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Abstract

This paper describes a learning method for building knowledge bases. There are
two types of knowledge acquisition systems which extract knowledge from human ex-
perts, interactive and non-interactive. This paper describes a non-interactive knowledge
acquisition system which acquires a human expert's knowledge by observation. It learns
the human expert’s problem solving strategies and makes logical rules from temporal
sequential data. The learning method of the knowledge acquisition system is inter-
pretation based learning (IBL), which uses advance knowledge in the learning process.
Advance knowledge of IBL consists of domain concepts, concept relations and inter-
pretation knowledge, which transiates observed data into internal concepts. Although
explanation based learning (EBL) also uses advance knowledge, which consists of do-
main theory and operationality criteria, it learns knowledge using the domain theory,
but IEL learns the domain theory itself. IBL is a useful knowledge acquisition method
when a domain theory has not been prepared.



1. Introduction

One major problem in boilding expert systems is
removal of the knowledge acquisition bottle-neck.
Knowledge acquisition systems have been developed to
solve this problem, Most of them are interactive
knowledpe acguisition systems. This type of system
has an interview sub-system. The interview system
can access & human expert directly to ask necessary
information about his job. Therefore, this type of
system is called an active knowledge acquisition
system [AKAS)[Boose 84)[Boose 87)[Taki 87][Kahn
83]. There are many cases or sitoations in knowledge
acquisition environments., Sometimes, the human
expert is too busy to answer questions which are asked
by the interview system. In this case, the knowledge
acquisition method is the ebservation only, This type
of system cannot ask the human expert any guestions.
This type of system iz called a passive knowledge
pequisition  svstem (PHASNTaki 88]. The AKAS
obtains symbolic data {eg., language representation)
interactively from the human expert, but the PHAS
obtains not enly symbelic data but also numerical
data, Therefore, the PEAS must extract numerical
datn and translate it inte symbolie data. The PEAS
must build knowledge base inductively from
chservations only. Most inductive learning systems
{i.e., similarity hased learning systems) require
positive and negative examples. However, only
positive examples can be obtained frem the
observations of human expert operations. One
learning system which acguires knowledge from
positive examples only. The explanation based
learning (EBL) system [Mitchell B5)[Mitchell 88],
which extracts knowledge effectively using advancs
knowledge: domain theory and operationality.
Hewever, EBL learns only goal concepts which are
constructed according to the domain theory. It cannot
be vsed if a domain theory is not prepared, The PEAS
must learn the domain theory, too. We are developing
a PHEAS which has a2 knowledge-criented learning
mechanism, called interpretation based learning (IBL).
IEL learns the domain theory inductively by
observation. It has three items of advanes
knowledge: symbolie concepts, ranges of walues of
concepts and interpretation knowledge. In IBL, there
oare some learning strategies, such ps translation from
sensed information to symbolic concepts, inductive
rule generation and noise reduction. The following
gsections discuss the environment of knowledge
acquisition by observation, advance knowledpe of
IBL, inductive rule generation, and koowledge
generalization.,

2. Characteristics of PKAS

The PEAS can observe the actions of human experis
and the situations in which those actions oecurs as
showr in figure 1. Normally, this symbaolic
information is translated from data extracted by
sensors. Therefore, the PHEAS must be able to
interpret the sensed data as internal symbolic
representation data. Sometimes, there are
ambiguities and noise (useless information) in the
sensed data.  The PEAS must be zble to handle
various meanings in the ambiguities in building 2
knowledge buse. Generally, this noise is very harmful,
It makes acquired knowledge too specific. The PHAS
must have a function which choozes only suitable
situations related to actions. Example 1 is a noisy
situation.
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Figurel PKAS overview

Example 1:
Situation information:
{1t rained, and
the output voltage of the amplifier was too low.}
Action information:
{An expert changed an output transistor.}

Hesultof induction:
(Weather = Hain}
& (Amp-output-voltage = Low)
— (Change Amp-output-transistor)

This result is too specific to be used in real amplifier
maintenance, because the weather is not related to
amplifier maintenance. Therefore, the PHEAS must



choose situations related to the with actions. It has to
malee the following rule (example 2).

Example 2:
Result of induction:
{Amp-output-voltage = Low)
= {Change Amp-outpot-transistor)

This check is done wilth domain koowledge which
contains relations between situaticns and actions in a
targei domain.

