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Absiract

This paper presents s declarative semantics of Flat CHO programs. The se-
mantics presented here 15 based on the failure/deadlock set of a Flat GHC program,
namely the sel of the 1/0 lustories representing computations which fail or fall into
deadiock within finite steps,

1 Introduction

We reported the success set semantics of Flat GIIC programs [Murakami 83]. 'I'he semantics
preseuted in the paper is an extension or a modification of the model theoretic semantics of
pure Horn logic programs [Apt 82, Lioyd 84], namely the semantics of a program 1s a model
of the set of formulas that define the program. We deflined that a goal clanse 1s true on the
model if and only if the goal clause is w- successful {the goal clause can be executed without
deadlock or failure). The domain of I/ O hustory s introduced instead of the standard Harbrand
universe, The denotation of a program. the w— success set is defined as a set of [/O histories.
Using the semantics, the solutions of programs that contain perpetual processes controlled by
guard comumnit mechanising can be characterized as the logical consequence of the programs.

However, in the case of programs of committed choice language such as GHC, the set of
successful goals and the set of goals which have possibility to fall into deadlock or failure cin
have non-empty intersection. Thus it is impossible to discuss whether a goal clause can t il
into deadlock or fail with success set only [Falaschi 88]. Thus [Falascli 88 reported a u o«
approach to give a semantics to committed choice logic languages. In that paper, the semanties
of program is defined as a tuple of the success set and the failure set. A goal clanse is true
if it can be fail in that approach. However in that paper, the model is defined as a set of
formulas whick contain only the information of the final results which arc oblained when the
computation 12 terrminated. Thus non terminating computations cannot be discussed in that
approach. For instance, a goal clanse g, g3 s not true if g; does not terminate and g, fails.

In this paper, we define the failure/deadlock set, the set of goals which can fall into deadlock
or finite failure. Namely, we define that a goal clanse is true on the model of a program when
on of the goal clause has possibility of deadlock or finite failure with the program. The sel of
failure/deadlock set of a program is defined as the least model of the program.

lnstitute for New Ceneration Computer Technology,
Mita Kokusai Building, 21F, 4-28, Mila 1-chome, Minato-ku, Tokvo 108 Japan, Phone {81-03-4506-2524
e-mail: murakami@icot junet



Thus the semantics of prograius defined as a tuple of the w— success set and failure/deadlock
sel as [Falaschi 88]. Existence of processes which have possibility of failure/deadlock can be
discussed for the programs with perpetual processes.

2 Guarded Streams

In this section, we deline the notion of the guarded streams. Guarded streams are introduced
in [Murakami 38| first. Howevcr, in that paper, only computations without failure/deadlock
are represented with guarded streams. A new definition of guarded streams is presented in

order to discuss computations with failure/deadlock.

Let Var be an enumerahble set of variables, Fun be a sct of function symbels. Each element
of Fuin has its aritv. Let Terms be the set of terms defined from Fun and Var in standerd way.
A lerm 7 is stmple if it i3 a O-ary function symbol or the form of f( Xy, ..., X,.) where f € Fun
and X,...., X, arc diffcrent variables, Substitutions on lerms are defined as usual.

Lo this paper, we consider programs on the domain of lists of {a, b } as examples, thus
a,b,cons & Fun. The arity of a, b and nil is 0, and the arity of cons is 2. cons(X,Y) is
denoted [X]Y] and nil s denoted [ | as usual.

Del. 1

Let 7 be a simple term and X € Var.

)::T

is a simple substitution form or a substitution ferm simply. X = X is denoted true.
A substitution o 15 denoted using a finite set of simple substitution forms, for example,

T = {I = consiY, Z), ¥ = a}.

Def. 2
Let o be a sel of simple substitution forms. If ¢ is a substitution or equal to ... #:
defined below for some substitution #, then o is be an w—substiiution.

By — &
Ek+1 = E*U
{X = 'r|."f poeurs in 7 lor semne I:Y = 'T'r} e 0y,
(A =+") ¢ #, and no variables occurring in 7
occur in any element of f}

A w—substitution defines a mapping from a term to an infinite term.

The notion of 1/0 history introduced in this paper corresponds 1o the notion of element of
the Herbrand base for pure Horn logic programs. 1/ history is an cxtension or modification
of a guarded atom of [Levi 88]. An 1/O history is denoled as follows with head part If, which
denoies a form of a process, and the body part G/, which denotes a trace of inputs and
outputs of the process:

H: =G



(317 is a set of tuples < ol > where o is a substitution which is requierd to solve the
guards that appear before committing some elause and Uy is a expression which express an
execution of unification in the body part of the clanse to which the goal committed. Intuitively,
< o[l > means that if the arguments of the process are instantiated with ¢ then unification

[, can be cxecuted. For instance. in the following program:

[BIY1l, B = b, pl{XL,¥1).
CAIY1), A = a, pl(X1,¥1).

