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ABSTRACT

This paper proposes an algebraic tool to solve the constraints of
propositional caleulus. Any constraint of propositional caleulus can
be described in terms of equations in a Boolean algebra, and also
translated into equations of a Boolean ring where the constraint is
represented in the form of a finite set of polynomials. We give an
algorithm which produces a rewriting system for a given Boolean
constraint, which reduces Boolean polynomials eguivalent under the
constraint to the same normal form. The algorithm is a central part
of the constraint solver in CAL {Contrainte avec Logique), which is
a constraint logic programming language being developed at ICOT.

1. Boolean ring

We assume that the reader 15 famihar with elementary algebraic notions such as ring
and ideal (see [Waerden 37, 40}, for example), and the terminology of rewriting systems
(see [Huet 80], for example).

For a Boolean algebra < B,V,A,~ >, define 2 + y =4.5 (z A ~y) V (-z A y) and
T XY =gesr Ayforeachz, yin B, then < B, %, + > is known to be a commutative
ring with a unit with the following properties.

(i) V2€B z4z2=0
(i) VzeB zxz=x

A ring with these properties is called a Boolean ring. Here, we define a Boolean ring
of polynomials specifically, as used in this paper

.Deﬁnitiuu 1.1

Let there be countably many Boolean variables, which are denoted by metasymbols
a,b,c,.... A Boolean monomialis a (finite) multiset of Boolean variables. It is denoted
by using x. For example, a X a x bx ¢ denotes multiset {a,a,b, ¢}. The empty Boolean



monomial, {}, is denoted 1. We use metasymbols 4. B.C',... for Boolean monomuals.
A % B is defined as the multiset union of 4 and B. For example. 4 x B = {a,a,b,¢}
when 4 = {a.b} and B = {a.¢c}. A Boolean polynomielis a (finite) maltiset of Boolean
monomials. 1t = denoted by using . For example. 4 + A+ B = denotes multisa:
-4, 4. B.C}. The empty Boolean polynomial. {}. is denoted 0. We use metezvmbols
N3 Z.... for Boolean polvoomials, X + } 15 defined as the muitiser union of X
anc Y. Binarr function x 15 extended 1o Boolean polynomials in a patural way For

(A D At D= d A A vl — A DB A-EBxC+-E =D,

Note thet both = and + are associative and commutative, and are also distributive.
e, V=Y =2)= X »Y + X = Z for each Boolean polynomial, X, Y, and Z.
We zbuse metasymbols a.b.c,. .. to denote Boolean monormials {a}, {b},{c}.... and
A B C.... for Boolean polynomials {4}, {8}, {C},..., which will be clear from the
context.

In this paper, we omit x. For example, we write aab instead of a x a x b.
Definition 1.2

The rewriting rule, =, on Boolean monomials is defined as X +aad —x X + a4 for
each variable a, monomial 4, and polynomial X. The rewriting rule, — 4, on Boolean
polynomials is defined as X + A+ A —; X for each monomial 4 and polynomial X.

It iz easy to show the following:
Proposition 1.3
The rewriting system of rules {—x,—4} is confluent and terminating. ||

Definition 1.4

For a Boolean polynomial, X, the normal form of X by {—..,—4+} is denoted X!
and called a Boolean normal polynemial For example, aabbcee] = abe, (aabe + abee +
be + edd)| = be + ed. A Boolean normal polynomial is the sum of different Boolean
monomials, each of which is the product of different Boolean variables.

Definition 1.5
Define the product, x', and the sum, +', of Boolean normal polynomials as follows:
XA x'Y =g5 (X xY)] X+'Y =g (X +Y)]

The set of all Boolean normal polynomials with operations x' and +', defined above,
forms a Boolean ring.



2. Boolean Griobner base

Definition 2.1

Let > be an crdering on Boolean monomials. The ordering is said to be admissible if

the following held:

o}

(i1} A > B fez a=r mozomals 4 and B such that 4 € B in the sense of muliiset

ICIUSI0,
{ii} If 4 = B, then AC > BC for any monomials A, B, and C.