2.1 Problems in Knowledge Acquisition by
Observation

There are some problems related to ambipuity in the
PEAS. They appear in the interpretation process of
ohserved information.

(1} Problem of dividing sensed data

Sensed data is continuously collected at every
sampling or when & sampling trigger is detected.

Sensed data is temporal sequential data. To symbolize
series dala, the PEAS divides the dnta into parts, If
sensed data contains some ambiguity, there are
many ways of dividing it. Therefore, the PEKAS must
have knowledge for dividing it to reduce the number of
alternatives. The results of dividing data must be
matched with internal symbelic concepts. The cause
of ambipuity in sensed data 1s sensor capacity. The
sensor hes an limitative capacity of detection and
detects noise. Figure 2 shows how to make situation
data. In this figure, parameter 1 15 divided into three
parts. Parameter 1 has three values (g, b and ¢). If
parameter 1 changes critically in these three wvalues,
it iz easy to divide parameter 1. However, generally,
parameter 1 does not always change stepwise (i.e., it
ean be & middle value between a and b) but changes
continuously. Therelore, it iz difficult to decide the
points of change of parameter 1. If more detailed
changes are considered, parameter 1 is divided into
more parts, and the PEAS obtains more detailed
situation information. In this case, the PEAS must be
able to handle many concepts related to dividing
criteria, the PEAS must have knowledge which
divides sensed data into useful level granules
corresponding to internal concepts.

2} Problem of symbolizing divided data

Mormally, fragments of sensed dats sre translated two
types: internal symbolic concept representation and
parametric information, which consists of =

Situations L 4 L J

I

Feriodl Period? Period3 Period4
Situation]l =({Pl=a, P2=4d)
Situation2 =(Pl=a, P2=¢)
Situationd =(Pl=h, P2=e)
Situationd =(Pl=e¢,FP2=¢)

Situationi =(P1=pli P2=p2i,

aPl=apli,rP1=rpli,.....)

Figure 2 Data division and situation generation

parameter and & range of its value. Parametoric
information contains numerical data and a specific
ingtance,

Example 3: The human expert measured regisierd
with wvoltage-testerl, and this tester detected from 0V
to 3 mV. Then, he changed registerd.

Symbolic data:
use(Voltage-tester), detect{low-voltage, Register)
~ change{Register).

Farametric data:
Voltage-tester = voltage-testerl

(thiz variable can be matched only with a voltage-tester),
Register = registers

{thiz varible con be matched only with a register),
0V & low-voltage = 3 mV

{this symbol means low voltage

{the word Tow "is a fuzzy expression)).

To symbolize the sensed data, the PHAS must check
matching real data with internal symbolic concepts.
In example 3, voltage-testerl matches the value
"Voltage-tester”, registerS matches the wvalue
"Hegister", and the real voltage matches "low-voltage”.
In this case, the PHAS contains concepts of "Voltage-
tester”, “Hegister” and "low-voltage®. If the PHAS



has only concepts of "Tester”, “Device" and “no-
voltnge(or detect-no-voltage)”™, the symbolic
expression is changed as follows:

Example 4:
Symbalic data’
use{Tester), deteetino-voltage, Device}
— change(Device),

Parametric data:
Tester = voltapge-testerl

(thiz variable can be matched only with o tester),
Device = repisterd

(this variable ean be matched only with a device),
0%V = no-voltage = 3mV

(this symboel means zero voltage

(the word "zero™is o fuzzy expression)).

The PEAS must have appropriate concepl sets of the
target domain, Generally, a concept consists of some
sub-concepts. In figure 2, a situation {or a concept)
contains two parameters. There iz other information
in this example, combination information of
temporal variable data, which can he thought of as
differentiation and integration information. The
necessity  of higher  order differentiation depends
on the target domain, The PHAS must have internal
svmbolic eoncepts, internal conespt sets, and
internal parametric definitions.

{3} Problem of combining situations and aclions
Situations canse actions in the human expert's tasks
Therefore, at a certain time, there is some causality
between situations and actions. The inductive
learning system makes rules from these situations
and actions. However, there iz some noise in these
symbols, a5 shown in example 1. The PEAS must
select appropriate situations and actions as shown in
fipure 2. Normally, there is a time delay in the
causality. The FRAS must combine situations and
actions carefully. Figure 3 shows noise reduction
examples. The first example has situation noise. The
situation changed, but the action did not change, and
the situation returned the same state. Therefore, 5j
must be poise, Inthe same way, the second example
shows action noise. Aj may be noise, The PKAS must
have symbolic concept relations to make appropriate
rules, and must have s noise reduction mechanism.

