Probog) be:

d{[al_1,0%

merge([AIX1],Y, Z) - true |
Z2=[alZ1], merpge(X1,Y,Z1).

c= true | O=[A,47.

merge(X, [a1¥11,2) :- true |
Z=1&IZ1], merge(X,¥1,21).

merge{ﬂ, Y, 2} - truoa | Z=Y.

merge(X, 1, Z} - true | Z=X.

pi([alZ1],0)
pii(LE|_],01)

p2{[A,R|_],.0)

;- true | D=[AID11, p11(Z21,01}.
i- true | C1=[8]1.

r= true | 0=CA,B].

gilI,J,0} - true |
d{I,%), d(1,¥), merge(X,¥,2), pi(2,0).
g2{I,3,0) :- true |

d{I, 1), da(7,¥), merge(X,Y,Z), p2(Z,0).

Then, the compulation

({Tals1_1},{oalsioil})
belongs both to [g1(1, 3, 0)]s and to {g2{1, J,0)]p, but
{({Tals11},{0al51011}){{Jalsl_1},{01a[6]})

belongs only to [g1{1,1,0)f, and not to [g2(1,3,0)},.

5 TRANSFORMATION RULES

Now we are in a position to describe the set of miles for
transforming an initial program Py to Py, Py and so
forth. Actual transformation will eonsist of the rewrit-
ing of existing clauses and the introduction of new,
auxiliary clauses. However, we treat those new clauses
as if they had been in Py, following the formulation
of (Tamaki 1887). One purpose of this is to justify
the introduction of new clauses, which usually intro-
duces new possible compulations. The sel of those new
clauses in Py 15 referred to as D D must satisfy the
following conditions:

(D) Vg¥C € DVC' € P\ {C} (+(9.C) — —(g.C"))
(that is, a clause in D doss not ‘overlap” with
any other clauses.)

(32) W(h := G | BYePy¥Vge B¥OeD (—(g, C)) (that
15, a body goal in & clause in Py cannol commit
to a clause in T)

{3} Each clause in T must be of the form

R =01 By, var{h') C var(By).

These conditions are Lo guarantee the correctness of
folding {Section 5.4).

5.1 Normalization

MNormalization transforms a clause C in 7; to a normal
form by executing the unification goals in it as far as
poasible.

First, we ‘execute’ (he upification goals in the
guard. Let (7 be

O h:-GuUlGy | B

If Gy s unsolvable then let P4 be Py N (O]
Obherwize, et CF he

' R - COnf | BR

where # & an idmgn of (7.

Then we ‘execute’ the unification goals in the body
of & now of the form

e R =Gl | B U B,

If B, is unsolvable, stop the program transformation
{we are not inlerested in improving a program thaf
may fail}. Otherwise, let & be an idmgu of B, smallest
w. t. t. var(h'). 8, stands for the output substitution
of C'. Finally, let Pyq, be (P34 {C}H 0 {C"}, where
O s

C":: K -Gy | 8, U By
Note that we can ignore Gy in simplifying 8},
hecause (7 has been solved when By, is executed.

The test of the tules in the subsequent sections
assume that all the clauses in & program have been
normalized.

5.2 Immediate Exccution of a4 Body Goal

We have two rules based on unfelding: immediate ex-
ecution (below) and case splitting (Section 5.3). The
distinction is not made in the transformation of or-
dinary logic programs, but il is necessary in GHC in
which guard plays a crucial role,

Consider agna] q and a clavse (7. In nr:]inar}f logic.
programming, g is either reducible or irreducible to the
body of C, depending on whether g and the head of
7 are umifiable. In GHC, however, there is the thied
case, in which g is reducible to the body of O only
when g 15 appropriately instantiated. The unfolding
rules must correctly deal with such a synchronization
condition expressed in the guard of C. Case splitting
is provided exactly for this purpese, while immediate
execution deals with the unfolding which does not in-
volve synchronization. Case splitting may look more
powerful, but immediate execution can be applied in
less limited contexts,

New we state the rule of inunediate execution. Let
e Py he

O k= Gy | By U Oy

ane By o= {o} U H, I the conditions
(1) ¥OLEP; (+la, Tl v = (g, 04))
(12) 3 &P (+ig, Cr))
baobh holid, then Tor each (Cgrifhy - Gae | Byl € T’}
such that +{g,) holds, make o clause
{.-‘E.!' -G | Bl Bt ﬁf..
where @ is andmgu of g and i sinallest w.rotovar(g),
and lot Pyyy be (PG UACE |+, G-

