ICOT Technical Memorandum: TM-0496

TR0

A Fast Prolog-based Inference
Fngine KORE/IE

by
T. Shintani

May. 1988

Cvss, 1COT

Mita Kokusar Bidg. 21F (03) 456=3191~35

“ :D ' 4-28 Mita 1-Chome Telex ICOT 132064

Minato-ku Tolkyo 108 Japzn

Institute for New Generation Cuﬁ;puter Technology

A Fast Prolog-based Inference Engine KORE/TE

Toramatsu Shintani
International Institute for Advaneed Study of Social Information Science (ITAS-SIS)
FUJITSU LIMITED, 140 Miyamato, Numazu-shi, Shizuaka 410-03, Japan

e-mail: toraf@iias. fujitsu.junet

ABSTRACT

In this paper, we propose a fast Prolog-based inference engine KORE/E (Knowledge Oriented
Reasoning Environment 7 Inference Engine) and discuss some features of the system. The main features
provided by KORE/E are (1)a mechanism af an inference engine on KORE, (2)cooperative problem solving
among rule bases, and {3}a speedy inference mechanism, On Prolog, it is important to speed up inference
engines without sacrificing Mexible power for rule expressions. It is essential for constructing large scale
application programs on the systems. In order lo speed up the inference mechanism and realize the
flexible rule expressions, we iake advantage of a speedy refutation mechanism, purtial evaluation
Lechnigues and fast searching for heads of clauses. At present, KORE/TE is implemented on C-Prolog and
Quintus Prolog, and its efficiency of inferences is comparable with thal of OPS5 on Franz Lisp,

1. Intraduction

KORE/IE (Knowledge Uriented Heasoning Environment / Inference Engine) can function not only
as the inference engine module of KORE(Shintani 1986), but also as an independent production system.
The basic functions of KORE/IE are based on those of OPS5(Forgy 1981), and the system provides a rule-
ariented programming environment (i.e. a tracer for rules, a stepper for inferences, and so on) in a similar
manner as OP535. Furthermore, its functions are extended by using the advantages of Prolog. As the
system adopts a mechanism of a pure production system, the rules can be represented efficiently by
considering the inference mechanism. Inference is attained by performing a sequence of operations called
Lhe recognize-act evele:

{1)Matching process: Determine a CS{econflict set) which includes rules
whose LHSs (left-hand sides) have matched the current contents of working memory.
{#21Conflict resolution process: Select one rule from C5; if C35 is empty,
halt the recognize-act cycle.
{3)Act process: Perform the actions in the RIS (a right-hand side) of the
selected rule.
(4)Go ta (1),

The components of a pure production system conzist of WMiworking memery), PM({production
memory), and PSI(production system interpreter). [n KORE/IE, PSI's functions are provided by Prolog
system itself and the remaining components are realized by Prolog programs as shown in Fig.1. This

bii b
rE Proloe |

L

/

Hule Base —

X/

e

Prolog Programs

Rule Compiler

PM, WM

Fig.1. Components of the KORE/IE .

architecture of the KORE/IE is the most important feature in speeding up the system because recognize-act
eycles can be made faster by utilizing the fast refutation mechanism which is a basic computation

mechanism for Prolog systems.

A Prolog system provides powerful pattern matehing (that is, unification) and a flexible
backtracking mechanism for constructing inference engines. Furthermore, the system itself can be
utilized as a powerful inference engine based on a refutation mechanism{Kowalski 79).

Generally, in order to realize an inference system, we must construct an interpreter for executing
inference rules. However, we can realize such a system simply by using a Prolog system as an inference
engine in which the non-unit Prolog clauses are considered to be rules of the system and the rules are
executed directly by the Prolog system. These clauses can be easily obtained by transforming the rules
into the Prolog program. In logic programming, as a very straightforward methed, this method is usually
adopted to realize inference systems (e.g. BUP (Matsumoto 1983)),

There is an alternative method based on partial evaluation (Futamura 1983) of Prolog programs. In
this method, an inference engine is partially evaluated with respect to inference rules and the result
generates a specialized Prolog program for the rules. Then the inferences are realized by executing the
program. This method is adopted in order to build an interpreter for the rules. This program can execute
rules efficiently (Takeuchi 1985). The main advantare is easy maintenance of the rules. Its efficiency is
due to the fast refutation mechanism of Prolog systems.