3. Interpretation Based Learning

Situations

Actions

S:r does rat make new actions f.krrqi"arer Sj i5 moiae.

Situations 2 -
i A T [
Actions = #I Eﬁ A & a: .I"Li %

Aj may be noise, becouse Si is the same ond Af returng to Ai.

Figure 3 IBL system noise raduction

This section describes an interpretation based
learning system and explains the learning flow and
mechanism.

3.1 Learning Input and Output

Examples are given as samples of an expert’s jobs.
They are temporal sequential data. They contain
problem solving strategy knowledge of the expert. TBL
learns problem solving rules. The following examples
show input and output,

Example 5: fnput contents

Sensing parameters at time t0; pl(t0),p2(t0},...,pnitld}

Values of the parameter: numerical data, symbol or
Iugifa] values.

Example 6: Output contents

Implication rules: S158652&....5] — al&al&...am

An expression Si{i=1,...J) is a variable (i=1,...j)

An expression ai(i=1,....m) is & function with one
or more variables.

The variables of the action part are shown as
Aili=1,.. k).

Varicble boundary and range:

The values of wariables (Si/A]) are numerical
values, symbols, or logical values. The veriation of the
range of a variable, ¥, is shown as follows:

Equality: V = number/symbollogical values

(e.g., truefalse)
Upper limit: V = number-1
Lower limit: V 2 number-2



Upper and lower limits:
number-2 & V = number-1
A sub-set: V C [symbal-1, symbol-2___}

3.2 IBL Learning Strategies

There are seven learning steps in IBL. Figure 4 shows
an overview of this flow end advance knowledge.

Knowledge
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Figure 4 IBL system structure

Step 1: Dividing sensed data
Sensed dats consists of many parameters. Each
parameter bas temporal variable values. IBL checks

the value change of each parameter, and divides data
in the time scale,

Step 2+ Matching sensed dato with internal concepts
Here, data is separated into symbolic concepts and
parameter instances. Symbolic concepts are set as
situations and actions.

Step 3: Reducing noise in situations and aclions

There are some relations between situations and
actions. Therefore, a certain  action data which is
independent of situations must be noise. In the same
way, asituation data which is independent of actions
must also be noise,

Step 4 Making symbolic rules

Rules are made to combine zituations and actions. A
rule consists of an "if-part” and a "then-part”,
Situations match the il-part, and actions match the
thep-part. Sometimes, generated rules alse have
useless information, as shown in example 1.
Therefore, the relationships between situations and
actions in all rules must be checked. Unnecessary
situations or actions are removed.

Step 5: Optimiring values of parameters

A parameter has an instance value and a range of its
value. This instance value is collected from sensed
data. It is only one example; therefore, it must be
generalized and optimized. It must be changed into the
mean value or typical value.

Step 6: Combining parameter data and rules

Rules are very general knowledge in IBL. Specification
knowledge of & rules iz the parametric range of the
values,

Siep 7: Generalizing rules and perameter data by
multiple examples

IBL learns rules and parameter ranges from step 1 to
step 6, when it obtains one example. IBL aequires
other knowledge from other examples, Then, it
checks and compares rules with the same form. If their
aclions are the same, the two situations are reformed
intc a more general situation. The ranges of
parameters are also generalized. For example, &
parameter consists of "Voltage” as a symbolic name
and "0 V & Voltage = 15 V" as the range of its value.
A new example brings IBL a new range of its value, i.e.,
"3V & Voltage = 20 V", [BL makes a new parameter



which contains "Woltage" as the name and "0 V =
"-"n]t.&g\z = 20 V" as the ranpe af its value,

4. Advance Knowledge for IBL

One of the most important components of learning
systems iz advance knowledge. Advance knowledge
controls the learming flow, It limits and stimulates the
knowledge acquizition systern to induce knowledge
from examples. Iz EBL, there are two types of
advance knowledge: domain theory nd operationality
knowledge. Domain knowledge attempts to explain the
examples. If an example is implied from the domain
knowledge, it is explained and EBL recognizes it as
o positive example, An example iz given to the EBEL
system a5 a goal concept; therefore, it learns how to
construet the goal concept from  domain knowledge,
Operationality knowledge controls the geperalization
level of explained knowledge. It limits generalization
of that knowledge. There are two learning steps in
EBL. The first step is the explanation step to check
whether an example is positive or not, and the second
step is the generalization step to generalize
knowledge. As shown in secticn 3.2, IBL does
“interpretation” instead of “"explanation”, and
therefore does not use the domain theory, but it uses
domain concepts and relations of eoncepts.

