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abstract

We consider the problem of learning a context-free grammar from structural data. Structural
data of a context-free grammar are unlabelled derivation trees of the grammar. We present
an efficient algorithm for learning context-free grammars using two types of queries: structural
equivalence queries and structural membership queries. The learning protocol is based on what
is called “minimally adequate teacher”, and it is shown that a grammar learned by the algorithm
is not only a correct grammar, i.e., equivalent to the unknown grammar but also structurally
equivalent to it. Furthermore, the algorithm runs in time polynomial in the number of states
of the minimum frontier-to-root tree automaton for the structural description of the unknown

grammar and the maximum size of any counter-example.
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1 Introduction

Angluin [1] shows that the regular sets can be learned by an algorithm using equivalence
queries and membership queries in time polynomial in the number of states of the minimum
deterministic finite automaton for the unknown set and the maximum length of any counter-
example. However the question of whether there is an analogous result for the full class of
context-free languages is open. Recently, Berman and Roos [3], and Angluin [2] give partial
solutions for this question. In (2], Angluin assumes non-terminal membership queries.

In this paper, we give another partial solution by demonstrating an algorithm to learn
context-free grammars from structural data. We assume that information on the structure of
the unknown grammar is available to the learning algorithm, Structural data of a context-free
grammar are unlabelled derivation trees of the grammar. The unlabelled derivation trees, called
structural description, of a context-free grammar constitutes a rational set of trees. Based on
this observation, the problem of learning a context-free grammar from structural data is reduced
to the problem of learning a tree automaton. Then by extending Angluin's efficient learning
algorithm for finite automata [1] to the one for tree automata, we can get an efficient learning
algorithm for context-free grammars.

As for a related early work, Crespi-Reghizzi [5) shows that a subclass of context-free gram-
mars can be learned efficiently from positive structural data. In [6], Levy and Joshi show a
theoretical framework for grammatical inference in terms of structural descriptions. However
the algorithm described in this paper is the one and only algorithm that learns the full class of

context-free grammars from structural data and achieves the polynomial time bound.
2  Preliminaries

A ranked aiphabet V is a finite set of symbols associated with a relation called the rank relation
ry © Vx{0,1,2,...,m}. V, denotes the subset {f € V' | (f,n) € rv} of V. Especially, we call
Vi, denoted £ (i.e. & =V}), the terminal alphabet. A tree over V' is a mapping t: Domy == V,
which labels the nodes of the tree domain Dom,. V7T denctes the set of all trees over V. A
terminal node in _Dmm is one which has no descendant. Let § be a new S}’meI of rank 0. V;T
denotes the subset of (VU 3)T that is the set of all trees which exactly contains one $-symbol.
For trees s € VT and t € V7, we define an operation “#” to replace the node labelled $ of s
with t by s#t = {(z, 4) | s(z) = Aand A £ $}u{(z-y, A) | s(z) = $,#(y) = Aand y € Dom,}.
For example, if s € V' is of the form : A(e,§), and t € V7 is of the form : B(d), then s#t is
the tree of the form : A(c, B(d)). Note that s# is in VT, For subsets § € V;T and T C VT,
S#T (C V7T) is defined to be the set {s#¢|s € 5 and t € T}.

A (deterministic frontier-to-root) tree automaton is a quadruple A = (@, V, 4, F) such that

@ is a finite set, F is a subset of @, and § = (g, 81, ...,0x) consists of the following maps :

S Vix (QUI) = Q (k=1,2,...,m),
fpla) =a fora € L.

1



@ is the set of states, F is the set of final states of A, and & is the state transition function of
A. In this definition, the terminal symbols on the terminal nodes are taken as “initial” states.
If § is a state transition function from Vi x (QU E)* to 29, then A is nondeterministic. & can

be extended to V7 by letting :
Su(fy8(ty),...,8(t)) for k>0 and f €V,

Sty ) =
(f %)) {Jg(f:l fork=0and f € E.

The tree t is accepted by A iff 8{t} € F. The set of trees accepted by A, denoted T(A), is
defined as T(A) = {t € VT | §() € F'}. Let A be a tree automaton which accepts a set of trees
T. Ais minimum iff A has the minimum number of states among all tree automata which
accept T. The minimum tree automaton is unique up to isomorphism [4].