L}
o W

pLOX,Y) = X = [alX1], &
pi(X,¥) :- X = [BIX1], B

Il
o
It

The follewing is an example of 1/O listory which denotes the computation such that p1
reads a in fnput stream X fivst, writes b in output stream Y. then reads b and writes a.
plX.¥] - —{< {X = [AX1].A —a}l|y = [B[V1] =,
< 1k = '[.ﬁ.|}l,1]_hh = a] [B=1b:=.
< %= [AlX1),A = &, X1 = [B1[XZ].B1 = b} [¥1 — [A1|¥2] >,
< (X =I1aX1),A=a, X1 =[B1X2].Bi =b}[Al =2 >....}

An /O history of a process H represents a possible exccution of the process. Thus, there
exist different 1/0 histories for different caecutions which commut to different clanses. There
may be diffevent I/O histories for different scheduling.

lin this paper, we informally define that a computation fails or falls into deadlock when
a goal commits to some clanse such that there is no {w—) suceessinl computation after the
commit. A computation which fails or [alls e deadlock 15 represented by a guarded stream
whirh contains L mstead of 17,

For instance, consider the following program:

(b, 2], qi(Z).
la, 21, q2(Z).

plX, ¥} - X
plX, ¥} = &

a | ¥
a | Y

@l{Z) = true | 2 = b, r(W).
q2{Z) :- true | Z = b.

r(Wh - W=a | true.

For this program, a goal pla, Y) cannot avoid deadlock if it commuits to the first clanse.
This situation is represenled with the following guarded streant.

{< {¥ —a}i 1>}
{On the other hand, if i commits Lo the second clanse, the compulalion continues. This

situation is represented with the following suarded siream.

laiX=allY=|aZ] >« {k=a}lZ=b>}
Del. 3

Let 7 be a simple term and X € Var,

Xi=r7



15 & simple test form or a test form simply.
Def. 4

Let o he a substitution and uni(X,7) be a substitution form X = 7 or a lesl form X7 =7
for X € Var and a simple term 7. < |l > is a guarded unification where U is uni(X,7) or
L. o is the guard part of < ¢|l7 > and {7 is the active part.

Intuitively, if unt{ X, 7} s a substitution form, it denotes a unification which actually in-
stantiates X, and it it is a test form, it denotes a test unification. If the active part 1s L, it
means that a goal such that failure/deadlock is unavoidable is invoked.

Def. 5
Let < o|l/ > be a puarded unification. | < o[/ > | is the set of substitution forms or test

from defined as following.

|<olU>|={U}Uo

if L7 12 a test form or a substitution form., and

<ol =|=0
if 7 =1,

I'he body part of an IO history represents a normal execution of Flat GHC programs,
thus U7 is well founded with the partial order of exccution, namely, for any < @ Wy =, <
Tailys =& GU, if 7y C 3, then U, is executable before U,.

Def. 6
Let G be a set of guarded unifications. For < my|uy >, < aaluy >€ GU,

< Uy == gy >

holds if and only if &y © o7 and &y # 3.
It is easy to show that < is a well founded ordering.
Def, 7
A set of guarded unifications /U 1s a guarded stream if the following are true.

1) For any < oy|Uy », < oyl 5 GU Hf < |7y >#< 02|l > and U/; and U/; have
same variable on their left hand side, then Uy or Uy is a test form and their right
hand sides are umifiable. Furthermore if U, is a substitution form and U is a test
[orm then

< I'le[f'T:z e I"-"]l[*r[ ey
does not hold,

2) If < o|ll € GU, then (X =7} ¢ ¢ for any < 8|X =1 > GU.

3) For any < 8]X7 =7 =& GU, if r and ' are not unifiable, then (X = ') & & for
< alll € GU.

4) For any < oy|U} =, < aylly > GU, if (X = 7) € oy and (X = 7') € s, then 7
and 7" are unifiable,



Conditions 1),...,4} mean thal all variable in GHC programs are logical variables and if
they are instantiated, the values are never changed.

The following notion is defined 1o oblaiu the guarded stream representing the computation
of a goal clause from the gnarded strcams which represent the computation of each goal in the
goal clause.

[/ denotes a substitution form, test form or L.