4.1 Domain Concept Knowledge

The domain concept knowledge means atom level
concepts and relations among these concepts. Atom
level symbolic coneepts mean symbolized situations
and actions, and parameter eaxpressions. They also
contain ranges of the parameter wvalues, Another
type of domain concept knowledge is relation
knowledge, which contains relations among symbalic
coneepts.  Each concept has a range of its value.
This information is used for parameter gpeneralization
and optimization. It is a generalization limit. This
range depends on the target domain,

Example 5: Symbalic coneepls

Symbolic concepts: voltagel, registers, capacitord,

Parameter expressions: Voltage, Time-delay,
Voltage-tester,

In IBL, a form ‘“registerS(Voltagel” is expressed
"Woltage-register5” or "Voltageb". A comcept ({i.e.,
Voltage5) is sometimes made from multiple concepts
(i.e., registerd, Voltage),

Example 6: Range knowledge of concepts
Parameter range: 0V & Voltage & 12V,
AmA = Amperef = 1 AL
In logic eireuwits, the voltage range isfrom 0V o 5V,
This range is 0 V or & Vin the logical meaning.

Aeguired knowledge must be moere specific than
advance knowledge because IBL must obinin efficient
problem solving knowledge.

4.2 Concept Relation Knowledge

Helations ameng concepts may be positive (e.g.. same
class concepts and positive relativity), nesazive (eg.,
contrary relativity), no relations, or equatons.

Example 7: . Concept relafions {about force feedback
robot control)
Pasitive relations:
pair{Movemnent direction, Veloecity vector)
in position control
Negutive relations:
pair{X-axis velocity, X-axis pressure)

Note: IT the robot's grip touches a wall, a Lactile
sensordetects pressure in the gpposite direction to
which it is moving.

No relations: pair{X-axis velocity, ¥-axis pressure)
Eguations: Velocity = Initial-Velocity * time

4.3 Interpretation Knowledge

Interpretation knowledge 13 used for translating
sensed deata into symboelic concepts and parameters. It
also contains dividing knowledge for sensed data
because divided data must be matched with intermal
concepls,

Dividing knowledge:
IF | pliti)-pl(ti+1) ] = el,
THEN divide parameter pl at ti,
I | plitik-plith | £ g1,
THEN divide parameter pl attj-1.
el and gl are special knawledge for dividing data.

Symbolizing knowledge (translation knowledge);
IF f1 = plifrom ti to tj) = f2,

THEN pl{from ti to tj) is a concept, X",
IF plifrom ti to §) = I3,



THEN pl{from ti to tj) iz a concept, "Y™.
The range of "X" is from f1 to f2. The value of "Y" i5 {3,

5. Generation and Generalization

This section deseribes how to make and optimize rules.
It describes the induction method, noise reduction and
relation check.

5.1 Rule Generation

Situations and actions are extracted each time. They
are represented by symbolic expressions and
parameters. IBL meakes implication sets (i.e., rules)
from sitvations and actions to select a good set of
situations g5 shown im figure 5. Temporal
information shows a sequential rule evaluation flow.
rule(ti}, which iz made from situations and aetiops
that occurred st time ti, makes a8 new environment
which matchs situations of rale(ti+1). Therefore,
IBL adds situations made by actions of rule(ti) to the
siteations of rule(ti + 1) shown in example 8.

.+ Subset of situations

Set of actions

Set of sitnations

Figure 5 IBL induction

Example 8: . Hule generation considering temporal
information
Situations: 51, 52 and 53 are observed at time ti+ 1.
51 = symbol-1,0 & 52 & 15 and 53 = symbol-2,
Actions: al is done by the humanp expert at time ti + 1.
The parameéeter of "al"” is A1, and Al = 20.
Action of rulefti); a2 is done.