The above two methods for constructing inference systems do not actively exploit the internal
mechanisms {e.g. recognize-act eycles, making and modifying WM, conflict resolution) of the system. We
can further speed up the systems by making the internal mechanisms faster.

In this paper, we propose a new method for constructing a speedy inference system based on the
techniques of the existing two methods mentioned above. In order to speed up the inference and realize the
flexible rule expressions, we take advantage of features of Prolog systems, such as a speedy refutation
mechanism, partial evaluation techniques and speedy searching for heads of clauses. The two existing
methods directly transform rules into Prolog programs (that is, non-unit clauses), however the main
feature of our approach corresponds to speeding up internal mechanism of the inference. At present, using
the new method, KORE/IE is implemented on C-Prolog and Quintus Prolog, and its speed of the inference
is comparable with that of OPS35 on Franz Lisp, .

This paper consists of five sections. In Section 2 we sketch functions provided by KORE/AE. In
Section 1, the main part of this paper, a new method for building an inference system is presented. In
Section 4, experimental results of its performance are described. In Section 5, some concluding remarks

are presented.

2. KORE/IE
2.1. The rule

KORE/IE provides functions for rule-oriented probiem solving and knowledge representation in
KORE, Independently it functions as a production system like OP35. KORE/E realizes a flexible and
readable rule description by adopting the syntax of a term description in Prolog. A rule consists of (1)the
name of the ruie, (2)the symbol ™", (J1the symbol "if", (4)the LHS of the rule, (5)the symbol "then”, (6)the
RHS of the rule, and (The symbol "." . The rule is expressed as follows;

Rule name: if Conditions; & Conditions; ...
then Actions; & Actionss

where the Rule__name is the name of the rule. ConditionN is a condition element of the rule. Itis called
an LHS pattern. ActionN is arule action, which is used to change WM, to execute Prolog programs, and so
on. Itiscalled an RHS action. The symbol "&" is a delimiter. For example, a rule can be expressed as

follows;

on__floor:
if goal(status=active, type=(on;move), object_ name=X) &
monkey(on\= = floor)
then

modify(2, on =floor) &
maodify({l, status =satisfied).

Az shown in the example, the LHS is composed of LHS patterns which correspond to compound terms of
Prolog. The patterns are called declarative information in KORE. The patterns are deseribed by a
unified description for representing declarative information in KORE subsystems. For example, a WM is
described by a set of declarative information, and it corresponds to a relational database which iz managed
by KORE/DE, a subsystem of KORE which provides functions for managing databases.

The LHS pattern eonsists of (1)a elass name {which corresponds to a functor name of a term in Prolog)
and (2)its arguments. The arguments are a sequence of one or more slot-value pairs. The pairs eorrespond
ta terms which have functors of arity 2 (e.g. .=, ==,\==, =<, >=). The arguments are called slot
descriptions. The slob deseriptions are used in the same manner as the basic predicates for comparison of
terms in Prolog. For example, "on \== floor" in the above example tests il the value of the slat "on”
ohtained from the current contents of WM and the value “floor” are not literally identical, In Prolog
programs, the gnals in the body of a clause are linked by the operator "," and the operator ";" which can be
interpreted as conjunction ("and"} and disjunction {"or") respectively. In the same manner as Prolog
programs, we can also use a conjunctive and a disjunctive slot description in the slot description as follows:

Conjunctive siot deseription:
Slot = (Restrictionl, Restriction2, .. RestrictionMN)

Disjunctive slot deseription:
Slot = (Valuel; Value2: ...; Valuel¥)

The right side of a conjunctive slot description consists of some restrictions (or Prolog goals) which are used
to indieate that the slot value in a WM element must satisfy the restrictions simultaneously. The right
side of a disjunctive slot description consists of some values (or Prolog goals) which are used to specify that
anv of the contained values is acceptable as a match. Thus, "type=(on;move)” in the above example will
mateh either "on” or "move".