Let V be a fixed finite set of Boolean variables. The fact that an admissible ordering
on monomials consisting only of the variables in V' is well-founded s well known as
Dickson'’s lemma [Dickson 13], or easily proven as its corollary. An admissible ordering
on monomials is extended to polynomials by employing induced multiset ordering
[Dershowitz 79]. Since induced multiset ordering is well-founded if the base ordering
is well-founded, the extension is well-founded on polynomials consisting only of the
variables in V. Moreover, induced multiset ordering is total if the base ordering is total.
In what follows let > be a fixed admissible total ordering on Boolean monomials.

Definition 2.2

Let A® X denote A+ X but also mean that Boolean monomial A is greater than any
Boolean monomial in X with respect to >. I ¥ is a Boolean polynomial such that
Y = 5 4+ AB and Z is a Boolean polynomial such that Z = § + X B, then we write
Y —4ox Z. Similarly, if V' is a Boolean normal polynomial such that V = T+ AC and
W is a Boalean normal polynomial such that W = (T'4+ X )|, we write V = 45x W.

This means that Z or W is obtained from ¥ or V by substituting A for X by using
the rule 4 = X which 1z equivalent to 4 + X = 0.

Example 2.3

Let ¥ = abc+be. Then ¥ —apac cc+beand ¥V =40, ¢+ be, since (ce 4 be)| = e+ be.

Lemma 2.4

Let A& X be a Boolean normal polynomial. If Y —agx Z, then ¥ > Z for any
Boolean polynomials ¥ and Z. If V = 4, x W, then V > W for any Boolean normal
polynomials V' and W.

Proof: Easy to check. [§



Corollary 2.5

For anv zet of Boolean normal polrnomials { X, Xo,..., X}, the rewriting systems
= —ai—x, =X —=x b and {=x,. = =} are terminzting. |}

Delfriion 2.6

Ter B be o finite set of Boolean maormal polynomisls, We write ¥ =g £ i there simsrs
X & Rsuchthat ¥V o=y 7. and Y252 f ¥ = Z or there exists a possibly empiy
sequencs }-:,-5-';- ..... Em of pUT.;-'lu'.l:lialE such that ¥V =1 5'-1.}.1 =r }:1 ..... EF.-.-.,...; =

YVomo ¥ om =g Z. That is = p is the wransiiive redexive closure of = 5.

In what follows, we will discuss ideals in the ring of Boolean normal polynomizls.
Intuitively, an ideal can be regarded as the set of all normal polynomials of value
under a certain constraint.

Definition 2.7

Let I be an ideal of the ring of Boolean normal polynomials, A Grobner basefor Jisa
finite set of Boolean normal polynomials A such that = g is confluent and terminating,

and moreaver, the following two conditions are equivalent for any polynomials, X and
Y.

(i) (X+Y)lel(or X=Y (modI))

(i) There exists a polynomial, Z, such that X%gZ and Y2gZ.

Theorem 2.8

Let E be an arbitrary finite set of Boolean normal polynomials, then a Grobuer base
for the ideal generated by E exists and, furthermore, we have an algorithm to construct

it from E.

Intuitively, an element of the generated ideal is a polynomial of value 0 under the
constraint that all elements in E have value 0. A Grébner base can be viewed as &
mechanism to determine whether a certain polynomial is in the ideal. First, we give
an algorithm, then show its correctness. We need to define several notions.

Definition 2.9

Let R be a finite set of Boolean normal polynomials. For each Boolean normal poly-
nomial X, X | g denotes a Boolean normal polynomial, ¥, such that X2 g} and ¥
is irreducible by =g, i.e., there exists no Boolean normal polynomial, Z, such that
Y =g Z. (Note that Corollary 2.5 assures the cxistence of such ¥. However, it may
not be unique. X |p denotes one ¥.)