Def. 8

Let &1L .., G, be guarded streams, and Gug{l < k) be as lollows:

Gug = {<oll/ > |q,d<olll 2 GULMN =1] €0 ¥, <a|X =7 >¢ GU;}

(Gupay = Gup U< ol » |F. 3 < o'l > GULV(X — 1) € o',
"X =5 =@ GV < a”|X =7 >€ Gug)h

L gt =7 »E Gug})U

= T L
(11|17 € 0" < "X = 7 >C Gui})

andd let 07 be as follows,

Gl = U If.;'t.!.:r

fymmce

If 17 18 a guarded stream and if

(U] < ol »e GU} = {U| < o|U € GU;)

then (1718 a symchronized merge of GU L, {717, and i= denoted:
GU|. . NG,
If 2 — 1, then the svnchronized merge can always be defined and it is equal to GT/ itsell
Del, 0

Let GI7 be a guarded stream and 6 be a set of simple substitution form. The set GL7 M8

is a set of guarded unifications defined as follows.

GUwMe={<olllh> <ol > Gla=0Ua'}

Def. 10
Let ;U be a gnarded stream and V' be a finite set of variables. The resirietion of GU by

I (707 ] Vs the set defined as follows.

t.',:r:..r[,l'__-r:l e (/X E 1."1 for soime .I,]

GU |V = {<alumi(X,7) > | <o

where

Vigp = ViU { X |dgu € GU, Juni(Y,7) € |gu],
X appears in 7.1 € ¥V, and Wou' € GT/,

it



if gu' < gu, then X does not occur in gu}
If &L/ is a guarded stream then GU | V is also a guarded stream.

3 Model Theoretic Semantics

This scetion introduces notions which correspond to the Herbrand base and unit clauses
fur parallel logic language based on the notion of guarded streams. First, a parallel language
based on Horn logic is presented. The language is essentially a subset of Flat GHC [Ueda
38] with only one system predicate, =: unification of a wvariable term and a simple term.
Furthermore all clanses are assumed to be mn a normal form, namely all arguments in the
head part are different variable terms. However it is not difficult to show that the language
presented here does not lose anv generality compared to Flat GHC using the modification of
the transformation algorithm for the strong normal from [Levi 88]. We denote set of predicate
symbols as Pred,

Def. 11
Let f1, By, B,, ..., B, be atomic formulas constructed with Terms and Pred where all argu-
ments of M are different variables, and Uy, .0 U, Uy, ..o, Usy be simple substitution forms.

The following formula is a guarded clouse.

H: —Uyh- . ~Ugm|”ah--~1 UM_thBap .. By

A program 15 a finite set of guarded clauses.
We define Var{H) = {X}, X,,..., X,} when H is p{ X, X5,..., X}).
Def. 12
Let p be an element of Pred with anty &, X1, X,,.... Xy be different variables and o he
an w=— substitution. Then op( X, Xy,..., X}) 15 a goal.
Def. 13
A sequence of goals: gy,..., 9, is a goal clause.
Def. 14
For a guarded stream G and an atom p{ Xy, X, ..., X).a [/0 history t is:

plXy, Xy X)) =GU

where p € Pred with arity &, Xy, X5, ..., Xy are different variables, and for every gu € U/
i1 '€ |gu| then the left hand side of 7 is an element of of V(G for some @ where V;(GL/) is
di ined as follows.

Vol GU) = Var(p( Xy, Xg,. .., Xu))

Vi [GU) = VA(GU) U {X|3gu € GU, uni(Y, ) € |gu],
A appears in 7, Y € V(GU) and ¥gu' € GU,
if gu’ < gu then X does not occur in gu'}

pl Xy, X, oo Xy ) 1s called the head part of { and GU is called the body part of {. Intuitively,
(71! only contains variables which are visible from outside through the head part.



The concepl of 10 histories corresponds to the concept of unit clauses of the standard
model theoretic semantics of pure Horn logic programs. However in 1/0 tistory, the samne
computation can he represcnted in several ways. In other words, if ¢, and ¢, are identical
except for the names of variables which do not appear in the head parts, they are considered to
represent the same computation. Thus the equivalent relation based on renaming of variables
should be introduced. In the following, we denoic the set of represeniatives of equivalence
classes of all 1/0 histories defined from Fun, Var and FPred as I/Ohist,

Det. 15

Tet H : —GU be an 1/O history. ¥ [7 is a substitution form or a test form forall < |l >€
(20 then H o —GU is a successful history. 1 there is a < o/ > such that 7 is L, then
H =0 s a unsuccessful hastory.

7 /(hist is divided into two disjoint subsets, //Qhist.: the set of all successful histories
and 1/ hist 2 the set of all unsuccesstul histories.
Def, 16

Auy subset of [/Ohizi is an oo mterpretation. Any subset of [/Ohist) is a L interpre-
fatann.
Def. 17

Let ! be an /O history and g be a goal. H 1 —GU s a trace af g if the [ollowing {1),.. W3)

Lol
{1} There exists an w— substitution @ such that ol = g.
(2} For any < 0| > GU. # Co.