Tn a rule, we can use a functional notation te enhance the readability of the rule. For example, the
following predicate definition returns the result to the first argument "Result™

add one(Result, Number) ;- Resuit is Number+ 1.
This definition can be used as a function in a slot description as follows;
slot = add _ane(X).

The functional notation can be executed as a normal Prolog program sinee a rule containing functional
nolations is compiled into Prolog programs.

2.2. Mechanisms for cooperative problem solving

A cooperative problem solving can be applicable among rule bases in KORE/ME. It appears that the
cooperation among KORE/E rules corresponds to cooperative problem solving in the blackhoard
model{Lesser 1977). However, cooperative problem solving in KORE/E can be realized efficiently
without building a meta control mechanism, since a basic Prolog computation mechanism (that is, the
refutation mechanism) can be used. The internal mechanism for cooperative problem solving on rule
bases in KORE/IE can be considered as generating optimum Prolog programs from rules in the rule bases
and executing the programs in Prolog. In order to generate the programs, a rule compiler is applied. The
ruie compiler translates a rule into a uniform Prolog program. The program cousists of an LHS program
for the LHS and an RHS program for the RHS, and is realized as flat non-unit clauses of Prolug as shown in
Fig.2. . _
A chanye in WM is transformed to a question for the LHS program. Then, applying the question by
using the Prolog refutation mechanism corresponds to executing the matching process of the recognize-acl
cycle and generates instantiations as a result of the question (for further details, see Section 3). An
instantiation i an object in n confict set and an ordered pair of a rule name and a list of WM elements

Emlﬂg programs |

LHS programs
LHS(...):-....

LHSa(...} -

Rule base 1

LHSn{.] H PP

| Rule base 2

RHS programs

\q RES (oo,
RHSo(...) - ...

RHSq(...) - ...

ERule base 3

Fig.2. Rule compilation.

satisfying the rule’s LHS. The instantiations are generated for every rule base and conflict sets are also
generated for every rule base. A unique conflict resolution strategy for each rule base is applied to conflict
sets for each rule base, After the conflict resolution, one instantiation for esch rule base is selected for
executing the RHS programs for each rule base. Execution of the RHS programs is achieved by applying
guestions for RHS for each rule base. The question is generated by transforming the selected
instantiation. Applying the question in Prolog corresponds to performing an act process of the recognize-
act cycle. An order for inveking rule bases is determined automatically according to the order of their
compilation. Otherwise, the order can be determined explicitly by showing the order in the rule bases.

3. Speeding up inference engines

[nferences in KORE/E are realized by performing recognize-act eycles. In order ko speed up the
inferences, we need to speed up a sequence of operations in the recognize-act eycle, which are matching,
conflict resolution, and act processes. Generally, the matching process consumes more time than the other
processes, and influences the efficiency of the inferences. Ina straightforward pattern matcher all the WM
clements are compared against all the LHS patterns for every rule on each eycle. In order to avoid
tteration over the elements on each cyele and to realize an efficient matehing process, the Rete Match
algorithin (Forgy 1982) is used in OPS5. The algorithm was developed to eliminate extra work in the
unoptimized pattern matcher. Inthe algorithm, LHS 2 are compiled into a tree-structured sorting netwark
by linking nodes together which test the slot values, and 2 matching process is rcalized by passing tokens
into the network in which information of previous matching is stored. The token is a description of WM
changes.

However, in logic programming, it is difficult to implement the kind of network structure efficiently.
It requires appropriate data structures (e.g. pointers) to construect the network. Therefore, in order to
speed up an inference engine, we make use of an efficient refutation mechanism in Prolog to match the
techniques of the Rete Match algorithm which aveids iterating on matching processes.