Definition 2,10

Let 4% X be a Boolean normeal polynomial, and a a variable in A, Then (aX + X))

is called u self-cmitical pair of 4 2 X

¥ 4 = X is in an idesl. I. then so are all the self-critical palrs of A = A In fact,
et o £ A ie. 4 = aB for some ipossibly empty; Boolean monomicl. . Then,
cB= X elimplies ({e-1WaB =X ={aX+X), &l

Example 2.11

Let AZY be absb+c. Then, (a(b+e)+(b4e)}l = ab+ac+b+ecand (blb+c)+(b+c))] =

be + ¢. Therefore, self-critical pairs of A @ X are ab+ ac+ b+ c and be +c.

Definition 2.12

Let A X and B @ Y be Boolean normal polynomials, and C the intersection of A

and B as multisets. According to tradition, let us call €' the GCD (greatest common
divisor) of A and B. Suppese that A = CA' and B = CB', Then, (B'X + AV is

called the critical pair between A@ X and B Y.

If A® X and B& Y are in an ideal, I, then so is the critical pair between A@ X and
BaY.Infact, (B(Ada X))+ A(BaY)l=(B'X+AY)| el

Example 2.13

Let A X =abc®a+band B@Y = abd @ a+ b, then (dla +b) + cla + b))l =
ac + ad + be + bd. Therefore, ac + ad + bc + bd is the critical pair between abc@a + b
and abd @ a <+ b.

Definition 2.14

Let X be a Boolean normal polynomial and R be a finite set of Boolean normal
polynomials, then CP(X,R) denotes the set consisting of all the non-zero critical
pairs between X and each element of R and all the self-critical pairs of X.
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Now the algorithm can be presented.

input £
i1
while £E =0
choose N £ E
Ee— F—{X}and V' — ¥ _j
if X' =10 then
forevery A=Y e R
if 4=y 7
then E+— Eu{(Z+1)l}and R— E-{4=2Y}
else R— (R—{A2Y}U{42 Y] g}
end-if
end-for
E—FEUCPX'R)and R+— RU{X"}
end-if
end-while
output B (R is = Grébner base)

(In this algorithm, the choice of an element in F should be fair. That is, any element
of E should be chosen at some stage in the outermost while loop.)

This algorithm terminates and returns a Grobner base. To prove the correctness of
the algorithm, we study a more general form of the algorithm.

Definition 2.15

We define inference rules on pairs (E, R) of finite sets of Boolean normal polynomials.

EU{X},R
Rule 1 m Wh&rﬂX%&Y
EU{0},R
ul ——
Rule 2 FR
Rule 3 ERVIAGX] e X spy

E,RU{A@ Y}

E.RU{4B®X)



Eu{dAs XL R
E,RU{4& X}

Rule 5

Rule 6
E.R

EU{(CX <+ BY ) 5 where ABE X AC =Y e Raud B~ C =0 [ecritical pair]
- L E A L

E.R

Rule 7 EU{laX + XL R

where ad & X € A {seli-critical pair)

Definition 2.16 {General form of the algorithm)

Let Eg = E, Ry = 0. For each 1, let E;y; and R,z be obtained from E, and R, by one
of the above rules. In the following, U2, N2 E; is denoted by E* and UZZ, N, R;
by R™. We give priority to Rules 1 and 2. We need two restrictions to make the
algorithin correct.

(i) The algorithm must be fair, i.e., E* = {.

1 ny possible entical pair or sell-eritical pair must be taken, 1e., lor eac €

1) A ible critical pai If-critical pai be taken, 1e., f h X
R*, any self-critical pair of X must be put in some E; by Rule 7 and for each
X Y € R™, any eritical pair of X and ¥ must be put in some E; by Rule 6.

Then for some i, E; is empty and H; is a Grobner base. (Note that the previous
algorithm takes the form defined here.)

To prove the last statement, we need some more definitions.

