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abstract

We consider the problem of learning a context-free grammar from examples. In this
paper, the problem is slightly different from the usual grammatical inference problem. The
problem is to learn a context-frec grammar adequate for bottom-up parsing or designing
bottom-up parser. Our final goal is to present the system using grammatical inference
methods to develop a grammar for bottorm-up parsing. Then what do we mean by “a
crammar adequate for bottom-up parsing”. Our answer is that the grammar should have
the intended structure for parsing and allow the process of bottom-up parsing to be made
easily. Furthermore for a practical use, we require that the grammar should be learned
[rom positive-only examples and the grammar should be learned efficiently. To achieve
those requirements, we present an efficient algorithm for learning a context-free grammar
from positive examples of structural deseriptions. Structural descriptions of a context-free
grammar are unlabelled parse trees of the grammar, the shapes of parse trees. Thus the
input to the learning algorithm is a finite set of shapes of parse trees. We show that
the learning algorithm learns a grammar which is structurally equivalent to the unknown

grammar and achieves the polynomial time bound.

YThis is part of the work in the major R&D of FGCP, conducted under program set up by MITL



1 Introduction

We consider the problem of learning a context-free grammar from examples. The problem
of learning a “correct” grammar for the unknown language from finite examples of the
language is known as the gramumatical inference problem. In the grammatical inference
problem, a “correct” grammar only means a grammar which correctly generates the lan-
guage. In this paper, the problem is defined to learn a context-free gramumnar adequate for
bottom-up parsing. Our final goal is to present the system using grammatical inference
methods to develop (or design) a grammar for bottom-up parsing. In this problem set-
ting, it is quite natural for us to require the grammar to be learned to have the following

properties.

o The learned grammar should have the intended structure. The traditional gram-
matical inference problem is defined to identify a grammar G from examples of the
unknown language L such that G correctly generates the language L, ie., L = L(G).
However for any context-free language L there exist infinitely many grammars G
such that L = L{G). Furthermore, those grammars may have different structures.
Consider the following example. The grammar &, below describes the set of all valid
arithmetic expressions involving a variable “v™ and the operations of multiplication
“x" and addition “+7.

§—w|dy

A—vt|vx|v+Alvx A

(the grammar G,)
However the structure assigned by the grammar (7, to sentences is semantically
meaningless. The same language can be specified by the grammar G; below in a

meaningful manner.

S5=E
E~F|F+E
Fovlvx F

(the grammar Gy)



Here the phrases are all significant in terms of the rules of arithmetic, Although &y
and (5 are equivalent (l.e. L{&;) = L{Gy)), this fact is not very relevant from a
practical point of view since it would be unusual to consider such a grammar as 7,
which assigns the structures to the sentences in a nonsignificant manner. Thus in the
problem of learning a grammar for parsing, the structure of the learned grammar is
more significant because the learned grammar is intended for use in a practical situ-
ation entailing the translation or interpretation of sentences in a compiler. However
in the framework of the usual grammatical inference, it is impossible to infer such a
grammar {e.g. not the grammar Gy but G) which has the correct (intended) struc-
ture. To do so, it s necessarv for us to assume that information on the structure
of the grammar is available to the learning algorithm. This hypothesis is in agree-
ment with studies on natural language by Chomsky in terms of the theory of phrase
structure grammars which claim that the availability of structural descriptions is
prerequisite for language description, since there must be a partially semantic ba-
sis in syntax acquisition. In the case of context-free grammars, the structure of
grammars is usually described by the shapes of the parse trees, called structural
descriptions. A structural description is a kind of tree whose interior nodes have no
label. The algorithm that we present learns a context-free grammar which has the

intended structure from structural descriptions.

the big dog chases a young  girl

Figure 1: A structural description for “the big dog chases a young girl”



e The learned grammar should allow the process of bottom-up parsing to be made easily.
Bottom-up parsing consists of (i) successively finding phrases and (ii) reducing them
to their parents. In a certain sense, each half of this process can be made simple but
only at the expense of the other. The family of invertible grammars, which is one
of normal forms for context-free grammars, allows reduction decisions to be made
simply. A context-free grammar & = (N, E, P, 5] is said to be invertible if A — o
and B = a in P implies 4 = B. Thus invertible grammars have unique righthand
sides of the productions and the reduction phase of parsing becomes a matter of
table lookup. The metivation for studving invertible grammars comes from the
theory of bottom-up parsing. Since the invertible grammar is a normal form, for
any context-free language L, there exists an invertible grammar which generates L.
Further for any context-free grammar (4, there exists an invertible grammar which
has the same structure as G and generates the same language as & (i.e. which is
structurally equivelent to G). The algorithm that we present learns an invertible

context-free grammar from structural descriptions.