3.1. The LHS program

An LHS program is a specialized program for matching process and is generated by translorming -
rules into Prolog programs which include information about variable bindings in the LIIS. The programs
are used for computing a conflict set. In the transformation, we use a technique for partial evaluation of
Prolog programs. We call the transformation LHS compilation of rules. The technique is useful for

generating the specialized program from rule descriptions and declarative data for defining skeletons of
LHS patterns. The data can be asserted by using "literalize” command in KORE/IE. [n the compilation,
an LHS is transformed into Prolog programs by processing information about variable bindings. In a strict
sense, it appears that the technique is not the partial evaluation (Futamura 1983), but it essentially
utilizes the partial evaluation of Prolog programs which can cvaluate parts of a program without some
special evaluation scheme such as lazy evaluation. However, in a broad sense, it is a kind of partial
evaluation since the LHS program is generated as a matching program from the data and the LHS pattern
in which the unification mechanism of the Prolog system itself is considered a program required by the
partial evaluation. In this appreoach the Prolog system corresponds to the PSI (production system
interpreter]. Thus, in order to realize fast-inferences effectively, we need to utilize the advantages of
Prolog systems and optimize the Prolog programs generated by the compilation. We utilize the following
functions of Prolog systems: (1)fast head searching; clauses are hash-indexed according to functor name
and its arity in the head of the clauses and {2)powerful backtracking for the search.

Function (2] can be used as a control mechanism for finding several instantiations at the time when
the WM is changed. Using this function, the system can check all the LHS program according to changes
of WM and then generate instantiations without building a particular control mechanism.

Funetion (1) iz particularly important in speading up inferences and can provide functions for
realizing a reot node of the network in the Rete Mateh algorithm. The root node is 2n entrance to the
network and receives only the changes of WM and passes them to its successors. The node is used for
utilizing only changes of WM in the matching process. In LHS programs, the funetions of the root node can
be realized easily by naming the funclor name in the head of the clause according to the class name of the
LHS pattern, because the clause is hash-indexed on the name. Each clause of the LHS program
corresponds to a path frem a root node to a terminal node (that is, production node) in the network because
an LHS pattern is realized by using a Prolog clause. In the clause, functions of one-input nodes (which are
used for comparing slot values) and two-input nodes {(which are used for checking variable bindings) in the
network are realized simply by using Lthe refutation mechanism of the Prolog system as shown in Fig.3-1.

OPS5(Rete network) | _| KDRE.’EE{LHS prngram}

‘(»—-——HRule Compiling

-+ Rule
rulel: if pg(----) & psel - -} then §I

two-input ngde
; - == Comparing slot values

rulel

. == Checking variable bindings

Fig.3-1. LHS program and Rete netw~-k.

Fig.3-2 is given to clarify the description in Fig.3-1. In the LHS program, for example, the skeleton of the
LHS programs is penerated by the LHS compilation. The functor "ie__lhs__ elassl"” is named aceording to
the class name "class1” of the LHS pattern, A;represents a sequence of arguments in the head; A consists

Rule description | __

ri:if classi(slotl=1,slot2=X) &
class2(slotl =X slot2 =Y slot3=Y) &
class3(slotl=T)
then

1LHS compilation

{LHS pmgra.ms-!

ie_lhs class1({A,):- class2(B,,), class3(B,,), C.
ie_lhs_class2(A;) :- class1(B;y), class3(B,;.), C.
ie_lhs_class3(A,) :- class1(By;), class2(B;;), C.

Fig.3-2. The LHS program.

of a rule name, slet values, information of variable bindings , and s0 on. The badies of the clauses in the
LHS programs represent the other LHS patterns requested for satisfying the rule. The B; j represents slot
values of the other LHS patterns. The C represents constraints for variable bindings between A; and By
Details will be deseribed in Section 3.2. By using the LHS program, We can perform a matching process
according to changes of WM elements without iterations over the WM elements. A change of a WM
element is transformed into a question for executing the LHS program as mentioned in Section 2.2. In
Fig.3-2, for example, if a new WM element, whose clags name is "elass1”, is built and added to WM, the
first elause in the LHS programs is culled and executed by performing the following question:

P-ie_lhs_ classifa,).
where A; can be determined by the new WM element.

