ICOT Technical Memorandum: TM-0568

TM-036E

Partially Specified Term in Logic
Programming lor Linguistic Analysis

by
K. Mukai

July, 1988

1988, 1COT

Mita Rokusan Bidg, 21F (51 456-51%1—~

|GDT 428 Mila 1-Chome Telex ICOT 137964

Wingto-ku T:lh:.r_l s _T{lLlilIl

Institute for New Generation Computer Technology

Partially Specified Term in Logic Programming
for Linguistic Analysis

Kuniaki Mukai

Institute for New GenerationComputer Technology

Mita Kokusal-Build., 21F
4-18, Mita 1-Chome, Minato-ku, Tokyo 108 Japan

csnet: mukai%icot.jpGrelay.cs.net
uncp:{enea,inriakddlabuke}licot!mukai

Abstract

This paper deseribes several aspects of a record-like structure called P'ST
{Partially Specified Term), which was introduced inte a logic programming
language called CIL. The semantic damain for 'ST consists of infinite trees
called PTT with a builtin operation of merging. PTT domain differs from the
well known domain of infinite trees of Colmeraver in that a PTT iz of non-
fixed arity and may have nfinite nunber of branches at o node. Unificalion
prammar formalism is straightforwardly expanded over the domain, which iz a
natural extension to Definite Clause Grammar. As a new technical result, it is
shown that TVI"[" domain s satisfaction complete and compact in the sense of
constraint logic programming schema with respect to a very simple system of
constraints. ‘The PTT/PST theory is a new step towards an integrated domain
of syntax and semantics for linguistics analysis'.

1 Introduction
Record-like structures are basic and essential in linguistic anlavsis. Also they

have been used widely in computer languages, data bases theories and compu-
tational linguistics, and so on, They appear as frome of Minsky, attribute-value

YA full version of the paper will appear under the title “A Systern of Legie Programming for
Linguistic Analysis” as an internal technieal report.

pairs list, property list of LISP, functional structure in LFG([7], anadic relation
of Pollard[21], category in GPSG[22], assignment or state of affairs in sitnation
theary of Barwise[3], and so on. Thus it is natural to introduce record-like
structure into logic programming for such variety of applications. Intuitively,
record-like structure (simply, record henceafter) is just defined inductively as
a set of ordered pairs written r = {a1/v1,..., 85 /0 }, where v; may be a record
again, and a, are distinct labels.

Now, why is record useful? An answer can be that it has many functions as
follows:

e tecord, say r as immediately above, is a partial function such that rla;) =
.

e 1 is a directed gruph or tree, which has an edge labeled with g; from the
node v to node .

e 7 isa finite stafe guiomata.
» ris a set with hereditary membership relafion,
¢ ris an indexed set, {vy}ies, where I = {a;,...,an} is the index set.

s 1 is an associefion lish

r is a list of atiribute-value pairs

r is an algebraic siructructure which is Associative, Commutative, and
Idempotent [9].

e ris an infinite strearn, when r is infinite.

r is a Herbrand term fi{v,..,vs) for some appropriate functor f.. An
Herbarnd term is a degenerated representation of a record.

It is clear that these aspects are necessary and useful for linguistic analysis.
So the problem is how to introduce a domain of records into logic programming.
That is, the main objective of the paper is to propose a domain of records
and its theory which meets above interpretations following the CLP(Constraint
Logic Programming) schema [10]. A record in the proposed domain is called a
PTT(Partially Tagged Tree). A PTT is roughly an infinite tree of Colemeranre.
However since record has no arity in nature, it is not obvious to establish
expected properties of the domain. In other words, the new domain has a
natural order, which the domain of infinite trees has no counter part of. The
theory of PTT is written in terms of compatibility of two P'TT’s.

The theoretical results of the paper are:

(1) The PTT domain is compact.
(2) The theory of PTT is safisfaction compact.

This means that PTT domains can be builtin logic programming which are
compiete and sound with respect to both its computation rule and Negation
as Fallure Rule. As a fact, the domair was one of the major motivation of a
logic programming language called CIL[15, 18] Aectually, CIL has four vear
experience in use for natural language processing among other applications,
showing the usefulness of the domain as expected. The current version was
trasplanted onm PST machine. Preparing environmental facilities, CIL has been
plaving a role of basic language for natural langauge processing at ICOT[14].

‘Technical heart of the theory of M1l domain was described in Mukai[16].
For instance, soundness and completencss were formalized and proved there.

This paper reorganizes the theary following CLP schema[ll]. Due to the
general theory[10], soundness and completeness result of Negation as Failure
are obtained antomatically frem proving that the domain is cononical [10].

Recently there have been many important formulations and studies about
record-like structure and they are still on progress. For instance, feature struc-
ture in unification grammar has been extended so as to have descriptions for
disjuntive information and even for negative one [2, 13, 19].

However as far as the author knows, it 5 not clear how to fit the PTT
domain to these theories, The PTT domain seems fo be a good test stone for
any computational domain theory[Y).

Another motivation of PTT domain comes from situation semantics[6]. Cen
tral ideas are given about how to use """ domains to integrate syntax and
semantics processing within a combined f{ramework of situation semantics and
constraint logic programming. Particularly, some parallelism is pointed out
between P. Aczel’s new non-well-founded sets theory called ZFC/AFA[L] and
the PST/PTT theory. A model for situation theory was given in Barwise[4, 5]
within the universe of ZFC/AFA. These observation strongly suggests possibil-
ity of new set theoretical domains for logic programming which are more general
and transparent than the traditional Herbrand universe. The PTT/PST the-
ory is a new step towards an integrated domain of syntax and semantics for
linguistics analysis.

