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Abstract

We consider the problem of learning a context-free grammar from examples. We
present an cfficient algorithm for learning a context-free grammar from positive exam-
ples of structural descriptions. Structural descriptions of a context-free grammar are
unlabelled parse trees of the grammar, the shapes of parse tress. Thus the input to the
learning algorithm is a finite set of shapes of parse trees. Our learning algorithm has some
desirable features that the output grammar has the intended structure and the algorithm
learns a grammar from positive-only cxamples efficiently. We show that the learning al-
gorithm learns a grammar which is structurally equivalent to the unknown grammar and
achieves the polynomial time bound.
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1 Introduction

We consider the problem of learning a context-free grammar [rom examples. The
probiem of learning a “correct” grammar for the unknown language from finite examples
of the language is known as the grammatical inference problem. In the grammatical
inference problem, a “correct” grammar only means a grammar which correctly generates
the language. In this paper, the problem is slightly different from the usnal grammatical
inference problem. We consider the problem of learning a context-free grammar from
positive examples of structural descriptions. The learning algorithm that we present in
this problem setting outputs a grammar with the following properties.

(1) The learned grammar has the intended structure. The traditional grammatical infer-
ence problem is defined to identily a grammar G from examples of the unknown language
L such that @ correctly generates the language L, ie., L = L(G). However for any
context-free language L there exist infinitely many grammars  such that L = L(F). Fur-
thermore, those grammars may have different structures. Consider the following example.



The grammar Gy below describes the set of all valid arithmetic expressions invelving a
variable “v" and the operations of multiplication “x” and addition “+".

S—wv|Av
A—vt]ox v+Ad|lvxA
(the grammar y)

However the structure assigned by the grammar &y to sentences is semanticaily meaning-
less. The same language can be specified by the grammar 3 below which has a different

structure from &5.
5= F

E—F|F+E
F—vluxF

(the grammar G3)

Here the phrases are all significant in terms of the rules of arithmetic. Although G, and G,
are equivalent (i.e. L{G,) = L(G;)), this fact is not very relevant from a practical point
of view since it would be unusual to consider such a grammar as Gy which assigns the
structures to the sentences in a nonsignificant manner. Thus if the learned grammar must
be used in a practical situation entailing the translation or interpretation of seatences like
in a compiler, the structure of the learned grammar is more significant. However in the
framework of the usual grammatical inference problem, it is impossible to learn such a
grammar (e.g. not the grammar G, but G2) which has the correct (intended) structure.
To do so, it is necessary for us to assume that information on the structure of the grammar
is available to the learning algorithm. In the case of context-lree grammars, the structure
of a grammar is usually described by the shapes of the parse trees, called structural
descriptions. A structural description is a kind of tree whose internal nodes have no label.
The algorithm that we present learns a context-free grammar which has the intended
structure from structural descriptions.

the big dog chases a young  girl

Figure 1: A structural description for “the big dog chases a young girl”



(2} The grammar is learned from positive-only examples. In the case of learning an un-
snown language L. there is a fundamental. important distinction between giving only
positive information [members of L) and giving both positive and negative information
(both members and nonmembers of L). A postiive presentation of L is an infinite sequence
giving all and only the elements of L. A complete presentation of L is a sequence of or-
dered pairs (w.d} from ¥ x {0.1} such that d = 1 iff w is a member of L, and such that
every element w of £° appears as the first component of some pair in the sequence, where
L is the alphabet which the language [ is defined over. A positive presentation even-
tually includes every member of L, whereas a complete presentation eventually classifies
every element of L™ as to its membership in L. Intuitively, an added difficulty in trying
to learn from positive rather than complete presentation is the problem of “overgeneral-
ization”. Learning from positive presentation is strictly less powerful than learning from
complele presentation. Gold [Gol67] shows that any set of languages containing all the
finite languages and at least one infinite language cannot be identified in the limit from
positive presentations. L'his result applics Lo many important classes of languages (e.z.,
the regular languages and the context-free languages). However Angluin [Ang80] gives a
characterization of the sets of recursive languages that can be identified in the limit from
positive presentation. In this paper, we consider the problem of learning a context-free
grammar from positive presentation because assuming the teacher giving positive infor-
mation of the grammar is acceptable in a practical use, whereas assuming the teacher
giving complete information of it is not so casy [or users. Since, in our problem setting,
information of the grammar is the structural descriptions of it, it is assumed that positive
presentation of structural descriptions is given to the learning algorithm. As we said be-
fare. the class of context-free grammars cannot be identified from positive presentation.
We define a subclass of context-free grammars, called reversible contezi-free grammars,
that is still powerful to define usual languages and invertible, and show that the class of
reversible context-free gramrmars can be identified from positive presentation of structural
descriptions.