A feature of the LHS program is that the matching process is run by the speedy refutation
mechanism in Prolog systems, which is started by the question generated by the change of WM. The
process in the Rete Match algorithm is performed by passing a token into the network. The token is an
ordered pair of a tag (that is, + and - which indicate adding to WM and deleting from WM respectively) and
g WM element. In the LHS programs, the matching process is realized without building a pacticular
mechanism by directly using the refutation mechanism. The refutation mechanism is a basic
computation mechanism in Prolog systems, hence we can utilize the efficiency of head searching in Prolog
systemns. In the Kete Match algorithm, when rules are compiled into the network, the order of nodes has
direct effects upon efficiency of the matching process. The LHS program is not affected by the order since
the efliciency of unificativn between terms is not quite affected by the order of the arguments. The
network reduces memory use by using the structural similarity of rules. In the LHS program, memory use
is not efficient since the clauses are generated for every LHS pattern. Improving the efficiency of memory

use is a subject for a future study.

3.2. Rule compilation

In KORE/ME we speed up inferences by compiling (or transforming) the rules into Prolog programs.
The compilation is realized by the rule compiler of KORE/IE. In the compilation, in order to speed up each
step of & recognize-act eycle, the programs are generated according to LHS and RHS of rules as shown in
Fig.4. We call the compilation for the LHS LHS compilation, and the compilation for the RHS RHS
compilation. LHS compilation generates Prolog programs for speeding up the matching process as
mentioned in Section 3.1. RHS compilation generates Prolog programs for speeding up the action process.

Definitions of pattern

literalizei{job [name#atom]).
literalizeibox leolor#atoml).

{ Rule description
rulel: if jobiname=<ount_red box) &
box(eolor=red)
then
make(number,value=1).

é’mmpiling
Pattern data

structure(job,—{LHS programs | -
structure(box{ie_lhs_job(- - - - [LHS programs

: ie_lhs box(---qrhs(-+)i=-make(----).

Fig.4. Generating Prolog programs by compiling a rule.

In Fig. 4 the patterns define class names, slot names and types of the slot values in the LHS patterns. This
definition is realized by using the "literalize” command in KORE/E and is used for standardizing LHS
patterns by the compiler. By standardization of LHS patterns, positions of slots in LHS patterns are fixed,
and this conlributes to speeding up processing of LHS patterns. For example, the rule deseriptions in Fig.5
1z compiled into (1)the pattern data in Fig.6 defined by the literalize commands, (2)the LHS programs in
Fig.Tand (3)the RHS programs in Fig. 8,

literalize(monkey, [at, on, holds]).
literalize(goal, [status, type, object_ _name, on, ta]).

‘At Monkey'": if
goal + goal(status=active, type =at, ocbject_ name =nothing, lo=P1) &
N monkey + monkey(on =floor, at\= = PI, holds =nothing)
then

nl & write("Walk to ") & write(PI) & nl & nl &
modify(monkey, at=P1) &
madify{goal, status =satisfied).

Fig.5. An example of a rule description.

In Fig.6, the fact "structure” is used to keep information about standardized LHS patterns where the
first and second arguments represent the class name and the database name respectively. The database
name is used by KORE/DB. The third, fourth and fifth arguments represent the number of slots, the list of
slot names ,and the list of types for slot values, respectively. The positions in the list which is the fourth
argument correspond to the positions in the list which is the [ifth argument. In KORE/E, the class
"start” is defined by a defaull elass for convenience. The fact "position” keeps the positions of slots of LHS
patterns which are defined by the literalize commands. The fact "lhs__class” iz used to keep the functor
names in the heads of LHS5 programs. The pattern data are used to standardize patterns in KORE/IE and
enable to speed up referring to slot values.

As shown in Fig.7, the compiler generates LHS programs. The number of the programs (or clauses)
corresponds to the number of LHS patterns. Then, by using the programs, we can perform the matching
process according to changes of WM as mentioned in Section 3.1. The programs can also check the variable
bindings in the process. For example, let us see the LHS program, which is the first clause in Fig.7,
aceording to the LHS pattern named "monkey", which is the second patternin Fig.5. The LHS pattern can

structure(goal,goal,6 [time_tag,status type,object _name,on,to],[number,non,non,non,non,non]).
structure(monkey,monkey,4,[time_tag,at,on,holds],[number, non,non,non]).
structure(start,start,2 [time_tag,order],[number,number]).

position{start,time_tag,number,1).
position(start,order non,2).
position{monkey,time_tag, number,1).
position{monkey,.at,non,2).
position{monkey,on,non,3).
position{monkey holds,non,4).
position{geal time_tag, number,1),
pasition{goal status,nen,2),
position{goal type,non,3).
position{goal object _name non 4],
positionigoal,on,non,5).
position{goul to,non, 6.

lhs elass(start ie lhs start)
Ths__elass(monkey,ie_lhs_monkey).
Ihs_ class(goal,ie_lhs_goal).

