ICOT Technical Memorandum: TM-0606

TW-6lb

Program Design Visualization System
for Object-Ornented Programs

by
l. Ichikawa. S. Aikawa. M. Kamiko.
E. Onoand T. Mohri (Fujitsu)

Oetoher, 1988

@988, 1COT

Mula Kokusar Bl 21E {ihd) 456-5191~ 5

I l : D I EA Al 1-Chome Telex LKL 132964
Minatu=ha |'n:|:n.:-.u Liis 11\-'_.|_|.|||

Institute for New Generation Computer Technology

-.—|I/"

/-l | animator Hm
.
fi

gure cbjects window

animater |71 window

anatyzer |

animator exraam

nrw |

T , -
i flgL.II"E' abecis

I

VISU i
! U eommands
\ J \-J/J

Figure 1. Program Design Visualization Svstem

figure and
diagrem
efinitions

The anaivzer analyzes the information with histories of events and with visualization com-
mands, and the result of analysis commuts to change the state of Dgure objects. The fgure
objects are loaded from the knowledge base of diagram and figure definitions, and they build
structures of abstract figure objects. These structures are associated with the multidimensional
views and individual diagrams of hisrarchy. Figure objects create messages to the animators
according to definitions of their shape and moticn, and send them. FEach of the animators
mapages & window of the screen and amimates figures.

Some configurations of our system can be changed by the operations which invoked by user
interaction. For example, structures of figure objects and their atcributes are created by means
of seiecting dingrams from the definitions, preparation of the windew for the diagrams, scrolling
the windew, zooming into the sub-diagram and sa on.

An example of the visualization on the prototype system

To investigate the realistic design of our program design visualization system, we made a
partial prototype system on a PSI workstation. As a practical example, we tried visualizing
behaviors of the KL1 software simulater [Ohara 86| on the prototype system. The KL1 (which is
Flat Guarded Horn Clause, FGHC) software simulator is a simulater for basic models of the dis-
triputed WL] processors. Figure I shows an example of the result of the visualzation.

Om the prototype system, we trved to visualize the program using foliowing three diagrams
sach of which are associated with three different views respectively. Thre last one 15 a sub-
diagram of the second.

1} A basic model of a distributed computation,

In Figure 2, a window labeled "Distributed Computation Model.” In the window, we visual-

ize how to execute goals and how to communmicate among distributed processing elements

[PE}). In the diagram of that window, a processing element is represented by a black circle

with & mater, The metar displays the number of goals guened in that PE. And communica-

tion betwesn PEs are represented by an arrow, which flows along a channel between proces-

EOTS,

2) Whole configuration of the KL1 software simulator iteelf,

A window labeled "KL1 Software Simulator.” In the diagram of the window, there are nine

processing =lements {PE) and one network manager {MN), and all PEs are connected to MN

with two message queues. [n the window, we visualize how MN delivers messages to PEs.
3) The internal configuration of a processing element in the simulator.

Windows labeled "PEg#: " In each window, there is a scheduier {sched) and a solver (solve],

both of which are represented by a round rectangle, and there are gqueues which are

represented by arrows. A goal is represented by a tiny square. In each window, we visualize
how the scheduler and the solver process goals.

The system uses other windows in figure 2 for user interaction and the program execution
environment,

In a proper tempo of the animation, it shows some actions of the program as if they hap-
pened simultaneouslly, and a user of the system easily understand some concurrent behaviors.

-

program

N

window

animator m
p-ﬂiﬁ/ — A__' T*

figure objects

prane

animator

analyrer

& window
|
- J

animator '_ screen

figure and
diagrem
efirttons

Figure 1. Program Design Visualization System

The analvzer apalvzes the information with histories of events and with visualization com-
mands. and the result of analysis commits to change the state of Bgure objects. The fgure
ahijects are loaded from the knowiedge base of diagram and Sgure definitions, and they build
structures of abstract fipure objects. These structures are associated with the multidimensional
views and individual diagrams of hierarchy. Figure objects create messages to the animators
acrording te definitions of their shape and motiop, and send them. Each of the animators
manages a window of the screen and animates figures.

Some configurations of our system can be chaneged by the operations which invoked by user
interaction. For example, structures of fgure objests and their attributes are created by means
of selecting diagrams from the definitions, preparation of the windew for the diagrams, serolling
the windew, zooming into the sub-diagram, and so on.

An example of the visualization on the prototype system

To investigate the realistic design of our program design visualization system. we made a
partial prototype system on a PSI workstation. As a practical example, we tried visualizing
behaviors of the KL1 software simulator [Ohara 86] on the protatype system. The KL1 (which is
Flat Guarded Horn Clause, FGHC) software simulator is a simulater for basic models of the dis-
tributed KL1 processors. Figure 2 shows an example of the resuit of the visualization.

On the prototype system, we trved 1o visualize the program using following three diagrams
each of which are associated with three different views respectively. The last one 5 a sub-
diagram of the second.

1} A basic model of a distributed computation.

In Figure 2, a window labeled "Distributed Computation Model.” In the window, we visuai-

ize how to execute goals and how to comupumicate among distributed processing elements

(PE). In the diagram of that window, a processing element is represented by a black circle

with & mater, The meter displavs the number of goals guened in that PE. And communica-

tion between PEe are represented by an arrow, which flows along 2 channel between proces-

SOCS.

2) Whoie configuration of the KL1 software simulator itsell.

A window labeled "KL1 Software Simulator.” In the diagram of the window, thers are nine

processing elements (PE) and one network manager (MN}, and all PEs are connected to MN

with two message queues. In the window, we visualize how MN delivers messages to PEs.
3) The internal configuration of a processing element in the simulater.

Windows labeled "PE#: " In each window, thers is a scheduler {sched) and a solver (solve],

both of which are represented by a round rectangle. and there are queues which are

represented by arrows. A goal is represented by a tiny square. In sach window, we visualize
how the scheduler and the solver process goals.

The system uses cther windows in figure 2 for user interaction and the program execution
environment.

In a proper tempo of the animation, it shows some actions of the program as if they hap-
pened simultaneouslly, and a user of the system easily understand some concurrent behaviors.

[-
“

