ICOT Technical Memorandum: TM-0504

TM-0504
Towards Design Plan Generation for
Routine Design Using Knowledge
Compilation - Focusing on Constraint
Representation and Its Application
Mechanism for Mechanical Design

by
Y. Nagai

May, 1988

© 1988, ICOT

Mita Kokusai Bldg. 21F 03 456-3191-~5

|CDT 4-28 Mita 1-Chome Telex ICOT]32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Towards Design Plan Generation for Routine Design
Using Knowledge Compilation

- Forusing on Constraint Representation and Its
Application Mechanism for Mechanical Design

{ Extended Abstract)
Yasuo NAGAT

Institute for New Generation Computer Technology,
4-28, Mita 1-chome, Minatoku, Tokyo, 108, Japan

E-mail: noagaificot.uucp@eddie.mit, nagai%icot jplrelay.cs.net
Fhone: Tokvo +81-3-456-3192, Telex: 329641C0OTJI.

Keywords

expert system, routine design, design process, design plan, knowledge compilation,
constraint representation, constraint-based problem solving, mechanical design

Summary

‘Ihe goal of this research is to propose design plan generation using the knowledge compilation
technique. For this purpose, it is necessary to clarify the architesture of expert systems for various
designs such as LSI design, mechanical design, and configuration. Especially, we regard constraint-based
problem solving as a suitable new paradigm different from the rule-based and frame-based paradigms,
and we need 1o propose primitive tasks for the constraint-based problem solving required to realize the
architecture. [1] defines the routine design and describes the framework of the expert system architectures
for design problems and necessary functions for selving them. Especially, the report focuses on and specifies
constraint-based problem solving, consisting of constraint representation and its application mechanisms
for mechanical design, in order to consider expert system architecture, including the modelling facility for
inechanical routine design.

This paper considers the knowledge compilation of routine design and design plan generation using
it, assuming the above framework including constraint-based problem solving.

1. Introduction

Knowledge compilation is a technigue by which knowledge in declarative form, such as facts and
theories, about the domain is stored and this stored knowledge is applied and uvtilized by interpretive
procedures. This technigue makes existing paths of processing more efficient rather than enabling new
paths of processing. ‘Therefore, more efficient procedures specific to the task domain can be generated
using the knowledge compilation technique [2]

In mechanical engineering, there are many cases when design systems or tools sueh as DA systems and
CAD systems are provided for each design object. In fact, the individuality that the design object possesses
makes it difficult 1o abstract, arrange, and utilize the Jr.'a'igl:l systems or tools as the de.sign environment,
hecause the corresponding model and analysis method for this object often changes when the structure
of the design ohject changes. In uther words, among synthesis and analysis tasks used in DA systems ar
CAT systems, especially the analysis tasks for the performance and behaviour (function} prediction and
evaluation are determined and provided based on the model of the design object. It is cansed by the fact
that a change in the siructure of the design object, such as the geometrical characteristics, may result in
a change in funclions

O the olher hand, the models of VLSI design for the analysis of the performance and behaviour
(function) and evaluation are fixed and formalized as the design methadology and ntilized, and its strue-
tural changes have little effect on the function and behaviour. The hierarchical structure of the VLSI
design, especially nested structure with the function, can be represented by combining the lower level
functions so that the interactions among sub-structures of the design can be minimized,

At present, as the individualized design systems or Lools for mechanical design implemented using a
typical language such as Fortran language are provided Lo designers, it is inconvenient and inefficient for
designers to use them for design.

To reduce inconvenience and inefliciency of existing design environments, it is necessary for the
designers to provide an assistance environment in which the designer can apply the approach used in
VI.ST design to mechanical design and can construct design systems or tools easily.

In the foliowing sections, we introduce knowledge compilation for design problems, design plan gen-
eration using knowledge compilation for routine mechanical design, a consideration of extended constraint
solver, and cuurent stale of our research.

There are various kinds of knowledge in design problems, for example, knowledge about the design
object and knowledge about the design process. Knowledge about the design object includes knowledge
about the design style to determine the structure, functional and physical components, and the analysis
and evaluation methods, This knowledge is represented as the design object model and can be regarded
as deep knowledge.,

The design plan by which the design specifications can be satisfied is generated by compiling deep
knowledge and problem-selving heurnisties [21].

The synthesis and analysis tasks in the design are interpreted and executed according to this design
plan generated by knowledge compilation on the predetermined system architecture.