This paper is organized as follows: In Section 2, an example from simple dis-
course analysis is described to illustrate some motivations to use PTT domains
integrating syntax and semantics using a portion of idea of situation sematics
and unification grammar, In Section 3, the syntax and semantics of CIL is sum-
marized as far as I""I" is concerned. In Section 4, some buitlin wtilities of CIL
for the PTT are illustrated. In Section 5, several leading ideas are discussed
for linguistic analysis in PTT domain putting emphasiz on the ideas from sit-
uation semantics. Section 6 is for the theory of PTT domain. Unification over
the domain is characterized in terms of partial equality theory. Satisfiabliy is
defined so that it is equivalent Lo unifiablity. This is the heart of the idea of
PTT domain theory. Using the solution lemma in Mukai[16] essentially, which

has a form very similar to the one in Aczel’s ZFC/AFA, the domain is proved
to be complete. This means that the PTT domain is canonical{10]. Moreaver,
it concludes that logic programming can enjoy Negation as Failure rule over
this domain. The paper is concluded at Section 7.

2 Using Partially Specified Terms

Before we will describe the language in the sections below, we show an exam-
ple which illustrates discourse interpretation using situations and [eature set.
The example program illustrates ideas to wse P3Ts for linguistic analysis. Tt
includes a simple nse of constraint by lazy evaluation. The program expresses
a naive idea about the meaniug of sentence proposed in some ecarlier version
of sitnation semantics that the meaning of a sentence is a relation between
discourse situations and described situations in Barwise and Perry[6).

Imagine the following discourse piece between two persons, say Jack and
Betty:

(1) Jack: Ilove you.
(2} Betty: I love you.

The two sentences are same, but interpretations of (1) and (2) are different as
in {3) and {1}

() Jack loves Heily.
(4) Beity loves Jack.

This difference is an example of language efliciency 6], How is this kind
of language efficiency analvsed in CIL? We demonstrate the power of P5T's by
giving a program to analyze the simplified discourse,

The name of the top level predicate is discourse_constraint. For the query

?- discourse_censtraint([(1),(2)], [X, ¥1).,
the program will produce answer interpretations X= (3) and Y = (4) for (1) and

(2), respectively, as are expected.

In this iilustration, suppuse simplified discourse constraints (5) and (6):
(6) The speaker and hearer turn their roles every sentence ulterance.
{(6) The successive discourse locations are numbered sequentially.

First, let us see the following clause:

(7) discourse_situatien{{sit/S, sp/I, hr/ You, dl/ Here, exp/ Exp}):-
member (sca(speaking, (I, Here),yes) .31,
member (scaladdressing, (You, Here),yes),S),
member (sca{utter, (Exp, Here),yes), 5).

This clause asserts that an object &, which is parameterized with sit/S,
zp/I, hr/You, dl/Here, and exp/Exp is a discourse situation if 3 has the
three state of affairs as indicated in the body of the clause. The membership
definilion is as usual

{B) dizeourse_censtraint{[],[]1}:-!.
discourse_constraint{[X],[¥]):-! meaning{X,Y).
discourse_constraint{[X,Y1Z], [Mx MyiR]):-

meaning {X,Mx},

turn_role(X, Y},

time_precedent(X, Y),
discourse_constrainc{[Y|Z], [My|R]}.

The first and second arguments are a list of discourse situations and a list
of described situations, respectively, The clauses constrain discourse situations
and described sitnations witl the rule (5) and (6) above,

I'he constraint (5] 15 coded in the clause:

{(2) turn_rolel{hr/X,sp/Y},{ho/Y,sp/ii@discourse_sitnation).

According to the context of the program, this clause presupposes that the
first argument is a discourse situation. The term

{hr/X,sp/Y}ediscourse_situation

in the second argument place constrains that the actual argument contains
both information {hxfX, sp/Y} and some discourse situation which satisfies
the constraint defined above,

The constraint (6) s coded in the clause (10):

(i0) time_precedent({dl/loc(X)},{d1l/lec(Y)}}:~ constr{i+i=:=Y),

The CI1. call constr{X+1=:=Y) constrains ¥ and ¥ with the arithmetic con-
straint that the latter is greater than the former by one,

The sentence interpretation is described in DCG form. The following clanse
is an interface between the discourse situation level and sentence level.

(11} meaning(X#{exp/E},Y):-sentence(E-[1,{ip/Y,ds/X}}.

The sentence maodel is very simplified. A sentence consists of a noun, verb,
and another noun in order. There are only four nouns, i.e., jack, betty, i(T),
you, The word love is the only verb here. The feature system is taken from
GPSG[22). The control agreement principle is illustrated using subcategoriza-
tivn features. By checking the features agreement between the subject and
verb, (12} is legal, but {*13) is illegal.

(12} Ilove you.
{*13) Jack love you.

The verb love has several semantic parameters: agent, ebject, location, and
so on. The first and last nouns are unified with agenl and object parameters,
respectively, The location comes from the given discourse situation parameter.
The agreement processing and tole nnification are coded in the following two
clanses (14), (15) using PSTs, where ip stands for interpretation.

{14) sentence{{ip/50A,ds/D5})-->
noun({ip/Ag,ds/ DS, syncat/{head/F}}),
verb({ip/SUA, ds/DS, ag/Ag, obi/ Obj, syncat/{subcat/F}}),
noun({ip/0bj, ds/ DSk}.