o The grammar should be learned from posilive-only ezamples. In the case of learning
an unknown language L, there is a fundamental, important distinction between giv-
ing only positive information {members of L) and giving both positive and negative
information (both members and nonmembers of L). A positive presentation of L is
an infinite sequence giving all and only the elements of L. A complete presentation
of L is a sequence of ordered pairs (w,d) from &* x {0,1} such that d = 1 iff w
is a member of L, and such that every element w of £* appears as the first com-
ponent of some pair in the sequence, where £ is the alphabet which the language
L is defined over. A positive presentation eventually includes every member of L,
whereas a complete presentation eventually classifies every element of L* as fo its
membership in L. Intuitively, an added difficulty in trying to learn from positive
rather than complete presentation is the problem of “overgeneralization”. Learn-

ing from positive presentation is strictly less powerful than learning from complete



presentation.  Gold [7] shows that any set of languages containing all the finite
languages and at least one infinite language canno? be identified in the limit from
positive presentations. This result applies to many important classes of languages
(e.g.. the regular languages and the context-iree langnages). However Angluin [1]
sives a characterization of the sets of recursive languages that can be identified in
the limit from positive presentation. In this paper, we consider the problem of learn-
ing a context-free gramumar from positive presentation because assuming the teacher
giving positive information of the grammar is acceptable in a practical use, whereas
assuming the teacher giving complete information of it is not so easy for users. Since,
in our problem setting, information of the grammar is the structural descriptions
of il. it is assumed that positive presentation of structural descriptions 15 given to
the learning algorithm. As we said before, the class of context-free grammars can-
not be identified from positive presentation. We define a subclass ol context-free
grammars, called reversible contexi-free grammars. that is still powerful to define
usual languages, and show that the class of reversible context-free grammaxs can be

identified from positive presentation of structural descriptions.

The grammar should be learned e fficiently. In practical use of the grammatical in-
ference. the crucial point is the time efficiency of the learning algorithm. One of
criteria for evaluating the time efficiency of the learning algorithm is the polynomial
time bound, Several learning algorithms for different domains [3,8] have been stud-
ied to achieve the polvnomial time bound. We investigate an algorithm for learning
a context-free grammar from structural descriptions in polynomial time. It is known
that the set of parse trees of a context-free grammar constitutes a rational set of
trees, where a rational set of trees is a set of trees which can be recognized by some
trec automaton. Further the set of structural descriptions of a context-free grammar
also constitutes a rational set of trees. Based on Lhis observation, the problem of
learning a context-free grammar from structural descriptions can be reduced to the

problem of learning a tree automaton. Then by extending various existing efficient



learning algorithms for finite antomata to the ones for tree automata, we can get
various efficient learning algorithms for context-free grammars. In this paper, we
extend Angluin's efficient algorithm [2] for learning a finite automaton from positive
presentation and present an efficient algorithm for learning a context-free grammar

from positive presentation of structural deseriptions.

2 Preliminaries

A ranked alphabet V is a finite set of symbols associated with a finite relation called the
rank relation rv € V x {0.1,2,...,m}. V, denotes the subset {f € V | (f,n} € rv} of
V. Especially, we call Vi, dencted £ (i.e. £ = 1), the terminal alphabet. In many cases
the symbols in V,, are considered as function symbols. The rank of a function symbel is
called its artty and a symboal of arity 0 is called a constant symbol. A tree aver V is a
mapping ¢t : Dom, — V', which labels the nodes of the tree domain Dom,. V7 denotes
the set of all trees over V. A tree language is any subset of VT, A terminal node in Dorn,
is one which has no descendant. For a set of trees T, the set of subtrees of elements of T
is denoted by Sub(T).

A (deterministic frontier-to-root) tree automaton is a quadruple A = (@, V, 8, F) such
that @ is a finite set, F' is a subset of @, and § = (&g, 6, ...,6m ) consists of the following

maps:
St Vi (QUGE = Q (k=1,2,...,m),

dola) =a for a € V.

@ is the set of states, ' is the set of final states of A, and & is the state transition function
of A. In this definition, the terminal svmbols on the frontier are taken as “initial” states.
& can be extended to VT by letting :

'Ei:(f? E[tl}r XN !'ﬁllr.tﬁ'}} 1f 'I: = “!