Let & = (N,E, F.5) he a context-free grammar. If 4 — {4 is a production of P and o
and v are any strings in (N U Z)", then o4y = afv. = is the reflexive and transitive closure
of =. The language generated by G, denoted L{G), is {w | w is in £* and § = w}. Two
context-free grammars G, and G, are said to be equivalent if L{G,) = L{G;). G is called a
wide-sense contert-free grammar if 7 is a context-free grammar but 5 is a subset of N, the
set of starting symbols. A parenthesis grammar is a context-free grammar G = (N, I, P, §)
such that the productions in P are restricted to the form A — [a], where [ and | are special
symbols not in ¥ and o contains neither [ nor |. Without loss of generality, we restrict our
consideration to only e-free context-free grammars.

For A in N U Z, the set D4(G) of trees over N U I is recursively defined as :

{a} forA=a€ L,
DalG) =
{Alty,...,ts) | A= B,---By, t;, € Dg,(G) (1 <1< k)} forAe N.
A tree in D 4(G) is called a derivation tree of G from A. For the set Ds(G) of derivalion
trees of G from the start symbol S, the S-subscript will be deleted. Further for a wide-scuse
context-free grammar &, [}{G) = UgesDs(G) where S is the set of starting symbols.
A skeletal alphabet Sk is a ranked alphabet consisting of only the special symbol & with
the rank relation rgp C {o} % {1,2,...,m}. A tree defined over SkU L is called skeleton. Let
t € VI, The skelatal (or structural) description of t, denoted s(t), is a skeleton such that

t(x) if zris a terminal node,

s(t)(z) = {

o otherwise.

Let T be a set of trees. The corresponding skeletal set, denoted §(T'), is {s(¢) |t € T}.

For a context-free grammar &, 5(L(G)) corresponds to the structural description of G.
Two context-free grammars & and Gy are said to be structurally equivalent if 5(D(G1)) =
S(D(G,)). Note that if G, and G, are structurally equivalent, they are equivalent, too. Given
a context-free grammar &, we can get the skeletal alphabet which 5{D(C)) is defined over. Let
r be the set of the lengths of the right-hand sides of all the productions in G. Then the skeletal
alphabet Sk associated with G consists of {¢} with rg. = {o} x .
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Next we show two important propesitions which connect a context-free grammar with a

tree automaton.

Proposition 1 Let G = (N,E, P,S) be a contezt-free grammar. The corresponding nondeter-
ministic tree automaton A(G) = (Q,S5k UL, 4§, F) is defined as follows.

Q =N,
F = (5},

b, By, ..., By) = A for each production of the form A — B, --- B,
fola) =a foraee E.

Then T{A(G)) = S(D()). That is, the set of trees accepted by A{G) is equal to the structural
deseription of (7.

Proposition 2 Let A =(Q,S5k UL, § F) be a tree automaton. The corresponding wide-sense
contezrt-free grammar G{A) = (N,X, P,5) is defined as follows.

N =0,
§=F
P = {§{o,z1,...,2¢) = 21 - 71 | 0 € Sk and z,,.... 2, € QUE}.

Then S{D(G(A))) = T(A). That is, the structural description of G(A) is equal fo the set of
trees accepted by A.

3  The learning algorithm

Suppose G is the unknown grammar to be learned (up to structural equivalence).

A structural membership query proposes a skeleton s and asks whether it is in S{D{G)).
The answer is either yes or no. A structural equivalence query proposes a grammar G’ and asks
whether S(D(G)) = S(D(G")). The answer is yes or no. I[ it is no, then counter-example is
also provided, that is, a skeleton s in the symmetric difference of S{D(G}} and S{D(G")).

Now we extend Angluin's learning algorithm [1] to the one for tree automata over skele-
tons. Let A be a finite set of skeletons and B be a finite subset of (SkU E)]. A is called
subtree-closed if s € A inplies all subtrees with depth at least 1 of s are elements of A. F is
called 3-prefiz-closed with respect to A il ¢ € B — {3} implies there exists an e’ in & such that
e =¢'#alsy,...,5-1,8,8,...,801) for some 3,,...,9,; € AUL. Firstly the observation table
(S, E,T) is extended so that § is a nonempty finite subtree-closed set of skeletons with depth at
least 1, X(S) = {o(uy,...,us) | @ € Sk, ug,...,ux € SUL and afuy, ..., u) € § for k > 1},
E is a nonempty finite subset of (§k U £){ which is $-prefix-closed with respect to 5, and
the finite function 7' is a mapping (E#(5 U X(5))) to {0,i}. The interpretation of this is
that T(s) is 1 iff s is a member of the structural description of the unknown grammar G. An
observation table can be visualized as a two-dimensional matrix with rows labelled by elements
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of (5§ U X{(S)), columns labelled by elements of E, and the entry for row s and column e
equal to T{e#s). The learning algorithm uses the observation table to build a tree automa-
ton. If s iz an element of (S U X(5)), row(s) denotes the finite function f from E to {0,1}
defined by fle) = Tle#s). An observation table is called closed if every row(z) of z € X(S)
is identical to some row(s) of 8 € 5. An observation table is called consistent if when-
ever s, and s, are in § such that row(s,) = row(sy), row(a{uy, ... wiq, 8y, Uiy oo Uk1)) =
row(a(tyy ooy Uity S2y Uiy ooy gy ) forall ug, o up € SUE and 1 1 < k.