(15) wverb({ ip/ =oallove,(X, Y, Loc), yes],
daf {dl/Lock},
agl/ X,
obj/Y,
subeat/ {head/{mincr/
{agr/({plu/P, per/N}:
(P={+}, N= (@per);
P=(=), (N=1; N=2)))Ragr}}i@catageryl)
-=» [lave]. % love

The pronoun [and proper name Betty are described as follows. The agree-
ment features of [are the first person and singular. The agreement features of
Betty are the third person and singularity. The interpretation of the pronoun [
is the hearer of the given discourse situation.

(16) noun(ip/betty,
syncat/{head/{minor/{agr/{plu/(-) ,per/3 0agr}}lecategoryl})

-=»[betty]. % Batty
noun({ip/¥,
ds/{sp/¥X},
syncat/{head/{minox/{agr/{plu/(-) ,per/1}0agr}}tcategory})
-->[1] I

The system of syntax categories in this example is described as follows:

(17} categery({bar/ @bar, head/ Cheadl}).

This clause says that an object which contains {bar/B, head/H} is a category,
where B and H are a bar category and head category.
The following is a category specification by P5Ts:

(18} {bar/f2,
kead/ {major/ in/ +, v/ -},
minor/ {agr/ {per/1, plu/ -},
case/ acc .

Take query (19), to the above defined constraint, for example.

{19) 7- discourse_constraint(

[{sit/ [soalspeaking, ({jack, _.J), yes),
soa(addressing, (betty, .),yes)|_]1,
expf [i,love,youl,

dl/ loc(i)}@discourse_situatien,

{exp/ [i.love,youl}@discourse_situation],

Interpretation).

Note that no parameter other than expression parameter is specified in the
second discourse situation in this query. The other parameters are determined
by the discourse constraint. Then, the cxact output of this query is (20):

(20) Interpretation =
[ecallove, (jack,betty,loc{l)),yes),
soallove, (betty, jack,loc{2)) ,yaesl].

3 Summary of Syntax and Semantics of
CIL

3.1 Syntax

Hereafter by first order term, we mean the usual first order term, such like
ones in Prolog. We define a class of terms and clauses in CIL by extending the
first order term. Let us fix two disjoint set VARIABLE, CONSTANT. For
simplicity, CONSTANT include: atomic symbols and integer constants and
functor symbols all together. We fallow the convention in Edinburgh Prolog[20]
for variables and constants. See examples helow. The following are symbols in
the language:

{r, 03/
Definition 1 (Term) A class of terms are inductively defined as follows.

{1} A variable is a term;

(2) if f 15 a constant and zq,..., 7, are terms with n = 0 then f(z41,...,2q)
is a term;

(&) if aq,... ,0a, are first order terms and z,,...,5, ere terms then the set
{a1/z1,...,0. /2. } is a term.

A constant ¢ is a term by (2] with n = 0. A term f{zy,...,2,) of (2) is called
a totally specified term (TS5T). The term {a;fxy, ..., 6, /2, } is called a partially
specified term (FST) {}is a PST by (3) with n = 0 and is called the empty
PST. A term of the form in (2} is also called an atom.

Definition 2 (Condition) (1} an alom is a condilion;

{2} if e and d arc condilions then “, (e,)7, “{c,d)”, "not{c) " are condi-
tions,

The conditions in (2) are called conjunetion, disjunction, and negation respec-
tively. Using infix notation, conditions “, (e,d)”, “;(c,d}”, are also written
“le,dd™ , “le;d)”. A PST can not be a condition. Only TSTs can serve as
conditions.

We give names to some special forms of TSTs.
{1} :{z. ¥} : a conditioned term,
(2) @(z, y) : a conditioned term {lazy version of (1)),
(3) #Cz,) : a tageed term,
(4) '(x, w): alabeled term,
(58) 7(x} : a frozen term.
TS5Tsof the form : (x, y), @(z, y), !(z, y), #(z, y) may be written in infix
notation r:y, z@y, z!y. z#y. Also the TST ?{z) may be written in postfix
notation x7 |

Example 1 Severml examples of terms follow:

(1) variables: X, Man, X101, Salary, 325
{8) constants; 378, 'Man’, x1013, sin, !, +, :
(3} TSTs:
Ell 2: 3, E‘]-
sin(&0=-X},
345,
soa(give, {agent/A, object/B, recipient/’Jack’}, 1)
(4} PS5Ts:
{5L
{agent/father(X), object/0, recipient/ X},
{SLOT/X, feature(Y)/Z}.

(5) Conditioned Term:

Y:lman{X}, wife.of{X,Y), prativ(Y)),
Z0(2>0)
(6} Tagged Term
Sit#sca(R, {agent/A, soa/Sit}, P)
{7} Labeled Term
Man!name!first
{8} Frozen Term
.
{Man'name) 7

{6) Condilions:

(x>0, X<10)

(X%0; X<0)

{not X<Y)
(7) Query:

7~ print(X7), X=ok.

3.2 Program Clause

Definition 3 (Program) A program is a finite set of program clauses. A
program clouse 15 a TST,

{1} if a program clause ¢ is of the form h : —b, then h is the head of ¢ and b
18 the body of ¢,

{2} otherwize, ¢ 45 colled a wnil clouse.
A goalis a condition, A guery is of the form
T—a,

where gis a poal. A program is executed in top down depth first and from left to
right as the standard Prolog. As are introduced in the previous section, CIL has
various reserved forms of terms. The current CIL treats them as macros. They
are translated into normal form when the system reads the program clauses.
A term f is written t[s] if t has a subterm occurrence s. We write t{s] for the
term obtained from ¢ by replacing the oceurrence s with s'. The rules (1)-(6)
below are rewriting rules for the macro expansion. In these rules, r represents
a program clause and a represents a TST whose main functor is other than
logical connectives {, ; not)
[Rules of Expanding Macros)

{1} rlz@e] — riz: freeze(z,c)]

(@) rletts] = rle s (s = v)

{3} rlzly] — rlz : (2 = {y/2})]

{4} Az e]: =b — hlz] : —solvele), b

{5} h: —blalz :e]] — h: —bl{elz], solvele))]

(6) h:—blajz?]] = h: <b[frecze(z,a|z]]]

GGiven a user program, these rules are applied in the way of outer-most-first

principle. These rules are applied uatil they become not applicable. It is easy

to see that final one does not contain any of 7, &, :, #, !, Thus we can assume
that a program contains no part of these reserved forms.