Fig.6. An example of pattern data.

ie_lhs_monkey("At_Monkey',rl,[A,B,B1,[C.D],1,0,4 floor, nothing) :-
gualtcéactive,at,na thing F.B),
Aw==5,

le_lhs_goal('At_Monkey'rl,[A,B,B1,[C,D],1,C active,atnothing,E,B) :-
monkey(,A floor,nothing),
A== H.

Fig.7. An example of an LHS program.

be named by using the operator "+". The argument in the head of the clause can be shown as in Fig.7-1.

@rule name @role base name @ listof Wne tags

~

ie_lhs _monkey('At_Monkey'rl [4.8,B14C.DI.1,D.A floar.nothing) I v »
Trslot values
variable list

®number of undefined slot B time tog

Fig.7-1. The head of the LHS program,

Argument (3) in Fig.7-1 is used to represent a variable list which keeps all the variables occurred in the
LHS patterns in the rule. In the example, the variable "B" corresponds to the variable "P1" in the LHS of
the rule. The variable "A" is a dummy variable used in the slot deseription "at\= = PI" of the seeond LHS
pattern. The internal representation of the slot description is "at = (X \= = PI)" where the dummy
variable "X" corresponds to the variable "A”. Argument (4) is a list of time tags which indicate satisfied
WM elements in the matching process. Argument (5) is the number of undefined slots which are unused
{or unfilled) slots in the LHS pattern in spite of definition in the literalize command. The number is used
as infermation for conflict resolutions. Arpument (6) is a time tag which indicates a WM element matched
the LHS pattern. The rest of the arpuments ineluding Argument (7) is o sequence of slot valuss where the
values are arranged in the order defined by the literalize command, In Fig, 7-1, as the slot "at" of Lhe cluss
"monkey" is undefined, a dummy variable "A" iz placed at the position for the slot. Checking for variable

bindings between LIS patterns is realized in the body of the program. Inthe exampie, it is the last goal "4
= = B"

In Fig. 8, the lists "[A B B]" and "[C 01" in the head represent a list of variables occurred in the LEHS
program and a list of time tapgs respectively. The other variables "E","F" "G" are used as flags for
cooperative problem solving with the other KORE subsystems.

l‘hsf'At_MﬂLilkE}r',rl,[A,E,B},[CrD],E,F,G} -
ni,

write("Walk to "),

write(B),

nl,

nl,

modify(E F.D [at=B1,G),

modify(£ F,C [status=satisfied],d),

|

s

Fig.8. An example of an RHS program.

The LHS programs are called by actions (that is, make, modify, and remove} which change WM.
Let us take an example. The make command is defined as in Fig.9, which is used for building a new WM
element and adding it to the WM. For example, the command is used as follows;
make{goal{status = active, type = at}),
As shown in Fig 9, in a process of the make command, to begin with, a time tag is given in part (1) and the
input pattern is standardized in part (2). Then, in part (3) a new WM element is added to WM. In part (4),
a guestion is generated by using the information from (1),(2), and (3). By executing the guestion

instantiations can be composed in part (5).

make(Fact) :- .
Fact = .. [F|Atrs],
(1) Time_tag is coutime,
(2) structure(F, ,_,[_ ANL)[_IATL],
reforming_make(F Atrs ANL ATL Reformed),
(3) FACT =.. [F,Time_TaglReformed],
assert(FACT),

{4} lhs_{:lass[F,FF],
Call =..[FF,Rule_NameRule_Base VL Instantiation,
NUS,T'ime_Tag|Reformed],
(5) (call(CALL),

strategy_rec(Rule_Base,_,Strategy),
?Sﬁl{R ule Base Rule_NameJdnstantiation NUS,Strategy, VL),
ail ;
true),
!

