ICOT Technical Memorandum: TM-0484

TA-0424
Abstract Interpretation and Partial

Evaluation of Prolog Programs

by
H. Fujita

Murch, 198H

C 988, 1COT

Mita Kokusn Bldg 21F (03) AGA-J191-~ 5

|[:D | 198 Mila 1-Chome Telex ICOT [32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Abstract Interpretation
and
Partial Evaluation
of
Prolog Programs

Hiroshi FUJITA
First Rescarch Laboratory, ICOT

Sep 9, 1986
Revised Oct 17, 1986
Reprinted March 11, 1988

ABSTRACT

This article deals with abstract interpretation and its applica-
tion to some preanalyses for partial evaluation of Prolog programs.
Qur experiences with the previous version of partial evaluator showed
us just how much a hwnan insight is needed to develop a partial eval-
uator that terminates with successful result. In order to make partial
evaluation really valuable, we have to automate it. For that purpose,
we constructed yvel another partial evaluator which uses information
given by the preanalysis besed on abstract interpretation. Although
the method deseribed in this article 1s not sufficient enough to fully
automate the partial evaluator, the more sophisticated preanalysis
we make on the basis of abstract interpretation, the more powerful

partial evaluator we can develap.

1 Introduction

Our experiences with Takeuchi’s partial evaluator [Takeuchi 86] for (pure) Prolog programs
{abbreviated to TPE below) showed us just how mnuch a human insight is needed to develop
a partial evaluator that terminates with a successful result.

The directives to TPE are given either in advance by auxiliary clauses or interactively
by the user during partial evaluation (possibly in both ways). At any rate, we felt that the
burden on the user was too heavy involving difficult problems even in small applications.
We have to minimize this burden as far as possible in partial evaluation to make it really
vuluable. The attempt to find ways to automate partial evaluation of Prolog programs is

a responce to this,

We constructed yet another partial evaluator, rather different from TPE, that is simple
and powerful enough to output the same (possibly better) results as TPE. We begin by
describing the new partial evaluator in the next section, introducing some criteria for
evaluability /unfoldability, which directs processing by our partial evaluator. In section 3,
we introduce abstract interpretation, which will be applied to our partial evaluator as a

method for preanalyses in Section 4, and finally, we make some concluding remarks.

2 Partial Evaluation

Partial evaluation in the case of Prolog is concerned with such computations as unification
{constant propagation), subgoal expansion (unfolding) and evaluation of evaluable system
predicates, all of which-are normally executed by the Prolog interpreter at runtime.

Of course, we can partially evaluate any Prolog program at any time by unfolding it
at any goal in a program clause body at any depth. However, reckless unfolding {or uncon
trolled partial evaluation) does not have beneficial results. In general, partial evaluation
is useful only when we have a goal that has enough information ready for execution. This
also gives us another seed for partial evaluation at other places propagating information
via instantiation of shared variables, narrowing search spaces or providing shortcut paths

which would be traversed at runtime.

We can think of several situations in which partial evaluation may become effective,
such as

(1) An application program supplied with (incomplete) data, or

(2) A meta interpreter supplied with its program, or

(3} A program which is partially evaluable itself due to somewhat redundant descrip-

tion in its source codes is given.
Typical starting points of partial evaluation are a call of a predicate that is defined by unit
clauses in case (1), a system call “clause{Head , Body)” and the like in case (2), and a goal

of which arguments are instantiated literally to the extent of being evaluable in case (3).

2.1 An Outline of our Partial Evaluator

(Jur partial evaluator operates under the following two rules:

[Evaluation Rule] If a goal appearing in a body of a clause in the program is an instance
of & canonical goal marked evaluable, then evaluate it as the usual interpreter does

and rewrite the clause to the one that reflects the evaluation.

[Unfolding Rule] If a goal that appears in a body of a clause in the program is an instance
of a canonical goal marked unfoldable, then unfold it by clauses in the program which
defines the goal, and rewrite the clause to forms corresponding to matching clauses

by head unification with the goal (as the usual interpreter does).

A canonical goal is a representative goal among variants (identical up to variable renam
ing), whose variables are thought always fresh [distinq-.t from all other variables mentioned
elsewhere in the context).