Definition 2.17

Let R be a finite set of Boolean normal polynomials. A rewriting rule on Boolean
polynomial —p is defined as follows. X —»p Y iff X —z ¥ for some Z € R. Spg is
defined as a reflexive and transitive closure of {—g, —+x, —+4+} and &g as a symmetric,
reflexive and transitive closure of — 5.

Definition 2.18

Let X and ¥ be arbitrary Boolean polyvnomials such that X — 447 Y for AG Z € E,.
We associate the rewriting X — 45z ¥ with a triple ({X, X}, 4,Z), where {X, X} is
a multiset. Similarly, we associate the rewriting X —agz ¥V for A @ 2 € R; witha
triple ({X}, A, Z). We also associate the rewriting X —. ¥ or X —4 ¥ with a triple
({X},e,0), where o is a special constant. We introduce an ordering on the above
triples defined as follows. The first component is compared by the multiset ordering
induced by the ordering on Boolean polynomials and the second or third component
is compared as a Boolean monomial or Boolean normal polynomial, respectively. We
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define e as bigger than any Boolean meonomial and any Boolean normal polvnomial.
Finally, we define an ordering on triple lexicographically by the components, Ve
denote this ordering =. Note that this is well-founded. We also consider this ordering

as an ordering on rewritings.
Definition 2.13

Let X and Y be arbitrary Boolesn pobvoomials. 4 sroof of XS g Y 12 2 sequence
o el I J i i

=1 Za. . = of rewritings such that eack =, 1z a rewriting from X; to (X;4; or

from X,-; to X where Xy = X and X = 1. Note that there might be mary
- md LTE - : 1 Ay T ey 3 f : h 1,'._

procfs of ¥ &g g, Y In general. We define an ordering on proois as the muliise:

ordering induced by the ordering on rewritings defined above. Note that this is also

well-founded.

Note that the definition of the ordering does not depend on i. Therefore, we can
compare a proof of X & g,ug, Y and a proof of X & E;ur; ¥, evenif i and j are different.

Lemma 2.20

The equivalence relation, & g,ug,, is the same for every i. Moreover, if a proof, ¥, of
X &g upY is given, we can construct a proof, €, of X'frEJUgJY for each 7 > 1 such
that U > @.

Proof: It is enough to show the following,

(i) If a proof, @, of Xégmumﬂ}' is given, we can construct a proof, ¥, of
XAE.'UR.'Y-

(ii) If a proof, ¥, of X&pur Y is given, we can construct a proof, ®, of
X*"l*E.-“uR,-“Y such that ¥ > @.

The first claim is shown by checking that the rule, — x, for X, which is a new Boolean
normal polynomial added to E;y; U R;y; by Rule 1-8, can be simulated by a combi-
nation of — <, —4 and the rules in E; U R,. The second ¢claim is shown similarly, but
in this case it must be verified that the simulation generates the same proof or less
than it. Later, we will show such simulation in several interesting cases. However,
since such simulation is a routine in general, we omit details. [

{We have this property since we discussed a rewriting rule, —, on Boolean polynomials.
Note that this property does not hold for = on normal polynomials.)

We use the simple notation, &, for the above equivalence relation, & g,ug,, since it
does not depend on 1.

Before going to the next step, we will show several lemmata.

_a__



Lemma 2.21

Let 4 be a monomial and X;. V.. and £ polynomials, Then there exists a polynomial
[7suchthat 24X = v oy U and Z+AXs 5y, s v,y U, We denote this situation

szmply

Z - .-]_Tflil Vv, - \-:;.'12' + AN,

FProof: 1T (N7 + X501l =00 elearls &, = Y, . Then,

A AT EZ -~ AN =Z+ A X157 + AX.,

where % denotes application of — . and —_, performed a finite number of times. If
(X1 + X2)| # 0, then let (X; +~ X1} = C & W, then, either C € X3] or €' € X3l.
Without loss of generality, we can assume that C € X,;. Let X;| = C @& X. Then,

Z4+AX,BZ + AX | —caw Z+ AW+ X )27 + A((W + X))
Z+ AXaBZ + A(Xal).
It is clear that (W + X)| = X2/. 1
Lemma 2.22

Suppose that Rule 1, 3, 4, or 5 is applied in the i-th step and a polynomial in E; or
R;, say X, is eliminated. Any rewriting using — x can be replaced by a smaller proof
in E,{.] U RH—].