Fig.9. A Prolog definition of the make command.

The RHS program is also executed, by generating a question like the LIS program, as shown Fig.10.
Fig.10 shows a definition of an inference stepper in KORE/E. The RHS program is called in the
deinition. To begin with, in part {1) an instantiation is selected as a result of the conflict resolution. In
part (2}, a question is generated by using the information (1). By executing the question, the action process

iz realized.

4. Experimental results

We conducted a few experiments to see how fast KORE/E runs. It is penerally considered that the
speed for executing programs in Prolog systems is considerably slower than the speed in Lisp systams. To

9

running(N off Hule_base) :-
now_running{Rule Baserunning),
strategy_rec(Rule_Base,_ Strategy),
retract(es(Hule_Base,[[Rule_namel, Time_Tagsi STTI NUSI, Var_Listl]|CS]),
(1) conflict resolution{Strategy,CS,
Rule Namel Time_Tags1 STTINUSI Var_Listl),
[Rule_Name,Time_Tags Var_Listi,New_CS5),

assertalcs{Rule_Base New_CS)),
ie_to_eden(Rule_NameRule_Base EDEN_Mode),
(2) rhs(Rule_NameRule_Base, Var_List,Time_Tags,off EDEN_Mode,Time_Tags),

NNisN -1,
1

ru nning(NN,off, Rule_Base).

P P m ¥

Fig.10. A Prolog definition of the inference stepper.

begin with, KORE/E on C-prolog is compared with OPS35 on Franz Lisp. [t is well known that OPS3 is the
fastest system among production systems on interpretive languages. Likewise it is well known that C-
prolog is one of the slowest Prolog systems. Table 1 shows the comparison of the OPS5 on Franz Lisp (Opus
38.79) with KORE/IE on C-Prolog {version 1.4). For this test, we used a standard bench mark system
which is also used in (Brekke 1988). The system iz "Monkey and Bananas" which consists of 27 rules
{(Brownston 1385). In Table 1, the OPS5{compiled) is a compiled OPS5 system by using the Lisp compiler,
The OPSi(interpreted) is a system which is loaded simply into Lisp system. The method of using
OPSslinterpreted) corresponds to the method of KORE/IE on C-Prolog. As is evident in Table 1, KORE/E
is sufficiently faster than OPS5{interpreted) and the speed of KORE/E is comparable with that of
OPS5(compiled). Tt should be noted that the speed of KORE/IE is improved effectively if we use a more
efficient Prolog system,
VAX11/780

QP35 : Franz Lisp (Opus 38.79)
KORE/E : C-prolog (version 1.4}

Table 1. OPS5 (Compiled) | OPS5 (interpreted) | KORE/E

Rule Execution time(See) 1.5 61.5 7.0

Table 2 shows the performances of KORE/E on C-proleg and Quintus Prolog where we used the
same example as for Table 1. The Table 2, the Quintus{compiledl) iz where the KORE/IE system is
compiled using a Prolog compiler. The Quintus{compiled2} is a system where LHS programs, RHS
programs and pattern data generated by the compiler are alse compiled using a Prolog compiler. What is
evident from the table is that the performance of KORE/AR is improved effectively by using the Prolog
compiler. However, since the mechanism for inputs and outputs in Prolog systems is inefficient, it seems
that the Lnprovement reaches a limit,

SUN3/52m

KORE/E : C-prolog (version 1.4)
Quintus Prolog (Release 1.6)

Table 2. Quintus (Compiled2) | Quintus (Compiledl} |C-Prolog

HRule Execution time(See) 2.0 2.5 4.1

MNow, we test with an example without using inputs and outputs. As shown in Fig.11, the example is
rules that modifies WM successively according to the number of rules. In the graph, the vertical axis

10

indicates CP1T time (seconds) required for each system, and the horirontal axis indicates the number of
rules. The graph shows performances of Quintus(compiled2) and Quintus(compiled1) on SUN3/52m, and
the performances of KORE/E (the C-prolog version) and DP%&{mmleed} on YAX11/T80. As is evident
from the graph, the Quintus(compiled2) realizes the efficiency of head searching in Prolog systems. The
time required is linearly proportional to the number of rules. It seems that Quintus(compiled2) attains
ideal performance in the Prolog system. The performance of the KORE/IE system on VAX11/780 is equal
or superior to that of OPSS on VAX11/780.