3.3 Computation Model

CIL computalion is a SLD resolution with [reesing control(17]. Details is omit
tedd here.

4 Built-in Predicates for PST

Built-in funections in CIL are listed below with example uses. PSTs and lazy
evalnation are major points of CIL. The other parts follow the standard Prolog
specification. Most of what follows in this Section are related to handling PST"s.

In what follow, single uppercase letters such as X, ¥V, £ are used only for
Prolog variables, Greek letters are used for any terms.

4.1 Unification

The goal a = § unifies two terms a and 5. Several gqueries and results are
illustrated as follows: The execution of the query X = {a/1}, ¥ = {b/2},
X =V yields the binding X = Y = {a/1,b/2}. Similarly, {a/b,c/{d/E}}cld =
h yields I; = h. The next example shows something like if-filled-demon in
CIL. Note that @print is equivalent to V : freeze(V,print(V)) where V is
a new Prolog variable: X = {afok}, Y = {a/@print}, X = ¥ displays ok.
X#{a/1,6/X'a} = ¥ wvields X = ¥,X = {a/1,b/1}, becanse the value of a-
slot of X is 1. It is easy to produce and represent a circular graph in CIL: The
goal X = {a/b,e/Y}, Y = {a/b,c/X}, X = Y yields the arcular graph X,
where X =Y = {a/b,e/X}.

4.2 Copy

Copving [0 renaming) is fundamental operation for ireating parametric ob-
jects i CIL. There are four related builtin predicates: fullCopy, typeOf,
ereuteType, and insiance,

FullCopy(u, 3) makes a fresh copy of @ and unifv it and 4. Assuming v be a
condition, type(fla, typel 5,)} makes a = fallCopy”, {13,7"), of {a,) and then
solve(~"). erealeType(a, B, 1ype(,8)) unifies {y,d) with the “fullCopy™ of
(w,73). {nstance(e, 3) performs FullCopy(0,~) and unifies v and . SullCopy
makes copies of even demeons as shown in the following examples:

Here are two exmaples of queries related to copying. What will be the resnlt
of the execution of A = {uf@prim‘,hf.’[},fuflﬂupy{X,Z},Z!b!ﬂ = ok? This
will display ok. Note that X is bound Lo a circular record and that f ullCopy
make a copy of such circular streuture. The second example is the execu-
tion of ereateType(Y (Y = 1;Y = 2),T), type0 f(1,T), type((2, T). This will
dislplay wes. Note that T behaves as if it got bound to a type whose extension
is the set {1,2}.

4.3 Partially Specified Terms (PST)

Here are utilities of CI1. for handling PSTs: get Role, locate, setQ f Keys, role,
partial, record, buf fer, gluc, merge, d_merge, subpat, extend, meet, frontier,
malel, t_subpat, t_merge, and masked_merge. An explanation of each function
and exmaples follow in order,

The goal getlole(w,x, £) unifies the value of “x-slot” of a record & with £,
ie., mhe = £, More precisely, « is unified with a key of 7, and £ is unified with
the value in m-slot of . & does not need to be ground. When & is known to
be ground, the predicate locafe is more efficient than this. get Bole is uscful
when, for instance, one wants to find an appropriate slot of the given record.
For example, the execution of X = {a/1,b/2}, getRole(X, K,V) will produce
two sets of bindings in backtracking way: (K =a,V = 1) and (K = b,V = 2).

The goal locate(x, %, &) performs a similar operation like gelfole. £ must
be ground. The cxecution will fail if # has not the argument place, ie., slot,
named #. T'hree examples of locate follow: The execution of locate({a/b}, a, L)
produces L = b, locate({a A}, b, L) will fail because there is no b-slot m the
first argument. locate({a/A},a, L) produces A = 40 and L = 40, which shows
A and L are unified with each other.

set0 f K eys{m,a) collects the all keys in a given partial term = and then
return it to o. For example set@fKeys({a/X,b/Y,¢/Z},5) produces 5§ =
L, b, c].

‘The goal role(s,w,£) unifies £ with the content of k-slot of m. If xis
not gronnd then the execution is suspended. An argument place named &

o]] —

is created in 7 when = has not the place. For example, the execution of X =
{a/1,0/2},vole{ K, X,3), i = ¢ will produces K = ¢, X = {a/1,b/2,c/3}.

The goal partial{£) succeeds only if £ is a PST(=record}.

The goal record(w,£) produces a stream £ which consists of pairs (o, 7) such
that ' = r. This predicate is similar to buffer. £ is generated as a stream
from the partial term 7. This predicate is used as a stream generator. For
example, record{{a/1,b/2}, R) produces B = [(2,1),(b,2)]. That is, one can
attatch consumer processes to £

The goal bu f fer(=,£) converts a partial term (= record) = to a buffered list
£. linkike record predicate, the siream container £ is assumed to be produced by
other process. buf fer puts in some order each pair (o,v) such that rlo = v on
£, If £ is long enough then end_of.list is put on & just alter the final pair in 7.
If the buffer is not enough and some other process may produces it then buf fer
waits till it is produced in £. Otherwise buf fer sumply succeeds normally after
putting pairs on £ as far as the buffer is prepared on £.