8(fltr,... &)=

ol f) if k=0,
The tree t is accepted by A iff §(t) € F. The set of trees accepted by A, denoted T{A),
is defined as T(A) = {t € VT | §(¢) € F}.

If § is a state transition function from Vi x (Q U V5)* to 29 (k = 1,2,...,m), then



the tree automaton is nondeferministic, For a nondeterministic tree automaton N4 =
(@, V.5, F). we define T{VA) as follows. § can be extended to V7 by letting :

ﬁk{.f‘!?l""'!qji} ii|'JI"‘--".\2"I:I1
PrEH b ) EG L)

{f} if k=10
Then the set T{ VA of trees accepted by N4 is defined as T(VA) = {t e VT | §{t)nF #

ﬁ[flif].. - ..hl.:l-\] =

@}, Note that nondeterministic tree automata are no more powerful than deterministic
tree automata.

Let A be a tree automaton which accepts a set of trees T. A is mintmum iff A has
the minimum number of states among all tree automata which accept 7. The minimum
tree automaton is unique up to isomorphism [4].

A contert-free grammar is denoted G = (N, Z, P, §), where N and £ are alphabets
of nonterminals and terminals respectively such that N M E = ¢. P is a finite set of
productions; each production is of the form 4 — &, where 4 is a nonterminal and & is 2
string of symbols from (VUE)". Finally, S is a special ponterminal called the start symbol.
If A — Fis a production of P and « and + are any strings in (N U ), then ady = afy.
= is the reflexive and transitive closure of =. The language generated by G, denoted
L(G), is {w | wisin Z* and § = w}. Two context-free grammars G, and G, are said
to be equivalent if L(Gy) = L(G;). A parenthesis grammar is a context-free grammar
G = (N,E. P, 5) such that the productions in P are restricted to the form 4 — (a),
where ( and } are special symbols not in £ and o contains neither { nor ). Without loss
of generality, we restrict our consideration to only e-free context-free grammars.

Let G = (N,E, P, 5) be a context-free grammar. For 4 in N U X, the set D4(G) of

trees over N U E is recursively defined as :
{a} HA=ael,
DG) =
{Al:f].,...,fg} I A— B ---By, t, & DE.{G) {(1<:< k}} ifAe N.
A tree in D4(G) is called a parse tree of G {from A. For the set Ds{G) of parse trees of
G from the start symbol 5, the S-subscript will be deleted.
A skeletal alphabet Sk is a ranked alphabet consisting of only the special symbol

with the rank relation rg C {o} x {1,2,3,...,m}. A tree defined over Sk U ¥ is called



a skeleton. Let t € V7. The skeletal (or structural) description of t, denoted s(t), is a

skeleton with Domy,, = Dom, such that

t(x) if z is a terminal node,
s(tiz) =
T otherwise,
Let T be a set of trees. The corresponding skeletal set, denoted K (T'), 15 {s(f) [t € T}

Thus a skeleton iz a tree which has a special symbol & for the internal nodes. The

skeletal description of a tree preserves the structure of the tree. but not the label names

describing that structure.

The structural deseription of a context-free grammar G s the skeletal set K(D(G)).
Two context-free grammars (3, and (G are said to be structurally equivalent if K{D(Gy))

= K(D{(F,)). Note that if &, and 77 are structurally equivalent, they are equivalent,

too.

Next we show two important propesitions which connect a context-free grammar with

a tree automaton.

Proposition 1 Let G = (N, X, P, 5) be a contezt-free grammar. The corresponding non-
deferministic tree automaton NA(G) = (Q, Sk U X, 8, F) is defined as follows.

@ =N,

F={s},

&elo, By...., By) 2 A if the production of the farm 4 — By -.- B isin P,

bpla) =a fora € L.
Then T(NA(G)) = K(D(()). That 1s, the set of trees accepted by N A(G) is equal to the

structural description of (.

Proposition 2 Let A = (Q, SkUX, & F) be a tree antomaton. The corresponding context-

free grammar G{A4) = (N, L, F,5) is defined as follows.