Let us see why Condition | 12) is necessary. Suppose
Cy=iple) -8 g, Ca=(p{X) -0 {x=1}) and
P = (0,0 The goal p(X) may either deadlock
or zet the substitution {X 41}, However, if we applied
immediate exeention to Oy, 74 would be {2}, under
wivicl the goul pred will not deadlock,

5.3 Case Splitting
Let e Pyl
O hi-Ga | By U By

and By = {gy....,0.}. Case splitting requires the

following condicions:
(C1) By =0

(€2) Wg¥C! ¢ P\ {C) (+(0,C) — —(7,C") (that is,
7 does not ‘overlap’ with other ¢lauses.)

If both haold, make a clanse O, for each pairof g € By
and . € P, of the form

O he o= O | By

as follows:

o I[g; and by cannot be unified then let O, = L
Otherwise, let @ be an wdmgu of them smallest
w.r.t.var(g). (Intuitively, 8] stands for an input
substitution necessary {and sufficient if Gy = &
for g to commit to C.) If the condition

{C3) (domain(#],)L range(#])\ var(hg) C vari k)
helds, let C7, be
Clyos BB = GuB U Gupl | (By\{g:})f U Bi.
Otherwise, let Cly = L.

be (P \{CH U | G # L)

For a goal reduced wsing © to generafe an output
substitution, al least one more reduction is necessary

Finally, let Pjqy

because ¢ has no unification goals in its body, Case
splitting enumerates all the possibilities for the first
sueh reduction.

Cromdition {1} is necessary becausc B| and o
are promoted to the guard of C If By £ 0, 'to ohserve
the output substitution from By might require more
input substitution under Pay Wl under Py

The purpose of Condition (C2) s just the same as
that of Condition (121, Without {02), the behavior of
a goal g might change in the event that g can commit
Lo 7 bt e nene of the O s

Condition (O3] requires that the condition for g
tn commit to (p, expressed as 6| , be promoted to
the guard of), without lLeing rlummshcd huppoae
g = g%, ¥, %,U) and hy = q(V,V, ¥, .0 Then 8|
[X <Y, Zaf(W)], which stales that X must be idenl:i.-:al
to Y and the principal function symbel of Z must be
unury 1. Then, p(X,¥,2) 15 a legal head of € which
will be instantiated to pOY, ¥, 208) in Cf,. but if we
dropped any of X, ¥ and 2 from p{X, ¥, 2}, the condition
represented by I!?l11 would not be promoted correctly.
Condition {C4) is the formalization of the ‘input relat-
edness’ condition in {I-‘nrul.ﬁ.wa et al. 1087).

5.4 Folding

The Folding rule is similar to that of Tamaki and Sato.
A clavse used for folding must belong to D but need
not necessarily belong to Ty,

Let &' & ¥y be
O h -G | Bp U By

and By = KU B, where I is the multiset of goals to
be folded. Let the clause to be used for folding (e T)
b

c' W -0 By, (var(h") C var(By)).

Folding requires the following four conditions fo
bl :

(F1) 38" (K = BR (')

{(F2) Lel # be a substitution such that ¥ = B¢ and
i = E.’BL'.' We intend to replace K in O by &"6.
The condition for this is:

3¢ ((Ke = Bgf|,.) A (domain(e)
Mivar(h :- G | By U By) =),
that is, i and By#,. are varianks and o does’
not rewrite O except for K.

{F3) is either the result of applying transﬁ:rrmation
rules to a clause of P\ zero or more times, or

the result of applying case splitting to a clause in
Po at least once.

If they all kold, then let P;. be (P;\{C1HU {C'}

where (0 15

O k=G | B URTR U Hy,.

Ceonditions {1} to (') may look complex, but
are very similar te those in (Tamak: 1487). Conditions
{F1), (F2} and (N1} together guarantes that Lthe im-
mediate execution of ¢ in O yields O and only (.
Condition (F3) is to avewd introducing infinite redue-
tlons by, say, folding a clanse in PP, by iselll To
preserve the semantics of a non-terminating program,
we requine the case-splitting, rather than the immed:-
ate execution, of a clause in P to be folded in future.
There may bie various sets of conditions for correct fold-
ing (for exaniple, see {Kanamori and Fujita 1986)), but
our set suffice at least for process fusion.