Three examples of buf fer follow: Fiestly, buf fer({a/1,b/3},B), B = [] will
succeed. Secondly, buf fer{{a/1,6/3}, B),B = [A|C],C = [DIE] will produce
A= (a1}, B = [(a,1),{b,3)]-1161], C = [(b,3)|-1161], D = (,3), E = _1161.
Thirdly, buf fer({a/1,b/3},[A, B,C, E]) will produce A = (a,1), B = (b,3),
O = end, and & = _118.

The goal glue(w,r) glues 7 and v al the their joint. That is, for each
common argument place name & of 7 and 7, rlx and rlk are unified with each
other. For example,

glue(A#{a/H#1{b/1,¢/2}},C#{a/G7#{c/B}})

produces H = {b/1,¢/2}, A = {af{b/1,¢/2}}, B = 2, C = {a/{b/1,c/2}}
G ={b/1,c/2}.

The goal merge(r,7) merges 7 to 7. That is, 7 is extended minimally so
that 7 is a subpattern of r. More precisely, for each x-slot of 7, s-slot of 7 is
created if necessary and the two fields are unified. For example,

merge(X+t {c/d,a/4}.Y #{a/B})

produces X = {afd,¢/d}, B=4,Y = {a/4,c/d}.

The goal d_merge(x, v) merges = to 7 like merge just above. Unlike merge,
however, d_merge leaves conflicting fields left unchanged. More precisely, for
each r-slot of 7, d_merqge creates x-slot in 7 if it has not. And then, dyerge
unifies every s-slot of 7 and 7 such that they are unifiable, leaving nonunifiable
pairs unchanged. For instance, d_merge(X#{c/d,a/4},Y#{a/5}) produces
X = {aj4,e/d}, ¥ = {af5,c/d}. Note that two P5T's have non unifiable
a-slots each other.

The goal subpat(r,r,8) tests whether 7 is a subpattern of T or not. More
precisely, the goal succeeds only if each slot name x of » appears also in 7. §

is a difference list, which consists of triples [k, £,7) such that = and r have the
arguments £ and » with the name s, respectively, subpaf is used in {_subpat
below.

The goal extend| 7, 7,4} extends © munimally in such a way that = becomes
a subpattern of 7. & 15 the dilference list of = and 7 as above. extend performs
the same funetions to subpat except that © may be extended.

The goal meet{r,7.8) computes the difference list §, which consists of all
triples (o, £.9) such that = and « have the arguments £ and 5 with the name
o, respectively. Uor example, meet{{a/1,b/2}, {b/3,¢/4}, A =[]} produces A =
[(6,2,3)]

The goal frontier{s.r, &) computes the difference list between = and 7,
where, 7 and v are non variable terms. This predicate may fail because of some
unmatching functors pairs. For example, frontier(f(a,g(b)), f(A, B) L =[]}
will produce 4 = 54, L = [g{b) = 75,a = 54), B = _75. On the other hand,
fremtier{a, b, L — [1) will fail.

The goal match(x, 7,8} computes the difference list of terms x and v of
any forms. Unlike frontier, this predicate always sncceeds. For example,
mateh{a, b, L — ||} produces L = [a = &)

The goal {_subpaf(7, 7] tests whether & 15 a subpattern of r in a transitive
way, This predicate is intended to be a realization of hereditary subsel relalion
in set theory, For exmaple, ¢ subpat({a/{6/Y }}, {b/1.a/{c/2,8/3}}) succeeds.
On the other hand, {_subpat({a/{b/Y }.c/U}, {b/1,a/{c/2,6/3}}) fails.

The goal { merge(n,) merges = to 7 in a transitive way. For instance,
tonerge({d/ 1 a/{e/2,0/3} . {a/{b/ Y }}) produces ¥ = 4.

The goal delete(x,m,7) deletes the w-slot of #. More precisely, 7 is unified
with the record which is the same as 7 except that it has no s-slot. For instance,
delete{a, {af1,b/2},0) will produce O = {4/2].

The goal maskedomerge{n, y, 7} computes & minus g and then merges it
ta r. For instance, masked merge({a/1,b/1,e/1} {af b/} U#{a/2}) will
produce I/ = {a/2,¢/1}.

5 PST in Linguistic Analysis

To this Section, we show several ideas how Lo use PST Lo describe linguisiic
analyis,

5.1 Features Co-occurrence Restriction.

Let us take an example from linguistic constraint on a feature set that if ref!
feature of X 35 (1) then the gr feature of X must be sbj. This is an example of
constraint called a Feature Co-occurrence Restriction (FCR) in GPSG writlen

13

(REFL +) = (GR SBJ).

Using constr, which is a built-in predicate in CIL, a feature set X is con-
strained so by a call

comstr({ X'lrefl = (+) = X'gr = sby)).
By effect of this constraint, the following query generates automatically the gr
feature in X: the goal constr{(Xlrefl = (+) — Xlgr = sbj)), Xlrefl = (+),
A = X'lgr produces A = sbyj, X = {refl/{+), gr/sbj}.

5.2 Complex Indeterminate

A complex indeterminate (parametric objects) is represented a triple h(z, ¥, 2),
where h is a distinct functor to indicate a parametric object, = is a term which is
parameterized, y is a PST for the parameters list and z is a condition including
the parameters. Treating the prime parameter homogeneous with other, we
introduced the conditioned term of the form such like

{sit[S, sp/f, hr[Y ou,dlf Here,exp/Ezp} .

{ member(soalspeaking, (I, Here),yes), §),
member|soaladdressing, (Y ou, Here), yes), 5),
member(soa{utter,(Exp, Here), yes), 5)).