Generated rule(ti+1):
514& 52& 53 & side-effect of a2 — a1(A1}),

in context (31 =symbol-1, 0 = 52 = 15
and 53 =symbol-2)

5.2 Noise Reduction

Real noise is caused by sensors and human experts'
errors. This noizse must be removed. It is unneceszary
data in expert jobs, For example, in spite of a sensor
detecting a situvation, 2 human expert sometimes does
not react to that situation. That sitoation
information is useless data. IBL detects this noise as
shown in figure 3. Both siteations and actions have
some causality with each other. Therefore, data that
have no causality must be removed.

5.3 Concept Relation Check

As shown in example 1, sensed data econtains most
concepts of the target domain. Therefore, generated
rules contain unnecessary situations in their "if-
part”. Each situation must have some causality
which depends on the target domain; this causality is
dealt with as the concept relation knewledge. IBL uses
this concept relation knowledge to reduce the amount of
unnecessary information.

5.4. Generalizathiun, Specification, and
Optimization

In one learning process, only parameters are
generalized or optimized. However, structures of
rules are not generalized in one observation, but by
multiple examples.

{1) Generalization {optimization) for ranges of
paramelers

Range expressions are shown in example 6. They
show the generalization eriteria.  Strietly speaking,
range Information containg a lower case and an upper
case. The lower case is used for parameter
generalization and the upper ease for parameter
specialization.

Example 8: Range optimizaotion
Lower cese (narrow range): 3= V = 4
Upper case (widerange) :1 =S V=5
Acquired range: 0.6 = V= 35
Optimumrange: 1 & VS 4



The lower limit of value "V" must be more than 1 and
less than 3; therefore, the acquired range is changed to
"1 £ V & 3.5". The kigher limit of value "V must be
more than 4 and less than 5; therefore, the acquired
range is tranzlated into "1 = V = 47,

If an sequired range iz within the limits of a lower ease,
itmust be rewritten asa lower case, If it is beyond the
limits of an upper case, it must be rewritten as an
upper case. A range of an instanee is generalized or
specialized in order to fit it inte a range between the
upper ¢case and the lower case. It becomes an optimized
range asshown in figure 6.

Specialization _ Instance bound

L4
Optimized
**  bound

-:w Upper case

“*a  Lower case

Generalization

Figure & Range optimization

(2) Generalization by multiple examples

There are many rules in one expert task. However,
general rules and special rules are mixed in the task.
Taking other expert tasks into consideration, some of
the same rules are extracted. Both old and new rules
have some differences from each other. To use
these dilferences, rules ean be generalized, We explain
the generalization of IBL for each difference.

Case I: There are no symbolic differences in the if-
paris between new and old rules, and each then-part i
the same. However, the values of the new parameters
of the if-partz  are different from old ooes. IBL
generalizes the ranges of situation parameters.

Case 2; There are symbolic differences in the if-parts
between new and old rules, and each if-part iz the
same. IBL applies the logical-OR operator to these if-
parts and makes a new rule,

Case 3; There is no difference in the if-parts but the
new then-part is different from the old ome. IEL
applies the logical- ANTY operator to these then-parts
and makes a new rule.

6.Acquiered Knowledge and
Object Model

The human expert knowledge is made from situations
and actions inductively, A form of acquiered knowledge
is an implication rule (e, situations — actions ). These
acticns are cccured by situations in the human expert.
Next situations are occured by these actions in an
object of expert jobs. Therefore, an implication form
{i.e., actions — ne¥t situations ) represents a sub-model
of the object. IBL ecan al=o obtain the sub-model of the
object. Il a detail model (e.g., deep knowledge) of the
ohject is given, we can know a coverage of acquiered
knowledge to compare the detall model and the sub-
model.

7. Coneclusion

IBL learns the human expert’s problem solving
knowledge by observation. It acquires knowledge in
logical form and the renge information of the values
in logical rules. It cannot obtain general rules from
vne ohservation, but it has a function which optimizes
parameter ranges, In order o acguire general
knowledge, multiple task examples are given to this
system. It has not been implemented, but a subset of
its functions was developed for a robot skill
acguisition systemn (Taki 85), and it was proved that
the major functions of this system are useful for
skill acquisition by cbservation in that system We
believe that it is also useful to extract oot only skills
but also knowledge of human experts, This paper does
not deal with the treatment of alternative
interpratations (translations). The TMS [Doyle 79][de
Kleer 86] mechanism iz useful to maintain the
acquired rule base. Acquired kmowledge is a logical
form; therefore, the partin]l evalustion technigues
in logic programming [Fujita 87] are useful for these
rules to reform effective rule sets.
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