6 CORRECTNESS OF THE RULES

A transformation sequence Py, Py, ... preserves the
meaning of Py ia the scnse that for any multisets of
goals B' ard [and for any ¢ > U and n = 0, the
following hold:

(1) A computation {a, &) ... {tea-y, Fooy)i, Ae) be-
longing to [B'|g)s, belongs also to [815)s,.
and vice versa, if none of the computations iy,
Bi) - ek, By)lon, T} for 1 < & < n belong to
IE |glp,-

{2) Ttem (1) holds also when we replace “8,” by any
af “'Li'luxu:“l hJ—duudlu:l?‘ and “J-dl'uergn'rt(¢r

(3) A computation {oy, &) .. {oa_1, Fa-1) (o, T) be-
longing to [B'|glp, belongs also to [8'|g]p,
and vice versa, if none of the computations {or,
) {mear, Bear o, T) for 1 <k < n belong to
[7lslp,

These can be shown using the induction on the
lengths of abstract computations. The basic task is
to show that if o multiset By of goals allows & com-
putation beginning with a normal transaetion (g, 4,)
that leaves a multiset B; of goals, then there is, under
another program, the same transaction that leaves the
equivalent multiset of goals, Since each normal trans-
action is made up of a finite number of reductions, we
can apply to it the proof technique used in {Tamaki
and Sato 1984) which is based on manipulation of fi.
nite proof trees. The use of idempotent substitutions
for the presentation of the rules serves to avoid Lhe
complication of the proof.

The same technique can be used also for proving
tha"t' ifIB{IIB]'Fo contains {ﬂi ' T}I-,, {“] ' J-:Irv:\eu:' a'“-d-.l'r'::'r

(o1, Ldeadlock). IH“'IHH'P. also contains them, and vice
versa. A proof on (o0, L gergence} Tequires somewhat
different technigue because 1t must handle infinite se-
quences of reductions, A complete proof will be found
in (Ueda and Furukawa [A8%).

T EXAMPLES

This section illusirates how to apply our transforma-
tion rules to process fusion {Farukowa and Ueda 1985}
We consider a simple program that computes a se-
yuence of Lhe partial sums of an integer sequence.

integerSums(I,N,Sums}! := true |
integers{I N, Is}, sums(Is, Sums). (1)

integers(I, N,Is) := I=<Rk |
Is=[I|Is1], I1:=I+31, integers(IL N,Is1). (2}

integers(I,N, I=} :- I >N | Is=[]. {3}
sums{Is,Sums) :— true | sumai{Is,0,5ums). (4)
sumsi([], —.Sums) :- true | Sume=[]. [§)

sums1([I|Ta1],5,%ums) := true |
51:=I+5, Sums=[51[5ums1],
sumsi(Isi,51,5ums1). (6)

Owr ohjective is to obtain a single-process program
which computes the same sequence. We start by exe-
cuting the body goals of Clause (1) until we have two
tail-recursive goals:

Clause (1}
_lfmmcd:'a!r Lrecution

integerSums (I N,Sums) :- true |
integers(I,N,Is), sumsi{Is,0,Sums). (7}

Then we ntroduce a new claose for the final sin-
gle process by parameterizing the second argument of
sumsi and leaving Is local, This is the key step which
reqguires heuristics; however, the only heuristics needed
is to generalize parameters. The resulting clause is:

fused_integerSums(I,N,5,Sums} :- true |
integers{I N, Is), sums1(I=,S Sum=). {B]l

The second argument of sumsi is generalized to a
variable 8, and it is included in the clause head. Now
we try to obtain a single tail-recursive program using
case-splitting and folding:

Clause (8)
ll:'}‘uac: Splitting

fusad_integerSums(T,N,5,5uma) :- I=<K |
Is=[I|Is1], I1l:=I+1, integers(I1,N,Isl},

sums1(Is,5,5ums)}. (9}
fused_integerSums{I N,5,Sums) :— I >N |
Is=[], sumsi{Is,S,5ums), (10}

Clause (%)
J' Normelization

1useﬁ_1nta5ar3um5{l,H,E.Sums:l 1= I=<l |
T1:=T+1, integars{ll,H,Isl:',
sumel([I|I=1],5,5ums).