2. Knowledge Compilation for Design Problems
2.1 Comparison of Mechanical Design with VLSI Design

In mechanical design, it is difficult o modularize the design object because the geometrical informa-
tion, as the representation in three dimensions, and manufacturing and assembly information are closely
linked with the design object. This is why the behavior of the design object changes as the geometric
features change, since the geometric features or form deseription depend on the functional description or
fabrication information. It results from the dynamic creation of the model about the components of the
design object as the device ar product.

In contrast -with VLSI design, feature description at the functional level has little effect on feature
deseription at the physical level and it is difficult to abstract the components of the desigu object from
their behavior or function. Therefore, given the specifications, 1t is difficult to determine whether the
behaviour satisfies the specifications and it is necessary to consider the analysis task.

Consideration of strategies for the decomposition of the problem or specification at each level is re-
quired to discuss the design process model for routine design. These strategies are not always formalized
clearly and not applied in mechanical design as in VLSI design [3]. In circuit design, the design process
at each level is formalized so that the modularity, simplicity and applicability of the design task can be
enhanced. It is very impartant for the strategies of the problem decomposition to consider the interactions
between functional description and physical description for both cireuit and mechanical design. In me-
chanical design, most interactions are caused by the execution of the constraint representation composed
of the functional concept, based on the physical laws, and feature concept of the form, such as topology
or geometry of the design object at functional or physical level, and it is necessary to deal with the design
problem by investigating the degree of decomposition of the problem or specification. In this case, it is
assumed that the structure of the design ohject at the functional level has already been decided.

In VLSI design, the silicon compilation technique is being investigated {4,5]. This technique trans-
forms an input programmung language into a eircuit to be implemented in device technologies as an output
by the compiler. It mainly consists of step-wise refinement, which assigns the decomposed sub-problem
into the circuit using the library modules and generates the circuit, and the optimization for the resolution
of the trade-off between input specification and resource.

In mechanical design, when considering the parametric design, the handling of the constraint repre-
sentation is required more than the step-wise refinement and optimization utilized in the silicon compiler.

This is the significant difference between VLSI design and mechanical design. However, it is expected
that the techniques and framework of silicon compilation will be applied to the framework of knowledge
compilation for the mechanical design,

2.2 Constraint handling in Knowledge Compilation
2.2.1 Classification of Constraints
{a) General {domain-independent) constraints for routine design
Constraints are classified according to the following characteristics.
1) Classifieation according to the generation method

Comstraints may be classified according to whether they are generated in statically or dynamically.
Static constraints are specified in advance, and are constant and unchanging. On the other hand, dynamic
constraints are imposed depending both on interactions with the user and on the system; they tend to
change, with their range of applicability varying. Such constraints may be interpreted as incomplete
knowledge, and, in order 1o manage changes in truth in the knowledge base accompanying changes in

2

constraints, the functions of the Truth Maintenance Syvstem (TMS) [6] and Assumption-Based Truth
Mauintenance System [ATMS) [T] are necessary.

2) Classification according to importance

Comstraints may be classified according to importance into obligatory or requisite constraints, and
sugpestive constraimts, When such a distinetion 13 made, not all the consiraints are selected and executed
oo e equal basis. That is, the importance of a constraint may depend on the context, the time, or another
concept. All obligatory constramts must be satisfied, and these are given explicitly. Suggestive constraints
are also referred to as weak constraints, and are used as guides in choosing the optimum branch at a pode
i the search tree, Such constraints may be deseribed in rule form, and are given priorities and other

attributes.
3] Classification according to scope

Constraints may also be classified aceordmg to whether they apply locally or globally; this distinction
is used i evaluating states in the search space. Local constraints are used to conduct searches when s
state changes within a given model, ebject or process and the scope over which the constraint is valid
is lemited to within the model or abject or process. (Global constraints are used when a state s Lo be
cvaluated using not only local constraints, but all related constraints, without imposing any limit. For
wstance, when the solution space is divided and searches pecformed, this is eguivalent to Laking into
account all these constraints which have been applied 1o states leadiog up to the present state, or to
eviluating different parts of the solution space relalive Lo cach other.

4} Classification according to the propagating variable information

Constraints may be classified aceording to the propagating variable information, that is, depending on
whelher the constraint variables propagate. or whether the constraimt propagates over the interval bound
i which ihe variable can take on a value or values. AL present, the constraint logic programining system
[8.9,10], CONSTRAINT system [11], and most other constraint systems [12] handle only constraints in
which values are propagated.