(3) The grammar is learned efficiently. In practical nse of the grammatical inference, the
erucial point is the time efficiency of the learning algorithm. One of criteria for evaluat-
ing the time efficiency of the learning algorithm is the polynomial time bound. Several
learning algorithms for different domains [Ang87,5ak88] have been studied to achieve the
polynomial time bound. We investigate an algorithm for learning a reversible context-
free grammar in polynonzal time. In this paper, we extend Angluin’s efficient algorithm
[Ang82] for learning a finite automaton from positive presentation and present an effi-
cient algorithm for learning a reversible context-free grammar from positive presentation
of structural descriptions.

2 Preliminaries

A ranked alphabet V' is a finite set of symbols associated with a finite relation called
the rank relation r CV % {0,1,2,...,m}. V, denotes the subset {f € V | (f,n) € rv}
of V. Especially, we call V, denoted T (iLe. & = Vp), the terminal alphabef. In many



cases the symbols in V,, are considered as function symbols. The rank of a function symbel
is called its arity and a syvmbol of arity 0 is called a constant symbol. A tree over V is
a mapping ¢ : Do, — V. which labels the nodes of the tree domain Dom,. VT denotes
the set of all trees over V. A tree language is any subset of V. A {erminal node in Dom,
is one which has no descendant. For a set of trees T, the set of subtrees of elements of T
is denoted by Sub(T).

A contert-free grammar is denoted G = (N, X, P, §), where N and £ are alphabets
of nonterminals and terminals respectively such that NN EZ = ¢. P is a finite set of
productions; each production is of the form A — a, where A is a nonterminal and o is a
string of symbols from (NUE)". Finally, S is a special nonterminal called the start symbol.
If A — 3 is a production of P and a and - are any strings in (VU I)", then ady = afy.
= is the reflexive and transitive closure of =. The language generated by G, denoted
L(G),is {w | wisin £* and S = w}. Two context-free grammars G and Gy are said
to be equivalent if L(G,) = L{(3;). A parenthesis grammar is a context-free grammar
G = (N,%,P,5) such that the productions in P are restricted to the form A — {a},
where { and ) are special symbols not in £ and & contains neither ( nor ). Without loss
of generality, we restrict our consideration to only e-free context-free grammars.

Let C = (N,Z,P,S) and G' = (N, L, P, §') be context-free grammars. G s isomor-
phic to ' iff there exists a hijection @ of N onto N such that »(5) = 5', and for every
AB,,... Bbe NUL, A— B,---B, € Piff p{A) — By .-+ B, € P' where B = p(B;)
fB;eNand Bi=B,if BieLforl <1<k

Let G = (N,E, P,5) be a context-[ree gramunar. For 4 in V U I, the set Dy(G) of
trees over N U T is recursively defined as :

{a} fdAd=ageX,
Dau(G) =
{..4.“];1-4...31;]|..-‘1—F31"'Bh f.E.DB,{G:I {]. E:,I"‘:_: k‘,l]' ifA4e N,

A tree in D 4(G) is called a parse tree of G from A. For the set Ds(G) of parse trees of
(7 from the start symbol S, the S-subscript will be deleted.

A skeletal alphabet Sk is a ranked alphabet consisting of only the special symbol ¢
with the rank relation rg, € {o} x {1,2,3,...,m}. A tree defined over Sk UL is called
a skeleton. Let t € VT. The skeletal (or structural) description of t, denoted s(t), is a
skeleton with Domyy = Dom, such that

t(z) if z is a terminal node,
S{f}[IJ =

a otherwise.

Let T be a set of trees. The corresponding skeletal set, denoted K(T), is {s(t) [t € T}.
Thus a skeleton is a tree which has a special symbol ¢ for the internal nodes. The
skeletal description of a tree preserves the structure of the tree, but not the label names
describing that structure.
The structural deseription of a context-free grammar G is the skeletal set K(D(G)).
Two context-free grammars (7, and 3 are said to be structurally equivalent if K(D{(Gy))
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= h{LNGa)). Note that if &) and &y are structurally equivalent. thev are equivalent.

Lo,

3 Structural Identification

Gaold’s theoretical study of language learning introduces a fundamental concept that is
very important in inductive inference : idenfification in the limit. In the Gold’s traditional
definition. for an inductive inference algorithm I 4 that is attempting to learn the unknown
language L. an infinite sequence of examples of [ is presented. Then after some finite
number of example presentations. A guesses the correct conjecture of the language and
never changes {converges to) its guess after this. In the case that the conjectures are in
the form of grammars, 7.4 identifies in the hmit a grammar & such that L{G) = L.