If a rule is successfully applied to program F;, the program is rewritten into a new
program ;. A rewrite as the result of ouc of the rules above would cause successive
rewrites. Thus, rewriting is repeated until no rule is applicable to the current program FPy,.
Note that one of the differences between TPE and our partial evaluator is that the former

is driven top-down, while the latter is bottom-up and iterative in nature.

We want the rewritings to terminate and the program to converge. In order to assure
the termination, we have to set appropriately “evaluability/unfoldablity” conditions. We

will investigate evaluability /unfoldability conditions in detail.

2.2 Evaluability/Unfoldability

Evaluability and unfoldability conditions have to he we should carefully arranged so that
they guarantee that the partial evaluator never diverges.

Some critera for evaluability and unfoldability are given in the form of these rather

ad hoc rules.

“unit” unfoldability A goal unifiable only with (heads of) unit clauses is unfoldable.
This rule may be effective especially in data base applications, although it is likely to

run into the danger of spatial explosion by multiplication of unfoldings.

“non-recursive” unfﬂlﬂahility A non-recursive goal, that is, a goal that never calls a
subgoal of the same predicate with the same arity, is unfoldable.
This rule includes the previous one as a special case. An unfolding by this rule corre-
spond to inline expansion of a subroutine call by its bedy in conventional procedural

lanpuage programs.

“halfway-decomposed” unfoldability A goal that is an instance of a head goal but not
of body goals 1s unfoldable; where a head goal is a canonical goal of which a variant
appears at the head of a program clause, and a body goal appears in the body.
Intuitively, the reason why such a goal becomes unfoldable is that it has an argument
which has been halfway decomposed, so that we can further decompose it by another

step of unfolding,.

The above rules are not complete; that is, some unfoldable goals are covered by them, but
others are not. We are interested in the last of the unfoldahilities above in particular, he-
cause it is concerned with the most typical situation that happens in the partial evaluation

of programs which include ordinary recursive definitions of predicates.

Before we elaborate on this type of unfoldability, we introduce abstract interpretation
in the next section, which will be used as a general conceptual tool for extracting useful

information from programs.

3 Abstract Interpretation

[Cousot 81] states that,
“ A program denotes computations in some universe of objects. Abstruct inter-
pretation of programs consists in using that denotation to describe computations
in another universe of abstract abjects, so that the results of abstract execution

give some information on the actual computations. "

After defining several preliminary issues in abstract interpretation, we will elaborate

on its application to partial evaluation.

3.1 Outline of Abstract Interpretation

Suppose we have a program and want to foeus on some specific aspect of the behavior of

the program, which does not necessarily require exact interpretation or execution.

First, we define the domain for each construct of the program according to our con-
cerns. Such a domain may be different from that for the original programs. It requires a
lattice structure, that is, the values in the domain must be partially ordered with bottom
{infimumn} and/or top (supremum) elements. Next, we extract the equations in the domain
from each line of the program text which reflect the behavior of the program only through

the values in the domain for each construct of the program.

We can now perform abstract interpretation quite algorithmically by iterative method

as follows.

(1) Assign the initial value to each construct of the program which appear at the right
hand sides of the equations.

(2) Compute the new value for each construct of the program which appears at left
hand side of au equation using the old values already assigned to cach construct
of the program at right hand side of the equation.

(3) Repeat step (2) until all the values for the program constructs with which the
set of equations is concerned are converged, that is, when no new valuc update is

possible.

Thus, once we sct an appropriate system of equations, extracted from program constructs,
we can mechanically get the information we wanted by solving the system of equations

with respect to the unknowns by iterative methods.

3.2 Abstract Interpretation in Prolog

In the area of logic programming, the work of [Mellish 86] can be cited which is mainly

concerned with the following three applications.

¢ Mode declarations (inforination on instantiation of the number of solutions that

predicates can produce)

* Determinacy mformation (information about the number of solutions that predicates
can produce)
o Information about shared structures (this can be used, for instance, to indicate

places where “occur check” might be desirable)

Qur approach is almost the same as [Mellish 86], in that we apply abstract interpretation

in a manner which may deviate somewhat from formal treatments.