Proof: The lemma is clear for Rule 5 by the definition of the ordering. We show the
lemma only for Rule 4. The proof is almost the same for Rules 1 and 3, and much
easier. Let X = AB & X' for some B, A4, and X' such that B® Z € R; and A # {.
Then (AZ + X'")| € E;uy. U P = apax Q, P is of form W+ CAB and @ is of form
W 4+ CX'. Therefore, by the above lemma,

P=W+CAB —paz W+ GAZ-’—‘P{AH_.‘,X;”J*—W +CX' = Q.

Finally, let us verify that this proof is smaller than the original proof, P —apax: Q.
The first rewriting, P —pggz W + CAZ, is smaller, since B < 4B. Therefore, the
whole proof is smaller, since the other rewritings are clearly smaller. 1

Lemma 2.23

Let X and Y be arbitrary Boolean polynomials, and =;,Z,...,Z, a minimal proof
of X &Y.

(i) There is no rewriting in it which uses a rule in some E;.

— 9 —



(i1} There iz no j such that =;_; is a rewriting from X; to X, ; and =, is a rewriting
from X; to X4 (we denote this situation X, + X; — X, 51

Proof of (1): Suppose some Z; is 2 zewriting. X —2 Y. for Z in some E;. By conditior
iii of the definition of the algoriinm, £ 1s eliminated at some stage, & > j. By the
ahove lemma, there i3 a proof of X2

coatradicss the minimelity

Y m E, U Ry which is less than =, T=%:

FProof of {i1): Also by the above lemma, 172 35 2 rewriting. X —z Y, for Z in some
F,. Z should be in ™, Suppose we have 5; 3 — X; — X;;1. There are several
possibilities.

Case 1t Both reductions are —, or —+y. In this case, X, ;| = X,;1;]. Therefore,
‘..:}.“'l — Xj- —F X}"i‘l Can be rEP]-ﬂ.C-Ed h:l"

XjahX;al=X;015 X0,

which is easily verified to be less than X;_; ~ X; — X;i;. This contradicts the
minimality.

Case 2: One reduction is — « and the other — pec. We can assume X;_; «x X; =g
Xj+1. There are three subcases.

Subcase 1: X; = P+ aad, Xj.1 = P+ad, P =g~ P and X;51 = P' + azA
Subcase 2: X; = P+ aad, X;_; = P+ad, A -~ § and X;;; = P 4 aa$
Subcallse 3: X; = P+ Baad, Xy = P+ BaA,aA® S5 € R, and X;., = P+ BaS

We consider ouly Subcase 3. The others are much simpler. Since ad & S € R™, its
self-critical pair (aS + §)| € E for some k by condition (ii) of the definition of the
algorithm. Then X;_; « X; — X, can be replaced by

Xj_l = P+B{1A '-}¢A$$P-I—Bsilr{uS_FSHI*—P—I'-BﬂS = Ij-{-l:

which is easily verified to be less than X; ; « X; — X,4;. This contradicts the
minimality.

Case 3: One reduction is —+; and the other <+ g~. This case is handled much more
easily.

Case 4: Both reductions are — gee. There are two subcases.

Subcase 1: X; = P+ A+ B, A 2= 5, X;.1 = P+ 5+ B, B —pe T, and
Xj+l=P+A+T'

_][}.—



Subcase 2: X; = P+ DABC, AB& S, ACaT € R™, X;-, = P+ DCS, and
Xj41=F+ DBT where ANE =10

Subeases 1 and 2 are easy. For Subease 3. since AB = 5. AC S T £ R™, their eriticel
| & E; for some k by condition (i) of the definition of the algoritnm.