= QU{S}h

P = {&(oyzy,...,2¢) =21 24 |0 € Sk and 24, ..., 2 € QU L}

U{S—} Ly Iy I Ek{a,zi,..,,zk] = F]’

_3_



Then K{D{G(A))) = T{A). That is, the structural description of G(A) is equal to the

set of trees accepted by A

Hence the problem of learning a context-free grammar from structural descriptions
can be reduced to the problem of learning a tree auiomaton. All following results for
context-free grammars are derived by using Propesition 1 and 2 from the similar results
for tree automata. Thus behind the theory for context free grammars concluded in this

paper. there always exists the corresponding theory for tree automata.

3 Structural Identification

Gold's theoretical study of language learning introduces a fundamental concept that is
very important in inductive inference : identi fication in the limit. In the Gold’s tradi-
tional definition, for an inductive inference algorithm I A that is attempting to learn the
unknown language L, an infinite sequence of examples of L is presented. Then aller some
finite number of example presentations, [4 zuesses the correct conjecture of the langnage
and never changes (converges to) its guess after this. In the case that the conjectures are
in the form of grammars. [ 4 identifies in the limit a grammar G such that L{G) = L.

Oun the other hand, as in [8], in order to identify a grammar which has the intended
structure, it is necessary to assume that information on the structure of the grammar
iz available to the learning algorithm. Suppose G is the unknown grammar (not the
unknown language). This is the grammar that we assume has the intended structure, and
that is to be learned (up to structural equivalence) by the learning algorithm. In this
case, a sequence of examples of the language L((G) is replaced by a sequence of examples
of the structural description K'(D{G)}. Then a learning algorithm identifies in the limit
a grammar ' such that K(D(G')) = K(D(G)) (i.e. structurally equivalent to ). This
type of identification is called siructural idenfification in the {imit.

Bv Proposition 1 and 2, the problem of structural identification of context-free gram-
mars is reduced to the problem of identification of tree automata, and hence to the problem

of identification of tree languages.



4 Condition for Positive Inference

In order to do correct identification in the limit from positive presentation, we must avoid
the problem of “overgeneralization”. Angluin has shown in [1] various conditions for
inference from positive presentation that avoids overgeneralization. In her frameworlk, the
domain is a family of languages £ = {L, L3, L3....}. A positive sample of the language
L is a finite subset of L. One of conditions for inference from positive presentation is

following.

Condition-1 A family of language satiz fies Condition-1 iff there exists an effective

procedure which on any input ¢ 2 1 enumerates a positive sample 5; of L; such that {7)

forall j > 1,if 5, € L; then L; is not a proper subset of L;.

This condition requires that for every language L; of the family £, there exists a
“telltale” finite subset S; of L, such that no language of the family £ that also contains
&, is a proper subset of L;.

These discussions and formulations can be applied to the case of inference of free

languages, and hence to the structural identification.

5 Reversible Context-Free Grammars

A context-free grammar &G = (N, E, P. 5) is said to be inverfible if 4 - o and B = o in
P implies 4 = B. Invertible grammar is one of normal forms for context-free grammars.
Thus for any context-free language L, there is an invertible grammar (7 such that L(G) =
L. A context-free grammar G = (N, E, P, S) is reset- free iff for any two nonterminals
B.Cand o, § e (NUI), 4 — aBf and 4 — «Cf in P implies B = C. A conlext-
free grammar G is said to be reversible iff & is invertible and reset-free. A context-free
language L is defined to be reversible iff there exists a reversible context-free grammar
(7 such that L = L{(7).

The idea of the reversible context-free grammars comes from the “reversible automata”

and “reversible languages” in [1|. Basically, the corresponding tree automata for reversible

— 10_



context-free grammars are the extensions of “zero-reversible automata”.

We now consider characteristic structural samples for the reversible context-free gram-
mars. A positive structural sample of a context-free grammar G is a finite subset of
R{DIG)). A positive structural sample €S of a reversible context-free grammar & is
a characteristic structural sample for & iff for any reversible context-free grammar &',
KIDIGY 2 CF implies K{DIG)) € K{D(GM). The following result s necessary for the
oroof of correct dentification in the hout of the reversible context-free grammars from

positive presentation of structural descriptions.

Proposition 3 For any reversible contert-free grammar G, there exists a characteristic

structural sample.

6 The Reversible Learning Algorithms

In this section we describe and analyze the algorithm RC to learn a reversible context-free
gramumar from positive structural samples,

The input to RC is a finite nonempty set of skeletons Sa. The output is a particular
reversible context-free grammar & = R(C(Sa). The learning algorithm RC begins with
the primitive context-free grammar for Sz and generalizes it by merging nonterminals.