4 Derivation of Unfoldability

Some (not all) of the conditions for partial evaluation may be automatically derived by

preanalizing given program clauses, Such preanalyses are done by several variations of ab-
stract interpretation [Mellish 86, [Mellish 85]. As an illustration of abstract interpretation,

we begin with a simple cross reference analysis.

4.1 Cross Reference Analysis

P denotes the set of predicates of goals that will possibilly be called in the course of Prolog
evecution under the goal of predicate P. For each predicate H defined by several clauses

{H := By,...,B,} in a given program, the following equation is derived

H =B, UB;2U...UB U

Brﬂ.,] L Brn.,? u...u B'|-r|.1:|1.r|-.

P U Q denotes the operation that produces the join of the sets of values {I%} and {@Q.},
the values for P and for Q. The values for P with the usual subset ordering are structured

by the lattice shown in Figure 1.

We solve the system of equations by iteratively updating the value for P'; that is,
starting from the initial value assigned to each P, we evaluate the righthand side of each
equation with the old values to generate a new value for P at the lefthand side, and repeat
the process until all values for P converge.

Initial value for each P is set &: the infimum of the lattice. The supremum of the
lattice is the set of all predicates appearing in given program clauses. Since the lattice is

finite and the operation U is vrder-preserving, the iteration will eventually terminate in a

{GhGﬂ:-*--:Gm}

PN
oo/ oo/ NS
{G1.G2} {G1,Gs) {Gm-1,Gm}
| |/ I | |
I \/ I I |
| X | | |
| / A\ I I |
7 | I |
{Gi} {G2} {G3) {Gm-1l {Gm}
\ \ I / /
\ \ I / /
\ - N e /
\ A / /
el W foommeemee-
VAN LS
@

Figure 1: The Lattice for Cross Reference Analysis

convergence (fixpoint).
Ta illustrate the analysis, suppose that we have the following program:

ancestor(X,Y) :— parent(X,Y).
ancestor(X, Y) :— parent(X, Z), ancestor(Z,Y).
parent{ X, Y) :— father(X,Y").
parent(X Y) :— mother(X Y).
We derive the following equations:

ancestor/, = parent/, Uancestor/,

parent/, = father/, Umother/,.
The initial values are
ancestor/, = parent/, = father/, = mother/, = .
After the first iteration we get

ancestor/, = {parent/, ancestor/,}

parent/, = {father/, mother/,}.
After the second iteration we get

ancestor/, = {parent/,,ancestor/,, father/, mother/,}

parent/, = {father/, mother/,}.

The third iteration does not change the old values, so the iteration has converged. The

final value of ancestor/, says that a goal of predicate ancestor/, may invoke as subgoals

parent/,, ancestor(,, father/, and mother/; in execution.

The inverse relation, that is the “called by” relation instead of the “call” relation, is
alsa derived in the same way. Nate that the first iteration gives just a part of the nsnal eross

reference information, and subsequent iterations compute in fact the transitive closure of

this simplest cross reference relation.

A slightly extended version of the above analysis is described as one of our preanalyses

for partial evaluation of Prolog programs.

4.2 Extended Cross Reference

We denote a canonical goal with respect to some specific goal G by G, renaming each
variable in (7 by a number preceded by “@". The equation derived from each clause

H:— By,...,B, in given program clauses is
H=B, wB.u...uB,.

The operation P & Q produces the join of the sets of values of any R unifiable with P or
Q. The lattice is like that in Figure 1, except that more varieties of the form of G than

those of the previous example are included.

For instance, suppose we have the following program [Takeuchi 86}:
solve(true, [100]}).
solve((A, B), Z) (= solve{A, X)), solve(B,Y), append(X,Y, Z).
solve(not(A),[CF]) :— solve(A4,[C]), C < 20, CF is 100 — C.
solve(A, ICF]):= rule(A, B, F), solve(B,S), ¢f(F,S,CF})..

The derived equation is

solve(true, [100]) = ¢
solve((A,B),Z) = solve(A, X) dsolve(B,Y)® append(X,Y,Z)
solve(not(A),[CF]) = solve(A,[C])¥ C <204 CF is 100 — C
solve(A,[CF|} = rule(A,B,F) ¢solve(B,S)4 cf(F,S, CF).