This is an indeterminate of discourse situation type. Thus, introducing PST,

CIL has got a uniform representation of complex indeterminates conditioned
parameters, parametric objects, feature sets and so on.

5.3 Question Sentence as Conditioned Parameter

Let us consider the sentence (1) and a part of its described situation(2).
(1) The air_craft is flying over the Pacific (Jeean.

(2)

{ soal flying, (the_air_craft,the_sky), yes),
soalover, (the_sky, the Pacifie Ocean), yes)}

Given these information, suppose the system is asked the question (3)

(3) What iz flying where?
The interpretation of this question might be the conditioned type (4):

_— 1 =

{what W, sit[5, where/V]
i member{soal flying, (W, V), yes), 5),
member(soalover, (V, 1), yes), §]).

I'he answering process is to solve the query (5], getting the anchor (k).

1 = type O f({what] X where/V, sat [{2]}(4])
| X = theaireraft.Y = thesky.

5.4 Attitudes in PSTs

We show an idea toward implementation of the attitudes theory in Darwise
and Perry|6). An attitude {mental state) is a pair of a frame and a setting. A
frame is a parametric object, and a setting is a assignment or anchor. Barwise
and Perry solves semantic paradoxes using this representation. Let (T, Ay) and
(T.As) he two mental states with a same frame 7' and different setting 4;, Az-
Note that this is a familiar data structure called a closure in LIST or a molecule
in. Prolog of structure sharing implementation.
Suppuse the following two belief contexts:

(1) Jack: I believe Taro beats Hanako.

(2) Betty: I believe Hanako beats Taro.

The mental states of (1) and (2) may be represented in (3) and (4}, where
beater and beaten are indeterminates, The setting of jack’s belief is

beater = laro,

beaten = hanako

It is similar with {4].
i3

believe(jack, { frame [beat(beater, beaten),
beater flaro,
beaten[hanako})

_15..

(1)
believel betty, | frame/beat(beater, beaten),
beater fhanako,
beatenftaro}).

Since menial slales are represented in PST's, various types of queries about
the states are treated by unification over PST's as follows:
(5) Who believes taro is the beater?
(6) 7 — believe(X, {beatertaro}). = X = jack
(T) Who does jack belicve is beaten?
(8) 7 — believe(juck, {beaten/ X }). = X — hanako
(9) What does jack believe taro does?
(10)

! — believe(jack, M##{ frame/T}), get Role(M, A, tare). =
A = beater,
Z = beat(beater, beaten),
M = { frame/beat(beater, beaten), beater [taro,beaten/hanako}

5.5 DAG and PTT

DAG in unification grammar and PTT in CIL are very close to each other, as is
easily expected [rom Shieber{12], for instance. However, we point ont some dif-
ference in that CIL uses PSTs, which use logical variables essentially and that
PSTs are interpreted more straightforwardly to be constraints on PTTs as lin-
guistic information. Note that the PTT domain is mathematically more simple
than the DAGs domain in that the lormer is the latter modulo graph isomor-
phism. Furthermore, owing to nsing logical variables, the behaviors of CIL are
described completely in a constraint logic programming languages schemal10|
in particular unification schema.

DAG has structure sharing property as objective one. On the other hand,
PTT can treat the structure sharing property throngh only meta level notion
of sharing variables. However, it is not clear whether structure sharing is an
essential linguistic relation or not.

Since a PTT may be infinite, CIL can represent more complex structure
than what a (finite) DAG can. In particular, the PI'T" domain may be suitable
for representing and processing circular sitnation proposed by Barwise[3] in
conjunciion with linguistic analysis.

5.6 Type Theory for Parametric Object

Assume a discourse which the question (1) below presupposes:

(1) What is Mr. Eoll?
Query (1) may be formalized in some polymorphic type system as (2)

(2) (X : role, isdype_of{ “Mvr Roll", X)) The type inference system will com-
pute a realizer Xg such that

isdypenf(“Mr.Roll”, Xy)

is satisfied. Combined with the situation theory, such a type theoretic approach
[8] may be useful to make clear some classes of the discourse understanding
problems.

A type inheritance mechanism is easily embedded in CIL by modifying
unification over PST. Suppose a type hierarchy iz given as a lattice. The idea
is very simple. Let P and P; be PSTs. Then the desired unification + between
PS5Ts is defined as shown (1)

(1) ({type/$1} + P) + ({tupe/Sa} + Pa) = ot {type/(S1 + $2)} + Py + 13,

where 5, <5, means the meel operation in the the lattice.

The current version of CIL includes some simplified portion of inheritance
facility. Also Ait-Kacil2] proposes a similar inheritance mechanism based on his
¢ terms. However sophisticated type inheritance including parametric objects
is a further work.

6 Theory of Partially Tagged Trees

A several points of theory of partially tagged trees (I"T'T) are summarized in
this section following CLP schema. 1irs of all, the domain of PTT’ and its
algebraic properties are introduced. Secondly, a theory of partial equation is
introduced over the domain. Unification is formalized in terms of the theory.
Thirdly, a simple model theory for the language is defined over the PTT do-
main in terms of satisfiability relation. There are two main results here: (1)
satisfiability and unifiability are equivalent, and (2) onr theory of partial equa-
tion is compact. This result gives good qualification of the PTT domain in
logic programming. The following descriptions is far from being self-contained.
A full version will appear elsewhere,

6.1 Partially Tagged Trees

We fix a set LAHEL hereinafter. An element in LABEL is called a label
(@1, ey @) slands for the string of labels ay,...,an. In particular, {} stands for
the empty string. The length of the empty string is zero,
We deline concaienation, +, between strings as usual by the following equa-
tions:
{(}*x =1,

r+)=,
{ar, any # (b, by} = {ar, @, by, b)

We often identify each label a with the string (a} if the context is clear.