Then X;_; — X; — X,.; can be replaced by
- | . W % —_ -
X, =P DCS% pepr =P+ DBT = X ;44
which is sasily verifed o he less than X,y — X; — X,o;. This contradicts the

minimality. I
Lemma 2.24

X € R®} U {—.,—+} is a confluent and terminating rewriting system on

{—x
Boolean pelynomials for equivalence relation «.

Proof: Confluence is clear from the above lemma and its proof. Termination is
Corollary 2.5. I

Lemma 2.25

Let S and T be arbitrary Boolean normal pelynomials such that §&7T, then there is
a Boolean normal polynomial, Z, such that S# ge Z and T3 e 7.

Proof: Let Z be the normal form of § and T by {—x |X € R®} U {—x,—+}
Since the rewriting system is confluent and terminating, whichever order we take for
applying rewriting rules, we finally reach Z from § or T. Apply —x or —+4 as far
as possible in the reductions from § and T. Then we get reductions §3p=Z and
TZp=Z. ||

Lemma 2.26
The same statement as the above lemma holds for some R; instead of B,

Proof: Since Ej is finite, only a finite number of Boolean variables appear in the
algorithm. Therefore, there are only a finite number of Boolean normal polynomials,
hence B™ is finite. Therefore, there exists some H; such that R™ C R; by definition

of R>. Clearly the assertion holds for this R;. I
Proaf of the last statement of the definition of the algorithm:

Take i such that the above lemma holds. Since any X in Ej; is reduced to 0 by =+pg,,
by applying Rules 1 and 2 several times, say k-times, E;;; will be empty. Note that
the above lemma also holds for R, ;. To complete the proof, it suffices to show the

next lemma. [
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Lemmea 2.27

Let [ be an ideal generated by a finite set, £, of Boolean normal polynomials. Then
for each Boclean normal polynomial, X and Y,

X=Y (modl) if X&gV

Froat:
;

(if} It suZees to check the following., For each Boolean polynomial, X and 17, i
XN —pVYiorZmmEthen N[ =Y, (mod 7 les ¥ =5+BAY =5+ B and
Z=AeW.then (Y~ Y}l =(BA+5+BW =5, ={BAeW))l =(BZ)l 1

e

(only if) Suppese X =Y = A X+ A+ s P for By Py, ..., Pre E. Let Z, =
Y+ PX)+ X +...+PBX,foreach 0 <1 <n. Then &1 5 p &2+ B X = 2.
Combining these proofs obtains a proof of X = Zy&pZ, =Y. |

This completes the proof of Theorem 2.8
REFERENCES

[Bachmair 86] Bachmair, L., Dershowitz, N., and Hsiang, J.: Ordering for equational
proof, Proc. Symp. Lﬂgic in Computer Science, Cmnbridge, Massachusetts (June
1936)

[Buchberger 83] Buchberger, B.: Grébner Bases: An Algorithmic Method in Poly-
nomial Ideal Theory, Technical Report, CAMP-LINTZ (Nov. 1983)

[Dershowitz 78] Dershowitz, N. and Manna, Z.: Proving termination with multiset

orderings, Comm. ACM 22, pp. 465-467 (1979}

[Dickson 13] Dickson, L. E.: Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors, Am. J. of Math., vol. 35, pp. 413-426

(1913)

[Huet 80] Huet, G. and Oppen, D. C.: Eguations and Rewrite Rules: a survey,
Formal Language: Perspectives and Open Problems Academic Press, pp. 349-405
{1980)

[Knuth 70] Knuth, D. E. and Bendix, P. B.:  Simple word problems in universal
algebras, Computational problems in abstract algebra, Pergamon Press, Oxford
(1970)

[Waerden 37] van der Waerden, B. L.: Moderne Algebra I, Berlin-Leipzig (1937)

[Waerden 40] wvan der Waerden, B. L.: Moderne Algebra IT, Berlin-Leipzig (1940)

- 12—