J_jrrmtm’iaﬂ.r Evecution

fused integerSum={I K, 8 Sumsl} - I=<H |
Ii:=I+1, integers(T1 KN, Is1},
S1:-1+5, Sums=[51/5umsi],
sums1{Is1,51,5um=1).

lFa!du::gr by (8)
fused_integerSums(IN,5,Sums) = I=<§ |

T1:=I+41, 51.=145, Sums=[51 |Sumsi],
fused_integerSums(I1,K,51,Sums1]. (11)

Clause (10)
Normalization eud fmmediafe Erecufion

fused_integerSums{I N 5 Sums) - T >N |
Sums=[]. (1)

The remaining task is to express the original pred-
icate integerSums in terms of whe newly introduced
predicate fused_integerSums:

Clanse (T}
J'Fniding by (8)

integerSums{I N, Sums) - true |
fused_integerSums(1,¥,0,Sums}. (13

The resulting clanses (11), (12} and {13) give a new
definition of the integerSums program. This program
contains only one tail-recursive process; the interme-
diate stream 1s and the operations on it have been
elinminated. If the program is to be executed on one
processer, the compiled code of the new program will
usually be better than the code obtained by compiling
the original two tail-recursive procedures separately.

We will next show how we ran deal with a stream
transformer that may absorb some of the input ele-
ments.

evenSguare(is,¥s) :- true |

evenseqg(¥s Es), sguarsseq{Es, ¥s). (14}
evensegl [X|Xs1] ,Es} :- even(X) |

Es=[X)Esi], evenseq(Xs1,Es1). {15)
evenseq{[X|Xs1] ,Es)} :- odd(X) |

evenseg(Xs1,E5). {16)

squareseql [E|Es1],¥s) :- true |
¥:=E"2, Ys=[Y|Y¥s1], square=zeq(Es1,¥s1). {17)

Let us first split Clause (14), as we did in the in-
tegerSums example:

Clause (14}
! Case splittiag

evenSguare{[X|Xs1],¥Ys) :- even(X) |
Es=[%|Es1], evenseqlfsl,Esl),

squareseq(Es,¥s). (18)
evenSguare([X|Xs1],¥s) :- odd(X) |
evenseg(is1,Es), squareseq(Es,¥s). (1%)

Clause (18]
Nervmalzation and fmmediate Erecution

evenSquare([Xl¥Xs1],¥s) := even(X) |
evenseqiXsl,Esl),

¥:=X"2, Ys=[Y|¥s1], squareseq(Es1,¥s1}.
| Fotding by (14) (Assume D = (Clause (14)}.)

evenSquare{[L{¥s1],¥el := even(X) |
v:=%"2, Ye=[Y|¥s1]l, evenSquare{¥sl,¥si] (20)

Clanse {19}
lFm’ﬂ'mg by (14)

evenSquare{[X|Xs1),Ye} :- odd{x} |
avensSguare{Xst,¥s). (21}

Clauses (20 and (21) have replaced Clauses {14)
b (17).

8 DISCUSSIONS

The last section discusses three aspecis of the tech-
nicalities presented above: applicability, presentation,
and justification of the rules.

Appheability of the rules. Our transformation tech-
nique i5 interesting in that it can be used for pro-
grams with interaction. Both programs with two-way
(demand-driven) communication and pregrams with
one-way comumunication {pipelining) can be handled,
The current set of rules 15 a fundamental tool for the
simple improvement of programs, and various tech-
niques proposed for ordinary logic programs could be
adapied for inclusion in an enhanced set of rules. We
did not argue the transformation of guard goals, but it
could be introduced somewhat independently.

Presentation of the rules, The presentation of the
mles should be interesting in its own right. Firstly,
they have been simplificd owing to the vse of normal
forms. Secondly, the use of idempotent substitutions
with preferred directions of bindings was helpful in for-
malizging the rules. This suggests that substitutions
with such properties are an appropriate tool for meod-
eling information in (concurrent) logic programming.
The presentation using the algebra of terms and sub-
stitutions shows a good conformity with the synchro-
mization rale of GIC. However, the use of unification
for interprocess communication brings aboul some dil-
ficulty also. That is, the semantics and implementa-
tions must provide against the failure of unification,

while & GHC program that fails is usually regarded
as erronenus. The possibility of failure secms to be the
price of flexible interprocess communication realized by
unification,

Justification of the rules. We have given a simple
semnantics based on transactions with which Lo justily
the tules. A transaction is a finite fragment of a compn-
bation. It is abstract enough, and because of its finite
nature we conld use existent tools to dezeribe and rea-
son about 1. A transaction is a natural unib of com
putation (rom usess’ point of view. The strengths of
our sermantic madel are that it handies esscntially non-
lermminating programs and that it handles anomaloos
behavior in contrast with the success et semantics of
logic programs. These are very importaut for interac-
Live programs. The current rules are designed so that
they preserve any behavior in principle. They could be
simplified further if they were allowed Lo diminish the
pussibilily of anomalous transactions like deadinek.