The converged values are

solve(true,[100]) = ¢
solve({@1,@2),@3) = solve(not(@1),[@2]) = solve(@1,[G@2])
= { solve(@1,@2), solve(@1,[@2]),
append(@1, 82, 43), rule(@1,82,@3),
cf(@1,@2,@3), @1 « 20, @145 100 — @2}

4.3 Deriving “halfway-decomposed” Unfoldability

We can derive “halfway-dcomposed” unfoldability for recursive predicates utilizing the

ahove result.
First, we extract head goals and body goals from the extended cross reference. A head

goal is a canonical goal for the goal that appears at the head pesition of a clause, while a
body goal is a canonical goal for the goal that appears at the body position of a clause, after
the n-th (n > 0) unfolding of the clause, given by the extended cross reference analysis as
outlined above.

The head goals for solve/, are
[solve(true, [100]), solve((@1,82),@3), solve(not{@1),[@2]), solve(@1,[@2]}}.
The body goals for solve/, are
{solve(@]1,@2), solve(Q1,[@2])}.
Next, we take the difference of the two sets, which is
{solve(true, [100]), solve({@1,@2), @3), solve(not{@1), [&3])}.

Now. each element in the set above is marked unfoldable following the “halfway-
decomposed” unfaldability eriterion. That is, head goal that 1s not also a body goal at the
same time can be reduced by several steps of goal reduction ultimately into some of the
hody goals. Accordingly, it becomes desirable to evaluale a goal which is an instance of
a head goal, but evaluation of a body goal is not since it results in the partial evaluation

process not terminating,..

5 Concluding Remarks

The “evaluability /unfoldability™ analysis described above seemed to work fairly well
as far as we know from limited examples such as the one listed in appendix.

However, it is not sufficient yet of course. We might be able to cover the evaluabili-
ties/unfoldabilities which could not be caught here by applying other variations of abstract
interpretation, such as mode analysis, functionality analysis, deterininacy analysis, ete. In
particular, the computation of measured subsets [Boyer T9) or the ke that would be maost
useful for our application. We have to study all these analyses in detail, then integrate

them into a unified analyzer for automating partial evaluation of Prolog programs.

References

[Boyer 79] Boyer, R. §. and Moore, J. 5. A Computational Logic, Academic Press, 1970.

[Cousot 81] Cousot, P. and Cousot, R.: “Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Conatruction or Application of Fizpoints”, Prin-

ciples of Programming Languages, 1977,

[Mellish 85] Mellish, C. S.: “Some Global Optimizations for a Prolog Compiler”, Journal
of Logic Programming, Vol. 2, No. 1, 1985.

[Mellish 6] Mellish, C. S.: “Abstract Interpretation of Prolog Programs”, International

Conference on Logic Programming, 1986.

[Takeuchi 86] Takeuchi, A. and Furukawa, K.: “Partial Evaluation of Prolog Programs and

its Application to Meta Programming”, Information Processing, 1986.

— 10—

Appendix A: A Skeleton of Our Partial Evaluator

% while an unfixed clause exists at stage I, do pevall

peval :- cl(_,unfixed, I,_,_J, peval2(I), abelish cl(I),!,
peval.

% where a clause is asserted as

% ‘cl(Identifier,Label,Stage,Head,Body)}’

¥ far all clauses at stage I, do pevald
ag P
Pevai?{l} :- I1 is I+1, cl(ID,Label,I,H,B),
peval3(ID,Label ,I,I1,H,8),

fail ; true.

% case analysis by Label
peval3(ID,fixed(s),I,I1,H,B) :-
assert (c1(ID,fixed(S),I1,H,B)),!.
peval3(ID,unfixed,I,I1,H,B) :-
select_goal(B,G), pevald(I,I1,ID,H,G),!.
peval3d(ID,_,I,I1,H,B) :-
assert(cl(ID,fixed(I1),I1 H, B)),1.

select_goal((P,Q),goal{Goal ,X,Y)) :-
select_goal (P,goal(Goal X ,PP)), Y=(PP,0Q) ;
select_goal(Q,goal(Geal ,X,QQ)), Y=(P,00Q).

select_goal (B,goal (B,X,X)).