Constraints which propagate over interval hounds in which variables can take eertain valuss, are
described using inequalities, and the variables of the constraint arc nol constant; these constraints propa-
gale over the interval bound as a label. Most design problems include sub-problems which can be solved
uzing the method of existing operations research; it is extremely important that the architecture enable
functions to operate in a unified framework based on constraint propagation in labels with interval bounds
[1%].

There are some combinatory possibilities of the above classified constraints.
i) Domain-specific constraint for routine desipn

There are various domain-specific constraints for routine design. These constrainls arc related to
the simplified design process composed of the conceptual design, fundaniental design and detailed design.
They are described in this section.

In conceptual design, the description of performance and cost from the definition of the requirement
and specification description can be regarded as constraints. In fundamental design, the ways of the
mapping or instantiating the funetional deseription to the real or physical world and the environments
for its realization can also be regarded as constraints. For example, when the models are selected and
pecformance is analyzed and evaluated according to them, the constraints are derived from these models.
In detailed design, the design object is refined according to the selected madel. Then the form and
structure represenlation, and knowledge regarding the design style for the confipuration of the components
and relations among them can be regarded as the constraints. In this case, because the model depends
om the design objeet, the constramnts derived from the maodel depends an the design ohject.

In particular, structural constraints should be considered in routine design. Structural conslraints
are reflected in terms of the design swyle, and specifications, and requirerments al each abstract level af
the design, and determine the structural decomposition, partition, and design style at lower design level.
In hierarchical design, it should be noted that the constraiuls are propagated to a lower design level. The
design style constraints decide the structure of the design object and Lhe problem decompaosition at lawer
design level. Constraints are partitioned through the structure of the design object and decomposition
of the design problem. Far example, there are the unplementation constraints e, l.n-::hnqlosy-dependent
constraints at the implementation level,

2.2.2 Constraint-hascd Problem Solving

The architeeture and necessary problem solving mechanism of the expert system for routine design are
described. Hescarches has been condueted on architectures consisting of primitive tasks for routine design,
cilled design generic tasks [14,15]. ‘Lhese architectures provide the ability to structure knowledpe for the
varions design descriptions and problem solving for the design to rednce the gaps between the necessary

3

funciions for the task in the design process and the functions supported by expert system building tools.
However, they do not support the modeling facility and it seems that they are insufficient for this generic
task approach to hamdle the constraint representation. Therefore, the architecture including the constraint
representation and its application mechanism, and the modeling facility, are investigated. This constraint
representation is proposed as a new paradigm for knowledge representation and the application mechanism
as a new paradigm for the architecture of routine design expert systems.

The application mechanisms for constraint represenatation in roeutine design expert systems are de-
fined as constraint-hased problem solving, and are described in detail, Furthermore, constraint-based
problem solving foruses on the faillure recovery handling mechanism. Failure recovery handling consists
of constraint satisfaction problem handling and the redesign problem of partial design. Modelng cor-
pespouds Lo the formalization of various descriptions for design knowledge and the method of handling
design knowledge by trial and error. The knowledge derived based on this modeling can also be regarded
as deep knowledge. The following constraints are generated, derived, modified, or deleted from modeling
during the design process.

The constraint-based problem solving mechanism is described according to the above constraint
classification through matching the design process model for a routine design Lo the design system or toal.

The lunctions required for constraint-based problem solving are listed below.

1) A function for constraint propagation and its control

In the process of satislving constramts, and when values are assigned to vanables of the constraint,
the values of other constraint variables may be determined by the former variable; this is the mechanism
of consteaint propazation. Such a mechanism must take inte account both cases considering local con-
straint propagation and cases where the problem cannot be solved by local constraint propagation only.
A typical example of the former is the propagation method using data-flow analysis introduced in the
CONSTRAINT system. An example of the latter case is the variable elimination method of simultaneous
equalions. ln particular, when using propagation methods based on data-flow analysis, the trade-off be-
tween constoaints, such as ocour by regarding the TMS as a constraint satisfaction problem (CSP) [16],
may result when the propagation s not always sufficient. Clearly, a steategy for controlling constraing
propagation is needed. Interactions between constraints and the least commitment of constrainls are also
indispensable for realizing the conatraint propagation. For instance, in practical design problems, if we
consider design by step wise refinement, interaction between constraints applying to sub-problems which
are solved separately are extremely important. One approach to the problem of constraint interactions is
minimizing interactions between sub-problems, such as that adopted in the MOLGEN system [17,18]. This
is referred to as the principie of least commitment; by delaying constraint evaluations as far as possible,
refinements according to the design plan are executed, and evaluations are performed when necessary.