A pariition of some set X s a set of pairwise disjoint nonempty subsets of X whose
union is X, If  is a partition of X, then for any element r € X there is a unique element
of = containing z. which we denate Bl(z,7) and call the block of = containing r. A
partition 7 is finer than another partition =' iff every block of ' is a union of blocks of
7. The trivial partition of a set X is the class of all sets {z} such that z € X.

Let & = (N,Z,P,S) be any context-free grammar. If # Is any partition of N, we
define the context-free grammar G/7 = (N', £, P". §") induced by = as follows. N' is the
set of blocks of # (Le. N' = 7). 5" is the block of = that contains §. The production
Bl — Bl,--- Bl is in P" whenever there exist A€ Bland A;e Blieror A, =8¢ X
for 1 €1 < ksuchthat A — A4,---A; Isin P.

Let Sa be a finite set of skeletons. Define the primitive context-free grammar for Sa.

— 11 -



G{Sa) = (N,E, P, 5), as follows :

N = (Sub{Sa)=E)u {5},
P o= {0{Ar,...,A) = Ay A | oAy, ., 4) € N}

U{S — Ay Ay |1:|'[:..‘-'I.|,...,Ak]l = 5:1}
Then G(Sa) is a context-free grammar such that A {D(G{5a))) = Sa.

Algorithm RC
Input : a nonempty positive structural sample Sa;
Output : a reversible context-free grammar &;
Procedure :
On input Sa, RC first constructs Gy = G(Sa), the primitive context-free grammar for
Sa. It then constructs the finest partition 7 of the set Ny of nonterminals of Gy with
the property that Go/wy is reversible, and outputs Gy/x;.
To construct 7y, RC' begins with the trivial partition of Ny and repeatedly merges

any two distinct blocks Bl; and Bly if either of the following conditions is satisfied.

1. There exist two productions of the forms 4 — A4;--- A, and A’ — A} --- Al in
Py such that 4 € Bl; and A'€ Bly, and for 1 £ j £ k, A; and A’ both are in
the same block or are the same terminal symbols.

2. There exist two productions of the forms 4 — A4, --- Ay and A" — A} --- 4] in
Fa and an integer | {1 <{ < k) such that 4; € Bl; and A} € Bl;, A and A’ are
in the same block, and for 1 £ j < k, j # [, A; and A} both are in the same

block or are the same terminal symbols.
When there no longer remains any such pair of blocks, the resulting partition is m,.

This completes the description of the algorithm RC. and we next analyze its correct-

ness and time efficiency.



Theorem 4 Let Sa be a nonempty positive structural sample of skeletons, and Gy be
the output of the context-free grammar by the algorithm RC on input Sa. Then Gj
is reversible and for any reversible conlexi-free grammar G, K(D(G)) 2 Sa implies

K(D(G)) € K(DIGY).

Theorem 5 The algorithm RC may be implemented to run in time polynomial in the
sum of the sizes of the input skeletons. where the size of a skeleton {or tree) is the number

of symbels in its textual representation.

Next we show that the algorithm RC may be used at the finite stages of an infinite
learning process to identify the reversible context-free grammars in the limit from positive
presentation of structural deseriptions. The idea is simply to run RC on the sample at
the nth stage and output the result as the nth guess. Define an operator RC4, from
infinite sequences of skeletons s, 54, 55, .. to infinite sequences of context-free grammars
Gh, Gq, Ga, ... by

Ga= RO({31,82,...,2.}) foralln > 1.

We need to show that this converges to a correct guess after a finite number of stages.
An infinite sequence of skeletons sq, 51, 83, ... is defined to a pesttive structural presen-
tation of a context-free grammar G iff the set {s;,51,34,...} is precisely K(D(G)). An
infinite sequence of contexi-free grammars &, Gy, (75, .. . is 5a1d to converge to a context-
free grammar 7 iff there exists an integer V such that for all n = N, &, is isomorphic to

. By Proposition 3 and Theorem 4, we conclude the following result.

Theorem 6 Let (7 be a reversible contert-free grammar, 31, 84, 53.... be a positive struc-
tural presentation of G, and (7y,(33,(73,... be the output of RC., on this inpul. Then
Gy, Gy, @3, ... converges to a reversible contezi-free grammar G' such that K(D(G')) =

K(D{G)).

We mayv modify RC by a simple npdating scheme to have good incremental behavior

so that G4, may be obtained from G, and 5,4:.