Let (5, E,T) be a closed, consistent observation table. The corresponding tree automaton
A(S,E,T) aver Sk U I constructed from (S, E,T) is defined with state set @, final states F,

and state transition function & as follows.
Q = {row(s}) | s € 5},
F = {row(s)|se S and T(s) =1},
&lo, rowls,),. .., row(sy)) = row(a(sy,...,5:)) forsp,...,8¢ € SUL,

50{5] =a fora g B,

where the function row is augmented to be row(a) = a for a € E. We can see that this is a

well-defined deterministic tree automaton.

The Learning Algorithm LA
Si={c{ay,...,a) | ¢ € Sk and a;,...,q, € E for k = 1}; £:={8);
construct the initial observation table (5, E, T') using structural membership queries;
Repeat
While (S, E,T) is not closed or not consistent;
If (5, E,T) is not consistent then
find 5y and s; in S, e € E, uy,...,uey € SUL, and 1 such that
row(s;) is equal to row(s;) and
T(e#a(ty, oo ticyy S1,Uiyer s tp_1)) 7 TIEFT(Uns e oy Uinty 52y Uiy e e vy B ) )5
add eFa(uy, ... uic, § 0.0 ueme)) to By
extend (5, E, T} to E#(S U X(S)) using structural membership queries;
If (S, E,T) is not closed then
find s; € X(5) such that row(s,) is different from row(s) for all s € 5;
add s; to 5;
extend (5, E,T) to E#(5 U X(5)) using structural membership queries;
Once (S, F,T) is closed and consistent, let G:=G(A(S, £,T'});
Make a structural equivalence query proposing G;
If the reply 15 no with a counter-example ¢t then
add t and all its subtrees with depth at least 1 to 5,
extend (S, E,T) to E£(S U X(S)) using structural membership queries;
Until the reply is yes to the conjecture G;
Halt and output G.



Theorem 3 There ts an algorithm that learns a grammar structurally equivalent to any contez!-
free grammar G using structural equivalence and structural membership queries that runs in fime
polynomial in the number of states of the minimum tree qautomaton for the structural description

of G and the mazimum size of any counter-example.

Proof. (Sketch) By Proposition 1, S{D{G)) can be accepted by some tree automaton. The
observation table constructed during the running of LA always become closed, consistent one
such that 5 is subtree-closed and E is 3-prefix-closed with respect to 5. The corresponding tree
automaton A(5, £, T) constructed from it is consistent with T'. Then LA eventually terminates
and constructs a tree automaton isomorphic to the minimum tree automaton for S{D((F)). By
Praposition 2, LA outputs a wide-sense context-free grammar structurally equivalent to G.

Let n be the number of states of the minimum tree automaton for S{D({G)}, m be the
maximum size of any counter-example, and 4 be the maximum length of the right-hand sides
of the productions in . The observation table is discovered to be not consistent or not closed
at most n — | times. A counter-example requires the addition of at most m subtrees to 5,
and this can happen at most n — 1 times. Thus the maximum cardinality of E#{S U X(5))
is at most O(m*n?*!). Hence, the total running time of LA can be bounded by a polynomial

fupction of m and n. Q.E.D.

Since the structural information can be obtained from sentences of a parenthesis grammar,
parenthesis languages can be learned efficiently from a minimally adequate teacher.

Corollary 4 There is an algorithm that learns a grammar structurally equivalent to any paren-
thesis grammar G using equivalence and membership queries that runs in time pelynemial in
the number of states of the minimum lree automaton for the structural deseription of G and

the mazimum length of any counter-ezample.
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