2) Constraint relaxation and selection

Relaxation and selection are applied to weak constraints. Relaxation of a constraint is equivalent to
searching for alternatives to the specified constraint. That is, at the failure stage, when a constraint has
not been satisfied, alternative constraints, al the samne or a lower level, are searched for. Selection invalves
the choiee of a constraint when there are two or more competing constraiols, and is regarded as constraint
interpretation. In this way, it 1s thought that constraint relaxation and selection can be formulated as a
planning problem [1%9].

3) Preservation and management of dependency relations

In processes where the values of constrained variables are propagated through the execution of eon-
straint, propagation mechanisms, when contradictions in variable values arise, the preservation and man-
agement of dependency relatinns among constraints, variables, and constant values are deemed important
to resolve such contradictions and to explain the propagating values [200.

4} Monitoring mechanism for constraint evaluation

A monitoring mechanism for constraint evaluation should not be omitted from any problem-solving
mechanism which relies on constraint representations. L manages constraint checks and ensures consis-
teney, and is to some extent realizable using demons or attached procedures.

2.2.3 Role of this mechanism in the design process

This section considers coustraint-based problem solving relative to the design process. The funda-
mental task at cach design level makes the iterative design composed of the problem decomposition and
refinement proceed according to the design plan. If o design fails, redesign is executed, and the problem
is decomposed and refined again. It backtracks the previous design decisions in the tasks at the higher
level or executes local modification at the same level, and executes the iterative design.

4

Mechanical design that mainly belongs to parametric design can be regarded as the generate & test
+ [atlure recovery {+ optimization + analysis & evaluation} paradigm.

Flanning decomposes and refines the problem or specification aceording to the design plan. The design
style determined [ron: the design plan, in other words, the configurational or architectural knowkedge about
the dosign object, is indexed by the requirement or specification of the design, and can be regarded as
a constraimt. The refinement, optimization, and analysis and cvaluation tasks are selected and executed
according 1o this constraint. The decomposition of the requirements or specifications of the design are
executed by applying this design style constrainl,

It is assumed that problemn decomposition can transform or map the sub-problem to the component
or assembly. In this case, there are two methods for problem decompesition: one is problem decam-
position into sub-problems with interactions, and the other is problem decomposition into independent
suli-problems. 1t 15 smportant for the former to consider the relations among the compositions at the same
lewel, and for the latter to consider the relations among the components and sub-components.

Refinement transforms the divided specificalion into struetural representation composed of the com-
ponents and relations among them . These relations among components can be regarded as a constraint.
Constraints on the component attributes are particularly important, For example, the propagation mecha-
nigm of constraints of the component attributes, in decomposition into mteracting sub problems is different
from that in deconposition into independent sub-problems. The former mechanism propagates the in-
teractions amoug sub-problems as the constraints, and the latter propagales the constraints upward or
dewnward aceoeding 1o the hierarchical representation of the design object when Lhere are no interactions
among independent sub-problems,

Opuimization modifies the structural representation locally, so that the functions expressed in the
specification do uot change

2.3 Knowledge Compilation for Design Probloms

Knowledge compilation techniques are being investigated in many problem areas such as diagnostic
and machine learning problems, Knowledge compilation for design problems, espectally mechanical design,
tg defined in this sections. This knowledge compilation for design problems is a technigque that transforms
the input design specifications to the design plan, assuming that the structure of the design object has
been determined.

The mput of a knowledge compiler is design specification, including the funetional deseription and
constraints such as performanec and resource limitation, in the form of parumeter description.

The knowledge compiler determines the structure of the design object, and the analysis and evaluation
methnd, hased on the instances of the configuration and mechanism of the design object stored in the
knowledge base' The structure of the design ohject may be given by the designer through the user
interface. The knowledge base stores knowledge aboul the design objeci model such as constraints for
the analysis and evaluation of the model, and its struebural knowledge, and public knowledge such as the
ratalogues and parts standards,

‘L'he relationship among the components for the implementation of the design chject, the problem
decomposition and refinement method, the relationships among the constraints and parameters, and
relationships among the romponents or parts and attributes are analysed and determined.

The design plan, where the functional or physical components are determined for implementation
of the design object by retrieving knowledge of the catalogues and parts standards, assuming that the
structure has been determined, and analysis and cvaluation method of the design object, are generated
using the above analysis result in the knowledge compiler. It is generated on predetermined architecture
such as the generate & test + failure recovery paradigm and can be considered as the program for Lhe
design that is. the design system. [this case, the optimization of the generated design plan, considering
the probiem decomposition composed of the independent sub-problem with no interaction and the sul-
problem with interactions, must be executed,

The interpretation of the design plan corresponds to the execution of the design system and 18 execyted
by the design plan interpreter.