— 13 —



7 An Example

In the process of learning a context-free grammar from structural descriptions, the problem
is to reconstruct the nonterminal labels because the set of parse trees of the unknown
context-free grammar is given with all nonterminal labels erased.

The structural deseription of a context-free grammar can be equivaleatly represented
by means of the parenthesis grammar. For example. the structural description in Figure

1 can be represented as the sentence of the parenthesis grammar:
{ { the { big dog ) ) { chases { a { young girl ) ) } )

Now suppose that the learning algorithin RC is going to learn the following unknown
context-free grammar Gy for natural language.

Sentence — Noun_phrase, Verb_phrase.
Noun_phrase — Determiner, Noun _phrase?.
Noun_phrase2 — Noun.

Noun_phrase2 — Adjective, Noun_phrase2.
Verb_phrase — Verb, Noun_phrase.
Determiner — the.

Determiner — a.

Noun — girl.

Noun — cat,.

Noun — dog.

Adjective — young.

Verh — likes.

Verb — chases.

First suppose that the learning algorithm RC is given the sample

(¢ (the) { (girl) ) ) ( {likes) { (a} { {cat) ) )} )

(( {the) { {girl) } ) ( (likes) { {a} { (dog} )} })
RC first constructs the primitive context-free grammar for them and assigns distinet non-
terminal symbols to internal nodes. However it is not reversible. So RC merges distinet

nonterminals repeatedly and produces the following reversible context-free grammar:



S —= P, P2
P1l—=F23 P4
F4—- PS5

F2 - P8 PT.
FPT— PR PO
P9 — P
P3 -+ the

P& — girl.

F 6 — likes.
FE—a.

FP_10 — cat.
F10 — dog.

RC learns that “cat” and “dog” belong to the same syntactic category. However RC does
not learn that “girl” is the same synlactic category as “cat” and “dog” (noun), and “a”
and “the” helong to the same syntactic category (determiner). Suppose that in the next

stage the following examples are added to the sample:
(1 {2y { (dogy ) ) ( (chases) { (the) { (gir]) }} )}
( {{a) { (dog) } } { (chases) { {a} { {cat} )} }})

Then RC produces the reversible context-free grammar:

55— P1.P2
P1—P3 P4
FP4— P35,
F2—= Ps P1.
FPl=FPT7. P35
PR~ PO

P_3 — the,

P 5 — girl.

F 6 — likes.

P 6 — chases.
P = a.

P9 —» cat.

P9 = dog.

RO learns that “likes” and “chases” belong to the same svntactic category (verd) and
“the giri”, “a dog” and “a cat” are identified as the same phrase (noun_phrase). llowever
HC does not still learn that “a” and “the” belong to the same syntactic category. Suppose

that in the further stage the following examples are added to the sample:

{{(a) ( (deg) ) ) { {chases) { {a} { {(gicl) )} })
( { (the) { (dog) } ) ( {chases) { {a) { {(young) { {girl) } } )} )



RC produces the reversible context-free grammar:

S— P11, P2
Pl=—FP3 F4.
P4 = PaA,
P4— PH PA,
FP2= P77 F1.
P_3 — the
F3—a

F5 — girl

F_5 =+ cat.

P35 — dog.

P& — young.
P_7 —+ likes.
F_7 — chases.

This grammar is isomorphic to the unknown grammar (.

8 Concluding Remarks

In this paper, we consider the problem of learning a context-free grammar adequate for
hottom-up parsing,. We make much more of the “vperationality” of the grammar learned
by the learning algorithm in contrast to traditional grammatical inference problems. We
sel up the new learning problem for context-free grammars that is slightly different from
the usual grammatical inference problem. Then the grammar learned by our algorithm is
quite adequate for designing bottom-up parser or efficient bottom-up parsing. Thus this
problem setting makes our learning algorithm practicable.

Lastly we remark on related work. Crespi-Reghizzi [5] is most closely related, as it de-
scribes a constructive method for learning a context-free grammar from positive examples
of structural descriptions. However his algorithm and our one use completely different
methods and learn different classes of context-free grammars. Since our formalism is based
on tree automata, one of merits of our way is the simplicity of the theoretical analysis and
the easiness of understanding the algorithm, whereas the time efficiency of his algorithm
[5] is still not clear. Perhaps there may be a useful synthesis of these two approaches. The
investigation that we must do hut still does not is the characterization of the “reversible

context-free languages”. Especially it is interesting to contrast them with noncounting

context-free languages [6].

— 16
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