Oun the other hand. as in [Sak®3], in order to identify a grammar which has the intended
structure, it is necessary to assume that information on the structure of the grammar is
available to the learning algorithm. In the case of context-{ree grammars, the structure of
the grammar is the structural description of it. Suppose G is the unknown grammar (not
the unknown language]. This is the grammar that we assume has the intended structure,
and thal is Lo be learned (up to structural equivalence) by the learning algorithm. In this
case, a sequence of examples of the language L(G) is replaced by a sequence of examples
of the structural description {{D(G)). Then a learning algorithm identifies in the limit
a grammar (&' such that K{D{G") = K{D(G)) (i.e. structurally equivalent to G}. This
tvpe of identification is called structural ident: fication in the limit.

4 Condition for Positive Inference

[n order to do correct identification in the limit from positive presentation, we must
avoid the problem of “overgeneralization”. Angluin has shown in [Ang80] various condi-
tions for identification from positive presentation that avoids overgeneralization. In her
framework, the domain is a family of languages £ = {L;, Ly, La...,}. A positive sample
of the language I is a finite subset of L. One of conditions for identification from positive

presentation is following.

Condition-1

A family of language satisfies Condition- ! iff there exists an effective procedure which
on any input 2 > | enumerates a positive sample 5, of L, such that for all j > 1,1f 5; C L,
then £ is not a proper subset of L,.

This condition requires that for every language L, of the family £, there exists a
“telltale” finite subset S, of L, such that no language of the family £ that also contains
5; is a proper subset of L;.

These discussions and formulations can be applied to the structural identification.



5 Reversible Context-Free Grammars

A context-free grammar G = (N, I, P, 5) is said to be invertible iff A — a and
B — ain P implies 4 = B. Invertible grammar is one of normal forms for context-iree
grammars. Thus for any context-ree language L, there is an invertible grammar G such
that L(G) = L. A context-free grammar G = (N, Z, P, 5} is reset-free iff for any two
nonterminals B.C and o, J e (NUE), A — afF and A —= aCf in P implies B = C.
A context-free grammar G is said to be reversible iff G is invertible and reset-free. A
context-free language L is defined to be reversible ill there exists a reversible context-free
grammar & such that L = L{G).

The idea of the reversible context-frec grammars comes from the “reversible antomata”
and “reversible languages™ in [Aug80].

We now cousider characteristic structural samples for the reversible context-free gram-
mars. A positive structural sample of a context-free grammar G is a finite subset of
K{(D(G)). A positive structural sample CS of a reversible context-free gramumar & is
a characteristic structural sample for G iff for any reversible context-free grammar G',
K(D(G")) 2 €8 implies K(D(G)) € K(D(G"). The following result is necessary for
the proof of correct structural identification in the limit of the reversible context-free

gramunars from positive presentation of structural descriptions.

Proposition 1 For any reversible contezt-free grammar G, there erists a characferistic
structural sample.

6 Learning Algorithm

In this section we describe and analyze the algorithm RC to learn a reversible context-
free grammar from positive structural samples.

The input to RC is a finite nonempty set of skeletons Sa. The output is a particular
reversible context-free grammar G = RC(Sa). The learning algorithm RC begins with
the primitive context-free grammar for Sa and generalizes it by merging nonterminals.

A partition of some set X is a set of pairwise disjoint nonempty subsets of X whose
union is X. If r is a partition of X, then for any element x € X there is a unique element
of = containing x, which we call the block of = containing z. A partition = is finer than
another partition 7' iff every block of #' is a union of blocks of x. The trivial partition of
a set X is the class of all sets {z} such that z € X.

Let G = (N,E, P, 5) be any context-free grammar. If 7 is any partition of N, we
define the context-free grammar G/# = (N, I, P', &'} induced by = as follows. N’ is the
set of blocks of = (i.e. N' = r). S'is the block of » that contains 5. The production
Bl — Bly++- Bl, is in P’ whenever there exist A€ Bland A; e Bieror A;j=BL €L
for 1 <: < ksuchthat A — A4,---A; isin P.

Let Sa be a finite set of skeletons. Define the primitive contezt-free grammar for Sa,

G(Sa) = (N,E, P, 5), as follows :



N = (SubiSa)-Xju{s]},
P = {O’l:rll,...,_'l,r:]—P,Jq“‘rlk|{J'|:,‘l1,...,.‘-l|::\]E.'\'r}
U{S = Ay A | ol Ay, ..., Ay) € Sa}.