The environment of this design plan generation using the knowledge compilation technique and its
interpretation may be considered as support for a CAD sysiem consiruction environment custemizable
by the designer.

3. Design Plan Generation Using Knowledge Cowmpilation for Routine Design in Mechanical
Engineering :

3.1 Constraint Representation in Mechanieal Design

In the problem of V-belt drive design, various constraint representations are utilized and applied.
They consist of most of the knowledge about the design object, composed of knowledge about the design
style or configuration, the functional unit, block, or component, and the physical components.

5

Therefare, there arc various application mechanisms for each constraint representation, the problem
solving mechanism for cach constraint representation. However, existing constraint handling systems
facilitate only general-purpose problem salving mechanisms based on the same criteria about constraint
representation and are msufficient for these facilities to deal with routine design problems. Here, the
problem-solving mechanisms for statie or dynamic consiraints, local or global constraints, and obligatory
or suggestive constraints described above ars needed in order to deal with routine design problems for the
machine, parametric design.

I mechanieal design, the function concepts based on the physical laws, and feature concept of the
form, such as lopology or geometry, of the design object at the functional or physical level ean be described
as mathematical formmlas, and they can be considered as constraints.

Apart from the above constraints, consideration of the handling of the equality and inequality as
constraint representation, n particular, is required in parametric design, There are two methods of deter-
mining the parameters by the application of this constraint representation. One is when the parameters
on the constraints are given and the values that parameters can take an are restricted explicitly. This
is considered as the assignment of values to parameters by checking the values using constraints. The
potential values of constraint parameters on constraints can be considered as a set composed of discrete
and pre-enumerated values.

The ather method is when the constraint parameters are given, but the values that the parameter can
take on are not specified explicitly. This assignment of values to parameters i3 executed by considering
constraints as formulas for calculation.

Furthermore, handling of the inequality depends on the characteristics of the problem. For instance,
the inequality may be interpreted and handled as an equality, especially in substitution formulas.

3.2 Assumed Architecture and Problem Solving Mechanism

This problem for eoutine mechanical design belongs to modification design or edit design, and iz a
typiral example of mechanical design.

lis tasks consist of the decision on the artifact structures and the structural parameters, without the
optimization and transformation of the artifact structures,

The artifact structure in routine design is determined by combining the components or is determined
according to predefined design styles of the artifact. In this case, the artifact structures are determined
by retrieving the appropriate design style from the knowledge basc.

The componenta are implemented using the standard parts by looking up them in catalogues or using
non-standard parts from the design. Most of the selection strategies of standard or non-standard parts
for component implementation are described in the specifications or requirements. They mostly depend
on the trade-off of the performance and cost,

The necessary architecture for this design can be formalized as the generate & test + failure recovery
[+ optimization + analysis & evaluation) paradigm.

The problem-solving primitives are the generator, propagator, tester, and failure recoverer.

The generator assigns values to parametess or assigns functional components to the components for
implementation. This parameter can he classified in one of two ways according to the type of the value; one
takes the continuouws value, and the other takes the discrete value. The former assigns pararmeters of the
attributes by local modification based on Lthe predetermined component. The latter assigns parameters by
retrieving the standard parts for implementing components from the catalogue, a table look-up method.

The propagator assigns the values to the parameters by using the active evaluation of the constraint
and propagation of constraints.

The tester checks the constraints and can be considered as the passive handling of constraints. In
general, the inequality description can be handled by the tester, but in some contexts, it can also be
considered as the equality and handled by the tester, .

The failure recoverer modifics the attributes of the components locally using the advice mechanism
and plans problem decomposition. The advice mechamsm can be considered as the repair of partial or
local design using the heuristics about the attributes of the components, It vses the above generator and
propagator as primitives. The obligatory and suggestive constraints must be handled in failure recovery
handling. The advice mechanism using the selection and evaluation of the constraint is executed to the
obligatory constraint. For suggestive constraints, planning, such as a compromising algorithm, is required
in order to relax and select this constramnt. This 15 a mechanism that satisfies as many constraints as
porsible, tao,

The constraint-based problem solving in the generate & test + failure recovery architecture corre-
spends to the cxecution of the representation generated by compiling various items of design knowledge
composed of the design specification and knowledge about the design object based on the fundamental
tasks of the design process, such as IIl.El.[IrIi.IIE. prnh]enl l]l'curll'[.lﬁﬁit'i.ﬂﬂ, and refinement. This repraacntatinn
is derived by compiling the constraint representation such as the various formulas about the features of
the functional or physical environment, by assuming this structural description and can be considered as
the constraint network, when the structure of the design object, eonfiguration of the components, is fixed.