A tree is a non-empty set T° of finite strings which is closed under prefix.
That is, il oy € T then x € T. Each element in T is called a node of T, Note
that every tree has the empty string {}.

Let T and x be a trew and a node of T, We define T'fz to be the set of
nodes y of 7' such that = +y is in 7. Clearly, T/z is atree. Ty = z+a
for sume label a, ¥ 15 an immediote sececssor of . A node in a tree T may
have infinite branche s, That is, for some node 2 of T, £ may have infinitely
many immediate successor nodes in 7. A node = of T s o leaf node if « has
no immediate successor in T, It 15 clear that for any family of trees both the
intersection and union are also tree. Vor a node ¢ and a tree T, ¢+ T denotes
the minimum tree which includes z » y for any node y of T. We write T for
**T simply.

Definition 4 (PTT) A partially tagged tree (PTT) 15 an ordered pair (T, f)
af a tree T and a partial function [assigning values to some of leaf nodes of
T. The PTT ({{)}.¢) is called trivial.

Let ¢ = (T,) and » be o PTT and 2 node of T, The expression i/r
denotes the PTT, (T/r,g). where g is a tag function defined by the eguation
g(y) = flz +y).

Let ty = (T, fi) and #3 = (T3, f2) be PTTs. The pair t = (Ty U T, fi U fi)
is called the merge of ¢, and {5 iff tis a PTT. The merge of t; and 3 is written
ty + 1. We define t; <t if 77 C 7% and f; C fau

It is easy to check that the set of PTTs is a commutative, associative and
idempotent semigroup with the trivial PTT as the identity with respect to the
merge operation,

By writing =z = y, in what follows, we means that = is defined iff y is defined.
Whenever we write z = y in what follows, it is presupposed that z is defined
iff y is defined.

e+t=t (UNIT)
t+e=t, (UNIT)
(1 + t2) + ta = t; +(ta + 13) (ASSOCIATIVE)
htty=la+l (COMMUTATIVE)
t+t=t (IDEMPOTENT)
Ot =1 (UNIT)
(afi)t = o ft) (ASSOCIATIVE)
a(ly +tz) = oty + aty (DISTRIBUTIVE)

alty + ..+ 1y + ...) = aty + ... + aty + ... (DISTRIBUTIVE)
A set of PTTs is called consistent iff any pair of ¢ and t' in the set has the
merge 1 + 1.

Proposition 1 4 consistent set of PTTs has the least upper bound with respect
ter the order <

The '"T'T domain is chain complete wrt <,

6.2 Partially Specified Term

Let VARIABLE and ATOM be disjoint sets. An element in VARIABLE
and ATOM e called o variable and a constanl. The set LABEL is as was
imtroduced in the previous section. We assume that these three sets are disjoint
to cack other. The following auxiliary symbols are used:

1y
A partially specified term (PST) is defined inductively as follows:

(1) a constant is a. PST,

(21 & variable s a PST,

{3) for any finite n > 0, and distinct labels ay,...,aq, if all elements py, ..., py
are ’ST’s then the set {{ay/p1). (8, /pa)} is a PST.

A PST can be regarded as a findte I"I'T, which may have variables as a tag.
So, the definitions of ap and pfa is defined just as in the case of PTT. The
notation p/n should not be confused with an ordered pair in a PST.

6.3 Theory of Partial Equation

We characterize the CIL unification in terms of equality axioms. For a set of
equalions between terms, a unification problem is to compute the least super
set of the given set which is closed under the axioms.

Axioms of Partial Equations:
In what follows, =, v, z, x;, and 1y are variables, o is a node, f and g are

functors, ¢ and v are any expressions and p and g are PST’s. An atomic
formula is of the form u M v,

(i) xblex
if oMy then y ™z,
ifr vty and y ™z then 2 Mz,

(2) if f # g then = (...} M g{,).

(3) p™p.
if pdg then ¢ p,
(There is no Transitive law.)

(4) if flay, e u) W flog, o, vg) then uy Moy and . and uy M vy,

19

{31 if p™ g and both pfa and g/« exist then pfa M g/e.
(6) iz ™ pand 2 My Lthen y Mp,
{7} ifzmpand z M g then pr g,
Let 5 be a set of atoms. The closure of 5 is the set of atoms which is
derivable (rom S5 by these axioms. The three axioms of (1) says that the

restriction of the binary relation ™ to the variables is an equivalence relation
over them.

6.4 Satisfiablity

An assignment is a partial function which assigns PTTs to variables. The defi-
nition of assignment can be extended to PSTs as usual. We define satisfiability
relation, =, between assignment and a formula in the language as follows:

(1) a2 My iff afz) = afy).

(2) aEc™qifl ¢ = afg).

(3] aExHMpift a(p/3) = a(z)/8 for any F such that p/F is variable.
{(4) pw g iff for any label a such that p/a and g/e exist, & = pfa W g/a.

Definition 5 (PET) A set of atoms of the language is called a PET if it
satisfies the axioms of partial egquality.

Theorem 2 Any PET is satisfiable.
This is praved in Mukai[16].
Let II be a directed family of PET's, {T)}sez, that is, for any T3, and T,
there is Az € T such that T, C T, and T, C T,.
Lemma 1 For {T)}.er as above, Jye; T), is o PET.

Lemma 2 The elosure of § is the least PET which contains 5.

Theorem 3 (Comapet) For any constraint C = {py M gy, ..., py ™ gy e}y o
every finite subset of O is satisfiable then (' is satisfiable.