Then G{5a} is a context-free gzrammar such that A {D{G(5a))) = Su.

Algorithm ¢
Input : a nonempty positive structural sample Sa:
Clutput © a reversible context-free grammar G,
Procedure :
On input Sa, RC first constructs Gy = (7(Sa), the primitive context-free grammar for
Sa. [ then constructs the finest partition 7, of the set Ny of nonterminals of Gy with
the property that Go/my is reversible, and outputs Gy/w;.

To construet wy, RC begins with the trivial partition of Ny and repeatedly merges
any two distincl blocks Bl| and B, if either of the following conditions is satisfied.

1. There exist two productions of the forms A — A, --- 4; and A" — A} --- AL in
Fa such that A € Bl; and A’ € Bly, and for 1 < j < k, A; and A;- hath are in
the same block or are the saimne terminal svmbols.

2. There exist two productions of the forms A — A4, --- 4, and A’ — A} --- AL in
£y and an integer [ (1 <1 < k) such that 4, € Bl, and 4] € Bls, A and A’ are
in the same block, and for 1 £ 7 < k, j # {, A, and A; hoth are in the same
block or are the same terminal symbaols,

When there no longer remains any such pair of blocks, the resulting partition is .

This completes the description of the algorithm RC, and we next analvze its correct-
ness and time efficiency.

Theorem 2 Let Sa be a nonempty positive structural sumple of skeleions, and Gy be
the output of the contexrt-free grammar by the algorithm RC on input Sa. Then Gy
is reversible and for any reversible conteri-free grammar 3, K(D(G)) 2 Sa implies
K(D(G,)) € K(D(G)).

Theorem 3 The algorithm RC may be implemented to run in time polynomial in the
sum of the sizes of the input skeletons, where the size of a skeleton (or tree) is the number
of aymébols in its textual representation.

Next we show that the algorithm /IC may be used at the finite stages of an infinite
learning process to identify the reversible context-free grammars in the limit from positive
presentation of structural descriptions. The idea is simply to run RC on the sample at
the nth stage and output the result as the nth guess. Define an operator RC,, from

=}



infinite sequences of skeletons s, 8¢, 84,... to infinite sequences of context-lree grammars
GI, Gg.. G::,, P b}'
Gn= RC{{s1,30,....8,}) for ail n > 1.

We need to show that this converges to a correct guess after a finite number of stages.

Ap infinite sequence of skeletons s;, 54, 85.... is defined to a pesitive structural presen-
tation of a context-free grammar G iff the set {s1, 5;,83,...} is precisely K{D{G}). An
infinite sequence of context-free graminars G, Gz, Gy, .. . is said to converge fo a context-
free grammar & ifl there exists an integer NV such that for all n = N, (7, is 1somorphic to

. By Proposition 1 and Theorem 2, we conclude the following result.

Theorem 4 Let G be a reversible confexi-free grammar, 5y, 59, 53, ... be a positive struc-
tural presentation of G, and G|, Gy, &y, ... be the output of RC . on this input. Then
71, G, G, ... converges to a reversible context-free grammar G' such that K(D(G")) =
K{D(G)).

We may modify RC by a simple updating scheme to have good incremental behavior
so that .., may be obtained from G, and 5,4,.

7 Concluding Remarks

In this paper, we consider the problem of learning a context-free grammar from pos-
itive examples of structural descriptions. We make much more of the “operationality”
of the grammar learned by the learning algorithm in contrast to traditional grammatical
inference problems. We set up the new learning problem for context-free grammars that
is slightly different from the usual grammatical inference problem. Then the grammar
learned by our algorithm has some desirable properties for a practical use. Thus this
problem setting makes our learning algorithm practicable.

Lastly we remark on related work. Crespi [Cre72] is most closely related, as it de
scribes a constructive method for learning a context-free grammar from positive examples
of structural descriptions. However his algorithmn and our one use completely different
methods and learn different classes of context-free grammars. Since our formalism is based
on tree automata, one of merits of our way is the simplicity of the theoretical analysis and
the easiness of understanding the algorithm, whereas the time etliciency of his algorithm
[CreT2] is still not clear. Perhaps there may be a useful synthesis of these two approaches.
The investigation that we must do but have not done yet is the characterization of the
“reversible context-free languages”. Especially it 15 interesting to contrast them with
noncounting context-free languages [CGMTS].

This is part of the work in the major R&D of FGCP, conducted under program set
up by MITL
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