8

3.3 Design Plan Generation using Knowledge Compilation in Mechanical Engineering

The power transmission mechanism for a lathe can be realized in different styles. A lathe 15 a machine
that semoves metal from a workpiece by gripping it gecurely in a kolding device and rotates it under power
against o suitable cutting tool. This mackine congists of a Tunetional sub-system or unit such as the shaft
{spimdle] systen, or power transmission unit. Furthernmore, each system component or anit s implemented
Ly configuring or combining the basic machine ciements, composed of o spur, bell, or other type of gear,
the shaft, and the bearing according to the design siyle. For example, the design style for the power
transmission between two parallel axes shows the reducer with iwo shaft units, whose componenis are
the two shafts, bearings, and reducer. The power transmission or drive mechanism of this reducer can
b realized using a design style such as the gear-diive, beli-drive, or special-drive. Furthermore, there
are four general types of belt in the belt-drive, each with its own speua.l characteristics, limitations, and
special-purpose variations for different applications: flar belts, V belt, film belts, and timing belts. In
shall wnit design, it is important 4o consider the hearing types and hearing configuration, for example,
tlie :.'u'ming mcnant Ly pe; the Ly pe and r.nnﬁgurnt'mr. can be also r:garr]r:d as a kind of dmign 51'.3']r.

In thus section, an example of this power transmission unit, using a V-belt deive unit, is explained
(24},

It results from the analysis of the design process of machine tood, especially, Lhe part of the machine
wnil in the lathe. The purpose of the [ooalization of this problem s Lo analyze how human design
proceeds and to consider the system arclitecture lor intelligent design assistance and sutomated design,

This nrn}:]nm 15 formulated]11.' the fn”nw'mg Fpnriﬁrntinn |1F.1'F.1'.|1|:‘trr:!ar-1 l’]i’!ﬁ'iE:TI parameters, and perfﬂr-
manee parameters [23)

The specification parameters deseribe the definition of domain-specific problems. ‘They are: drive
spred, load speed, load power, design horse power fo be transmitied, center distance, desired life time,
and pulley diameter.

The design parameters that the designer must determine are pulley siees, belt types, belt length, and
number of helis.

The performance parameters used to evaluate Lthe quality factors about the result of the design are
load speed, life, belt velocity, Interal force on the shaft, and cost,

The V-helt drive design can he considered as the problem of determining the design parameters so
that the specification parameters and performance parameters are satisfied when the structure of the
design object such as the components and relationship ameng them is assumed to be fixed. It is a typical
example of parametric design. It 13 necessary to consider that there are two strategies for the realization or
nnplemnentation of Lhe pliysical components vsing the standard parts and data, the non-standard parts, and
their copbination in this problem. These strategies are determined depending on the design specifications
or requirements and the parametric design is executed based on the strategies.

In this case, we assume that the n.=-|ar.in11:=.i1i|'|5 AITIONE the design gnalﬁ and 3.u|_'|goa|.-= {'.nrrp.qpnnd to the
hierarchical relationships of the design object; the relationships smong the componemts sod subeomponents
aned the design method for the components and subcomponents are formalized and given in advanee as
the madel description of the design object in the knowledge hase

Design plan generation using knowledge compilation is executed based on this assumption. Further-
more, when the defanlt strategy of the problem decompeosition, namely the composition decomposition, is
lized according to the assumpticn, it is desicable for the efficient execution of the problem-solving mecha-
nistn to determine the ordering of the execntion of the decomposed components beforehand. In future, it
iz desirable that the design plan, whose design poals and methads were compiled during knowledge com-
pulation, will be interpreted and executed dynamically according to a design context or model determined
by & design plan inferpreter, including o goal-driven scheduler.