Proof. Let F' = |Jyepouic) E4, where, pow'(X) is the set of finite subsets of
X, and E; is the closure of d. Since d is satisfiable Ey is a PET. Further,
since {Fa}aepous(o 15 directed, F is a PET. Therefore, from Mukai[16], F is
satisfiable.

— 80 —

Theorem 4 (Satisfaction Complete) Let T be the theory of partial equality
fhen i
~(T | 3-pHq)
tmplies)
T EVpwyg,

where poand g are any F5T's

Example 2 {a/{d/1}.b/4d/2}} W {e/ X, b/X} This constraint is not satisfi-
able, that is, for any assignment o it is not the case that

o b= Laf{df1},0/{d/2}} W {a/X,b/X}.

Theorem 5 The following conditions (1) and (2) are equivalent:
1) p and g are unifiablc.

(2) for some o, o = p g

6.5 Unification

Unification over the PTT domain is formalized as the elosure operation definied
above:

input: a set of atoms (of the form p M g).

output: the closure of the input, or FATLU RE if the closure contains a
conflict,

There is a UNTON-FINT like algorithm of unification[16]. The algoritm
preserves salisfiabily between input and vutput when computation is successful.
Also, a set of constraints is satisfiable if and only if it is unifiable.

7 Concluding Remarks

Logic programming has been strengthened for linguistic analysis in an elegant
way by introducing a new canonical domain called PTT domain. However,
there remain many problems to be studied further. UOriginal motivation of
PTT was to give a computational model for parametric types and objects in
situation semantics. A further interest in this direction is to find more implicit
representations for this domain. So far, only compatibility relation between
MUl has heen studied. Also, properties of mixed uses of PTT and Herbrand
term remains to investigated. An example is to use the dependent type theory
for instance to compile PTT constraint to Herbrand term constraint for more
efficient computation. As mentioued in the introduction, relationship between

21 —

ZFC/AFA domain and PTT domain is an interesting and important theoretical
question for foundation of logic programming.

Acknowledgments I would like to thank Prof. J. Barwise, Dr. Goguen,
Dir. €. Pollard, and Dr. J-L.s Lassez for useful comments,

References

[1] P. Aczel. Non-well-founded sets. C5LI lecture note series, 1088,

[2] H. Ait-Kaci. A Lattice Theoretic Approach te Compuation Buased on a
Calewlus of Paritally Ordered Type Structures, PhD thesis, Computer and
Information Science, University of Pennsylvania, 1984,

[3] J. Barwise. The situation in logic- I1I: Situations, sets and the axiom of
[oundation. Technical Report CSLI-85-26, Cenler for the Study of Lan-
gnage and and Information, 1985,

4] 1. Barwise. Notes on a model of a theary of situations, sets, and propasi-
tions. Technical report, CSLI, 1987, Manuscript.

[3] J. Barwise and J. Etchemendy. The Liar: An Essay on Trath and Cireular
Propositions. Oxford Univ. Press, 1987.

[6] J. Barwise and J. Perry. Situations and Attitudes. MIT Press, 1953,

[T} J. Bresnan, editor. The Mental Reprsentation of Grammatical Relation.
Cambridge, Mass.: MIT Press, 1952.

[#] L. Cardelli and P. Wegner. On understanding tyvpes, data abstraction, and
polymorphism. Computing Surveys, 17(4), December 1985,

9] J.A. Goguen and J. Meseguer. Order-sorted algebra I: Partial and over-
loaded operators, errors and inheritance. Technical report, SRI Interna-
tional and CSLI, 1985,

[10] I. Jaffar and J-1. Lassez, Constraint logic programming. Technical report,
IBM Thomas J. Watson Recearch Center, 1986,

{I‘l] J. Jaffar and 5. Michaylov. Methodalogy and implementation of a clp
system. In International Conference on Logic Programming, 1987,

[12} 5.0, Shieber F.C.N. Pereira L. Karttunen and M, Kay., A compilation of
papers on unification-based grammar formalisms parts [and II. Technical

Report CS5LI-86-48, April 1986.

[13] R.T. Kasper and W.C. Rounds. A logical semantics for features struc-
tures. In Proceedings of the 2{th Annual Meeting of the Association for
Computational Linguistics, 1986.

—— 22_

[14]

[15]

[16]
[17]

18]

[19]

[20]

[21]
[22]

R. Sugimura H. Miyoshi and K. Mukai. Constraint analysis on Japanese
modification. In Natural Language [/nderstanding and Logic Programming.
Morth Holland, 1957,

K. Mukai. Horn clause logic with parameterized types for situation seman-
tics programming. Technical Report ICOT-TR-101, ICOT, 1985.

K. Mukai. Anadic tuples in prolog. Technical Report TR-234, 1ICOT, 1987.
K. Mukai. A system of logic programming for linguistic analysis. Technical
Report To Appear, ICOT, 1983,

. Mukai and H. Yasukawa. Complex indeterminates in prolog and its
application to discourse models. New Generation Computing, {3(1985)),
14985,

F.C.N. Persira. Grammars and logics of partial information. In Proceedings
of the Fourth International Canference on Logic Programming. MIT press,
1987.

F.C.N. Pereita and S.M. Shieber. Prolog and Natural-Language Analysis.
C5LI, 1987,

Carl J. Pollard. 'loward anadic situation semantics. Manuscript, 1935.

G. Gazdar E. Klein G.K. Pullum and L.A. Sag. Generalized Phrase Struc-
ture (Grammar. Cambridge: Blackwell, and Cambridge, Mass.: Harvard
University Press, 1985,