CPU time(Sec)

TEE’U 251,1}.
OPS5{Compiled)/VAX11

test rules

irl:ifflsel=1s2=1s3=1zs4=15s5=1)then

modify(l,51=2,52=2s3=2,54=2,55=2).
E Z04.4
200} |rn:iffisl=n,52=n,s3=n,54 =n,55=n) then
modify(l,sl1=n+1s82=n+1s3=n+1ls4d=n+1s5=n+1).
C-Prolog/VAaX11

150
44.1
100
Quintus (compiled IWSUNI
ad

Quintus (compiled2)/SUN3

50 100 200 300 400 500
——number of rules

Fig.11. Evaluation of KORE/IE.

11

5. Conclusions

In this paper, we have proposed and discussed the following advantages of KORE/IE; (1) a
mechanism for an inference engine for KORE, (2)cooperative prablem solving among rule bases, (3)an
efficient inference mechanism. By using (1) and (2), we have shown the flexible and powerful mechanisms
of KORE/E. The (3} is the most important subject in logic programming and also the main part of this
paper, In KOREJE, we have realized a speedy inference mechanism without restricting rule expressions
by using advantages of Prolog systems. Specifically speaking, in order to realize the full speedy
mechanism, we have utilized the features of the inference mechanism and the efficient refutation
mechanism of Prolog systems. Namely, by compiling rules into optimized Prolog programs, recognize-act
cycles are transiormed into execution of the Proleg programs based on the speedy refutation mechanism.
The programs consist of LIS programs and RHS programs. By using the LHS program we can realize an
efficient matching process. It can be seen from the experimental results that the efficiency is superior to

that of the Hete Match algorithm.

Acknowledpgment

The author would like to acknowledge the continuing guidance and encouragements of Dr, Tosio
Hitapawa, the president of [IAS-5I5, and Dr. Hajime Enomoteo, the director of ITAS-S3I5. The authoer is
deeply grateful to Dr. Mitsuhiko Toda, [IAS-SIS, for reading the draft of this paper and giving him many
valuable comments. Also many thanks to Mr. Yoshinori Katayvama and Mr. Kunihike Hiraishi, [TAS-8IS,
for their useful comments. The author is also very grateful to Mr. Hiromichi Futagami for his computer
programming with great competence and enthusiasm.

This research has been carried out as a part of Fifth Generation Computer Project.

Heferences

Brownston L, Farrell E K, and Martin N{1985) Programming expert system in OP55. Addison-Wesley

Brekke B{1886) Benchmarking Expert System Tool Performance. Ford Aerospace Tech Note

Forgy CL{1981) OPS5 User's Manual. CMU-C5-81-135 July

Forgy CL{19B2) Rete: A Fast Algorithm for the Many Pattern/™any Object Pattern Match Probiem,
Artificial Intelligence 19: 17-37

Futamura Y (1983) Partial Computation of Programs, Lecture Notes in Computer Selence 147,
Springer-Verlag

Kowalski R (1877) Logie for Problem Solving. Elservier North Holland :149-74

Lesser VR and Erman LD {1977 A r‘etrﬂsput;l‘.,'nrl: view ol the HEARSAY -1l architecture, Proc. IJCAT
5:720-800

Matsumoto Y, Tanaka H, and Kiyono M (1983) BUP: A Bottom-up Parser Embedded in Prolog.
New Generation Computing [No. 2

Shintani T, Katayama ¥, Hiraishi ¥, and Toda M (1986) KORE: A Hybrid Enowledge Programming
Environment for Decizsion Support based on a Logic Programming Language. Lecture Notes in
Computer Science 264, Logic Programming "86 :22-33

Takeuchi A and Furukawa K (1985) Partial Evaluation of Prolog Programs and [ts Application to Meta
Programming. in Kuger, H.-J.(ed.): Information Processing 86, Dublin, Ireland 415-420., North-

Holland

12