3.4 Suitability of Generated Design I’lan Description for Constraint Logic Programming

A language scheme called constraint logic programming (CLP) bas been proposed [8,9,10]. This
seherne defines a class of languages designed o deal with constraints using a logic programming approach.
It handles mathematical formulas composed of linear equations and inequations as algebraie constraints,
The interpreter of most CLP languages consists of three modules: inference engine, consbrainl solver,
and preprocessor or interface modules, ‘U'he constraint solver solves comstraints which cannot be handled
bv the engine. In other waords, it determines the solvability of that set and, if selvable, computes the
solutions, given a set of constraints. To obtain the solutions, it needs the solution methods for a set of
constraints, that s the solution methods for simultanecus equations

CLP languages admit the advantage that Lhis program is performed declaratively by evaluation and
asstgnment of values Lo varnables more flexibly than the PROLOG program is performed intoitively.
Convential programming languages must determine the ordering of the evaluation and assignment in the
forne of the procedursl statement and must bind all arguments to values,

T

Therefore, CLP languages provide more flexible and expressive power for describing constraints than
do conventional programming languages.

‘I'he design plan generated using the knowledge compilation technique constitutes the constraint
network deseription, including the design knowledge, the problem-solving heuristics and problem-solving
primitives of the predetermined architecture, The mechanism of the interpretation and execution of this
design plan mostly depends on the mechanism of the constraint propagation. Constraint propagation
and its control is mest important funetion for consteaint-based problem solving. Constraint propagation
consists of local propagation and non-local propagation. CLP languages can handle this propagation
mechanism easily, because the local propagation and non-local propagation can be handled by the con-
straint solver, which can be viewed as the generalization of unifieation. Furthermaore, the CLIs three
[eatures, logical, functional. and operational features are preserved as conventional logic languages. Thus,
the CLP languages scheme is suitable for the above constraint-based problem solving. In first version of
the knowledge compiler environment, the design plan description 1s translated into this language, In this
case, the problem solving primitives [or constraint-hased problem soclving other than that described in
Section 3.2 will be provided and extended on this langnage, becanse the CLP languages are considered as
the programming languages.

4. Consideration of Extended Constraint Solver

Considering the practical design problem, especially parametric design, there are many constraints.
The constraint-based problem solving handles many constraints and is a burden on the constraint solver
of CLP languages. because this constraint solver handles the constraints kept in the flat and global set.

Therefore, to improve the execulion of problem sclving, it is necessary to separate the constraint net-
work description of the design plan into processing parts by the local propagation method and processing
parts by the non-lecal propagation method,

To separate the constraint network, we consider the constraint network as a graph and extract the
tree description and loop description from this graph description, and interpret and execute the tree
description and loop description whose structures are cyclic [24].

Thus, from the separation of the constraint network, each extracted description is dealt using the
appropriate solver for constraint handling for the reduction of the search space of the problem.

In this case, when the ordering of the assignment of values to parameters in the constraint network
changes, the tree description and loop description generated from the original graph description also
change and can be considered as a data flow graph including cyelic descriptions. Furthermore, the result
of the tree search executed according to the generated tree description also changes.

The extension of the constraint solver considering this separation concept will lead to the improvement
of constraint-based prablem solving.

5. Current State

The first implementation of the design plan generation environment, including the knowledge com-
piler, is being carried out using both the Extended Self-contained Prolog (ESP) language and CAL (Con-
trante ave Logique) language [10] on the personal sequential inference (PST) machine. In this case, the
propagation and its control mechanisms of constraint-based problem solving almest utilize the mechanism
of CAL, especially the constraint solver,

After that, the extension of the constraint solver shown in the section 4. will be executed to improve
the execution of the problem solving.

6. Conclusion

This paper considered a method of design plan generation and interpretation using knowledge com-
pilation techmiques. It forused on the architecture of expert systems, including a modeling facility for
routine design, proposed by focusing on constraint-based problem solving, and composed of constraint
representation and the application mechanism.

Machining tools, specifically, a power transmission nnit for a lathe, were selected as an example.

Our future research is to provide an assistance environment in which the designers can apply the
approach used in VLSI design such as silicon compilation to mechanical design, and ¢an construct design
systems or tools.

For thic purpose, it is also necessary to clarify the architecture of expert sysiems for various routine
designs, such as VLSI design, mechanical design, and configuration, by regarding constraint-based problem
solving as a new paradigm different from rule-based and frame-based paradigms, and to propose primitive
tasks for constraint-based problem solving required to realize the architecture of expert systems for various
routine designs. This paper can be considered as the first proposal in this research.

A ﬂh nnwlnllgt-.lnt-.nt.]

1 would like to thank Mr. Yuichi Fujii, Chief of the Fifth Research laboratory for his encouragement
in my research wand other members of the Fifth Research laboratory for hBl]J[lll comments. I would also

8

like to thank Prof. lsao Nagasawa, Kyuusyuu University, for useful suggestions and comments on needs
of knowledge compilation for mechanical design. Finally, I would like to express special thanks to D
Kazuhiro Fuchi, Director of 1001 Research Center, who has given me the opportunity to carry out
research in the Fifth (ieneration (lomputer Systems Project.