—11 -

% evaluation
pevalda(_,I1,ID,Head,goal (Goal ,NewGoal ,NewBaody)) :-

evaluable(Goal),

{ solve(Goal), NewGoal=true,
reform_body(NewBody ,NE),
assert(cl(ID,unfixed,I1,Head,NB)) ;

true).

solve((P,Q)) := sclwve(P), solve(Qd).
solve(H) :- c1{_,_,_,H,B), solwe(B).
solve(G) :- G.

% unfolding
pevald (I,11,ID,Head,goal (Goal ,NewGoal ,NewBady)) :-

unfoldable(Geal),
unfold(I,I1,Head,Goal,NewGoal,NewBody).

unfold(I,I1,Head,Goal ,HeuGoal ,NewBody) :-
el(_,_,I,Goal,Newgoal),
reform_body(NewBddy ,NRB),
new_clause(Il,Head NB),

fail ; true.

12 —

Appendix B: An Example

B.1 Source Program

% Rule oriented inference engine

A Compute Certainty facter
A by A.Takeuchi [Mar.27-1984]

solve(true, [100]).

solve((A,B),Z) :=- solve(A,X), solve(B,Y), append(X,Y,Z).
solvelnot(A),[CF]) :- solve(A,[C]), C < 20, CF is 100-C.
solve(d, [CF]) :- \+A=true, rule(i,B,F), sclve(B,S), <f(F,5,CF).

cf(X,Y,2) :- prﬂduct{Y,lﬂﬂ,YT}, Z is (X*YY)/100.
pruduct{[],ﬂ,ﬁj.

product ([X|1Y],A,XX) :- B is X*A/100, product(Y,B,XX).

appcnd{[],Y,Yl:
append ([A1X],Y,[Al1Z]) :- append(X,Y,Z).

rule(A,B,F) :- ((A:-B)<>F).
rule(s ,tTue,F) - (A<»>F), \+(A=(_:-_)).

13

B.2 Object Rules

should_take{Person,Drug) :-
complains_of (Person,Symptom) ,
suppresses (Drug,Sympten),
not (unsuitable(Drug,Person)) <> 70.

suppresses(aspirin,pain) <> 60.

suppresses(lomotil,diarrhoea) <> 6€5.
unsuitable(Drug,Person) :-
aggravates(Drug,Condition),

suffers_from(Person,Condition} <> 80.

aggravates{aspirin,pepticdulcerJ <> TO.
aggravates(lometil,impaired_liver_function) <> 70.

B.3 Unfoldability Derived by The Preanalysis

unfoldable((A<>E)) .
unfoldable(append([A1B],C,[AID])).
unfoldable(cf(A,B,C)).
unfoldable(product ([AIB],C,D}).
unfeoldable({rule{a ,B,C)).
unfeldable{sclve(true, [100])).
unfoldable(solve((A,B),C)).
unfoldable{solvel{not (A}, [B])).

B.4 Evaluability Supplied by The User

evaluable(solve(true,_)).
evaluable(cf (X,Y,_)) :- ground(X), ground(Y).
evaluable(product (X,Y,_)) :- list(X), ground(Y).

B.5 The Result of Partial Evaluation

solve(true, [100]).
solve((A,B),C) :- soclve(A,D), solve(B,E), append(D,E,C).
solve(not(A),[B]) :- solvel(A,[Cl), C<20, B is 100-C.

solve(should_take(A,B),[C]) :-
solve(complains_of(A,D},E),
solve(suppresses(B,D),FJ,
solve(not {unsuitable{B,A)) .08},
append(F,G,H), append(E,H,I), product(I,100,J), C is TO*J/100.

solve{unsuitable(A,B),[C]) :-
selvelaggravates(A,D) ,E),
solve{suffers_from(B,D)},F),
append(E,F,G), product(G,100,H), C i=s 80*H/100.

solve(suppresses(aspirin,pain), [60]).
solve(suppresses(lomotil,diarrhoea), [65]1).
solve(aggravates(aspirin,peptic_ulcer), [70]).

solve(aggravates(lomotil,impaired_liver_function),[70]).

-16 —