(4) For any < 0 =& GULif U35 a substitution form X = 7, then o does not
instantiate X, and if {7 is a test form then o X = or.

o does not instantiate a variable X if oX = Y(€ Var) and there does not exist Z such
that o2 =Y except X.

Let  be a trace of a goal g. If £ is a successful history, it is a successful trace of g. Mftis
a unsuccesstul history, it is a unsuccessful trace of g.
Def, 15

et . be a L interpretation and g be a goal. g is true on I, il there exists an w--
elstitulion. o and there exists an unsuceessful trace of og € 1. ¢ is fruc on a successful
interpretation [, when there exists a successiul trace of o9 £ I for some w-—substitution: .
Def. 19

Let I, be a successiul wlerpretation and gy..... 0s be a goal clause. gy,... 0. 18 frue
on 1. if there cxists a trace {; € [ for every gl < i = m) for some w—substitution: o,
and there exists a synchronized merge GU\||...||GU, where GUy, ... 7, are body parts of

The emply goal clavse is always true.
Def, 20

Lei I, be a L interpretation and [, be a oo interpretation. [ and I. is consistent if for
any @ such that o C 0, if I, dosc not contain any trace of 8H then

;”Z—{:Jll:'-"fh_

-
i



Let (7;,7.) be a consistent tuple of L interpretation J, and I, mterpretation [

Def. 21
A goal clause g1,...,g, I8 true if there exists an w— substitution: o such that for each

{1 < i < n),atrace of og; ¢, 15 in I} U [, there exists j{1 < j < n) such that ¢; € I,
and there exists a synchronized merge GUA . GU, where GU,, ..., GU, are body parts of
Lot

The cinply goal clause is always true.
Def. 22
A puarded clause:
H:—Up. . Up|Uns.... U, By B

15 trie on I{IJ_,II.} if the foliowing condition 15 true,
If there exizgte an w— substitution: « which does not instantiate variables which are inwvisible

from outside through II and makes Ty, ..., [ true and GU is a guarded stream then :
H:-Ohel,
where (717 13 a set of ghuarded unifications such as:

G{"r - '[{ {'[lrgllz rey ['Irgmy}lt:lbl b P ' < {U5111 I ['rgri‘lr }H:'rﬁn‘l }}I‘—I
(G NG v (U, U b} L Var(H)

and G, is a body part of a trace (€ [, U 1.) of a goal o B,

w— success set of program [ is the maximum model of D defined in [Murakami 88].

Def. 23
let I be a GHC program, M2 he the w— success set of [). | interpretation: I, is a
Lmaodel of IIif following conditions are true

(1) I, and MZ is consistent.
(2) All clause in D) is true on (I, M)

{3) Let A« =Uh, ..., Upul|l, ... Usny B1,..., By € D, and & be a w— substitution.
VFor any w— substitution: ¢ such that ¢ C # and # does not instantiate variables
which are invisible from H, if #B,,... # By is not true on ML where 8’ = 61U
{U_.;.j.. - Ugm} I {-[-"Ti-.]_., . .ﬁUM]' then

H - c: {.TL_J' {{':;'-11" | ["rgrrl-} I"'"I l{'[’Jrlfi'l:l' . "I'Ublﬁ-}l J':}E IL'

The lollowing proposition is easy to show from the definition of models.

Prop. 1
Let M;(i € Ind) be a class of L models of D for a set of indices Ind. Then,

MM

16 fnad
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is alse a 4 model of £,

From Prop. 1, it is casy fo show that there exists a unique least | model for a given D).
The least | model of D is the failure /deadlock set of 1) and denoted as M. The semantics
of I is defined with (M, MD).

4  Conclusion: Relation to the Operational Semantics

This paper presented a new model theoretic semantics for Flat GHO programs based on
we= guecess 5ot and l[ailure/deadlock set.

We defined the notion of true for goal clauses and sets of guarded clanses to characterize
failure/deadlock of programs. We denote failure/deadlock with the symbol 1. Note that 1
does not mean that failure/deadlock has happened at this moment. L means that a goal
miaede a connuit which makes deadloclk /fail unavoidable. In other words a goal clause is true
on (M MDY i and only if a subgoal g can be spawned which makes a comumit such that any
instantiation to the arguments of g cannot keep the computation {rom [ailure/deadlock any
longer. Actually Tail/deadlock will happen within finile steps after the commit.

Yet another model theorelic characlerization of failure/deadlock may be possible. We
expect further discussion on the characlenzation of failure/deadlock. A fixedpoint charactersi-

gation ol the lailure/deadlock set is also expected in the future.
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