RHeference

[1] Nagai, ¥., Towards an Expert System Architecture for Houtine Design - Focusing on Constraint
Representation and an Application Mechanism for Mechanical Design, 3rd Int'l Conf. on CAD/CAM
Rohotics & Factories of the Future, 19858, (to appear)

[2] Anderson, J. R., Knowledge Compilation: The General Learning Mechanism, Machine Learning, An
Artificial Intelligence Approach, Vol 2, K. 5. Micahlski, J. . Carbonell and 1, M. Mitchell (ed.),
Morgan Kaufmann Publisher, Ine., 1986

[3] Rinderle, J. R., Implications of Function-Form-Fabrication Helations on Design Decomposition Strate-
gles, I'roc. of ASME Computers in Engineering Conferenee, 1986

[4] Kahrs, M., Critics as optimization operators in a silicon compiler, Knowledge Engineering in
Computer-Alded Design, Gerofed.), North-Holland, 1935

(5] Shirar, K., Nagai, Y. and Takezawa, T, Functional Level Design System For Digital Signal Processors,
Proes, of the IFIP TC 10/WG. 10.5 Int’l Conf. on Very Large Scale Integration, 1985

6] Doyle, 1., A Truth Maiotenance System, Artificial Intelligence vol. 12, 1978

[T] de Kleer, J., An Assumption-Based TMS, Artificial Intelligence vol, 28, 1984

[8] Dincbas, M., Constraints, Logic Programming and Deductive Databases, France-Japan Artificial In-
telbgence and Computer Symposium 86, 1986

[9] Heintze, N. C., Jaffar,)., Lasscz, C., Lassez, J-L., McAloon, K., Michaylov, 5., Stuckey, P. 1.,
and Yap, H. H.C., Constraint Logie Programming: A Header, Fourth IEEE Symposium on Logie
Programming, 1987 '

L0] Sakai, K and Aiba, A, CAL: A Theoeetical Background of Constraint Logic Programming and Its

£
Applications, IO0T-Technical Report, 1988, (1o appear)

[11] Suseman, G.J. and Steel Jr., G. L., CONSTRAINT - A Language for Expressing Almost-ierarchical
Deseriptions, Artificial Intelligence, Vol 14, 1980

[12] Borning, A., The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation
Laboratory, ACM Trans. on Programming Language and System vaol. 3, 1951

[13] Davis, K., Constraint Propagation with Interval Labels, Artificial Intelligence 32, 1987

[14] Brown, D.C. and Chandrasckaran, B., Knowledge and Control for a Mechanical Design Expert Sys
tem, IEEE COMPUTER, L1086

[15] Mitial, 5., Dy, C. L. and Morjaria, M., A Koowledge- Based Framework for Design, Proc. of AAATL-8G

[16] Dechter, IL. and Pearl, J., The anatomy of easy problems: A constraint-satisfaction problem, Proc. of
LICAL-85, 1985

[17] Stefik, M., Planning with Constraints (MOLGEN: Pare 1), Artificial Intelligence, Vol. 16, 1951

18] Stefik, M., Planning and Meta-Planning (MOLGEN: Part 2), Artificial Intelligence, Vol. 16, 1981

g ng &
18] Deseatte, ¥, and Latombe, J- T, Making Compromises among Antagonist Constraints in a Planner,
£ P g AL
Artificial Intelligence, 27, 1985
20) Harns, D. K., A Hybrid Structured (Object and Constraint Representation Language, Proc. of AAAL-
¥ J P guage
Bh, 1986

[21] Araya, A. A. and Mittal, 5., Compiling Design Plans from Deseriptions of Artifacts and Problem
Solving Heuristics, Proc. of IJCAI-B8T, 1947

{22] Inoue, K., Nagai, Y., Fuji, ¥, Imamura, 5., and Kojima, T., Analysis of the Design Process of
Machine Tools, - Example of a Machine Unit for Lathes - |, ICOT-Technical Memorandum, 1985, (to
appear) (in Japancse)

[23] Dixon, J. K., Howes, A Cohen, P. K. and Simmons, M_K., DOMINIC I: Progress Towards Domain
Independence In Design By Iterative Redesign, Proc, of ASME Computers in Engineering Conference,
1987

[24] Heuley, E. J. and Williams, R. A., Graph Theory In Modern Engineering, Computer Aided Design,
Control, Optimization, Reliability Analvsis, Academic Press, 1973