In designing the semantic model, we were faced
with two problems: the modeling of foiling computas
tious (as described asbove) and the treatment of fair-
ness. As for the latter, we chose Lo allow execution un-
fair with respect to the selection of hody goals reduced
fromn Lhe inilial goals. As a consequence, a normal
transaction or failure that would necessarily happen
under fair execution may net happen, and divergence
that would not happen under fair execution may hap-
pen. This choice contributes much Lo the simplicity of
the semanties. While a model of fair execution will Le
needed as well, the proposed semantics should be use-
ful beeanse there is still some controversy as to whether
fairness should be assumed by the language rules, and
because some implementations of GHC adopt unfair
scheduling. Partial orders of transactions may be a
hetter ulternalive to sequences since we peed not con-
sider the fairness of interleaving, bul it is yet to be
studied how to use partial orders in our framewaork in
which inforination is modeled as substitutions.

ACKNOWLEDGMENTS

The anthors are indebled to Masaki Murakami and
Akira Okurmnura for valuable discussions. Thanks are
also due to the members of the LCOT Research Center
and the Parallel Software Working Group of 1001 who
paorticipated in the seminars on the transformation of
GHC programs.

REFERENCES

Drock, J. D. and Ackerman, W. B. (1981) Scenarios:
A Model of Non-determinate Computation. In Formal-
ization of Frogramming Concepts, Diaz, 1. and Ramos,
L {eds.}, LNCS 107, Springer-Verlag, pp. 252-254,

Furukawa, K., Okumoea, A sod Murakami, M. (1987)
Unfolding Hules for GIIC programs. Tn Proc. Work-
shop on Partial and Mixed Computation, Bigener, T,
et al. (eds), Gl Avernaes, Denmark,

Furakawa, K. and Ueda, K. {1985) GHC Process Fu-
sien by Program Transformation. In Second Conf
Proc. Japan Soc. Softw. Sci. Tech., pp. 492,

Kanamori, T, and Fupita, H. (1956) Unfold/fold Trans-
formation of Logic Programs with Counters. 1007
Tech, Report TR-17%, ICOT, Tokyo.

Lassez, J. -L., Maher, M. 1. and Marsiott, K. (1987)
Unification Hevisited., In Foundations of Deductive
Databases and Logic Programening, Minker, J. {ed),
Morgan Kaulfmann, pp. 587-625,

Lichtenstein, Y., Codish, M. and Shapire, I [1887)
Representation and Enumeration of Flat Concurrent
Frolog Computations, In (Shapiro 1957}, Chapier 27.

Lloyd 1 W. {1984) Foundaiions of Logic Frogram-
ming. Springer-Verlag.

Robinson, J. A. (1879) Logic: Form and Functinn. Ed

inburgh University Press.

Shapiro, E. Y. (ed.) (1987}, Concurrent Prolog: Col-
lected Papers, Vol. 1-2, The MI'T Press,

Tamaki, II. and Sato, T. {1884) Unfold/Fold Translor-
mation of Logie Programs. In Proc. Second Int. Logic
Programming Conl, Uppsala Univ., Sweden, pp. 127
138,

Tamaki, H. (1987) Program Transformation in Logic
Programming Languages. In Program [ransformation,
Fuchi, K. {aditar-in-chief), Kyoritsu Shuppan, Tokyo,
PP. 39 62 (in Japanese).

Ueda, K. {14985) Guarded Horn Clauses, JCOT Tech,
TReport TR-103, ICOT, Tukyo (revised in 1988). Re-
vised version in Proc. Logic Programming ‘85, Wada,
E. {ed.), LNCS 221, Springer-Verlag, 1986, pp. 168
178, Also in {5]1ﬁ|}iru 1987}, Chapler 4.

Ueda, K. (1886a) Guarded Horn Clauses: A Parallel
Logic Programming Language with the Concept of a
Guard, ICOT Tech. Report TR-208, ICOT, Tokyo (re-
vised in 1987). Alsoin Programming of Future Genera-
tion Computers, Nivat, M. and Puchi, K. {eds.), North-
Holland, 1988, pp. 441-456.

Ueda, K. (1986k) Introduction to Guarded Horn
Clauses. 10071 'lech. Report TR-208, ICOT, Tokyo.

Ucda, K. and Furukawa, K. (1989) Forthcoming paper
to appear as LOOT Tech, Report, 1COT, Tokyo.

