it fledn L ar: £r Y as[ul (W RI624) 1 U)) & Dl A i

TM-—-481

1055

Concurrent

7X-3

Program Synthesis from a specification
in Conditional Interval Temporal Logic

Kazunori MATSUMOTO, Nacshi UCHIHIRA and Shinichi HONIDEN

Systems & Socitware Engineering Lak., TOSHIBA Corp.

1. INTRODUCTION

We BTE developing & software
prototyping system named MEKDELS. In
the syEtem, we construct a concurrent

pProgTAn &s combinations of some
coftwaTe components stored in B
components library. Moreover &

synchronization prograc for guch the
somponents ig automatically generated
from & sSpecification given as a
formula in conditionsal interval
temperal logici{CITL!. CITL is an
extension of usual interval texzporal
logic. It CRN describe a
specification which depend on dynamic
situations. In this paper. wWe CiECUSE
on CITL and cutline of MENDELS.

2., MENDELE : A prototyping Bvstem

To improve productivity of software
development., it is believed that &
goftwaTe must be widely reused. To do
o, software should be written in &
adeguate language which has high
modularity and high readebility. For
these reasons., we af first develop a
langusge named MEKDELI[1]1. MERDEL ie
an object-oriented concurrTent
lenguage tbased on Frolog. Cbjects
aAre executed concurrently PASSinE
méssages +to other objects. but any
execution in eech object ie
sequential.

In MEWDELS. FJrcETams
Iollowing way:

£1 abjects lkoftware
wWritten in MENDEL are
Components likrary.
te) ocblects ere
inlerconnected from a
Epecification using &
Datching method.

3Y & control specification for
S¥nchronizing obkjecis are given &s &
fermules in CITL.

t4) a esynchronizution
BUlomatically generated
Epecification given at (3).
(5} determine whether
Frogram gatisfies user's
Tequirements, i1 requirements aren't
S8tisfied then back to any previous
Stages,
Specificatione(functional and
fontrel) opust be easy to write. easy
33 T'ead and enough eXpressive power.
1 W& choose attribute names &S &
Unctional epecification and a

are generated
components)
stored in &

retrieved and
functiconel
pttributes-

Frogram iB
Ifrom a8
Bnd

generated

— 3

tempporal logic formula as & control
specification. Hore detailed
discussions on Software Teusing aAre
in [1}.

3. ITL and CITL

ITL and Jlocal ITL Was developed
originally by Moszkowski [21. He
discuseed @pany hardware pProperties
using 4it. and proved that ITL with

locality conditions iE decidable.
Local ITL consigts of wusual sSyebols

of propositional logic and two
temporal cperators Binext) and
Liichop).

3.1. DECISION PROCEDURE FOR ITL

We can easily construct & decision
procedure for ITLI3) using tableau
method similar to the procedure for
PTLL4]:

A propositional variable F ie

decomposed into .
(P A enpty) o (F s @truel
& forpula F E& G is decomposed into
(FaG) v{F pG{F &L G)J
Using these decomposition Tules and
other usuel rules fer logical
connectivesl s . v}, wWe can transform
e given formula F into P
{Fpenpty) v (Fa@BF)
where empty is & formula defined by
egpty = G true
We can define ather
formulas gimilar to Mosckowski .
Intuitively & formula is decomposed
ipte the end of interval and the
continuation of interval.
A state treansition graph. which i= &
collection of all models to & given
formula. 4is constructed by the
procedure. We =show &an example of
state transition graph in Fig.1.

convenient

Fa g J-Hr‘!y
OO0,
T
etats transition graph
F eE G

Fig.1l
for

1060

3.2. CITL

Te extend ITL. Wwe introduce a
coenditicnal feormula. A conditional
formula is any BEXpression

coanstructed from system variables. =
ok 0 2o o and Vo

Example,

F oL Qipumi@) » 10)
is a formula in CITL and {(numiQ) >
10} is called conditional formula.

In some cases. it 15 necessary to
synchronize apong programs depending
on their dynamie situations. However
it is difficult to give such the
specification in ITL. CITL is
developed to apply such the casss,
i.e.. we evaluate conditional
formulas dynamically but other parts
are the same to the ITL.

Example.

Select P or @ depending on their
value can be expressed as

Pival(F) = valil) v Qival(Q) = val?)

We construct a state transitien graph
ignoring conditional formulas and
conditional formulas are labkeled on
the graph(Fig.2). A Transition is
made only when the labeled
conditional formulas are satisfied.
We can see a synchronization program
as ‘'transiticn graph interpreter”’,
and it is realized as a controller of
message rpassingl1].

3.3. SYSTEM VARIABLES

We construct a OQITL formula using
svstem variables. Now we prepare
fellowing system variables that

(1) valfattribute name) : means the
message received at or sent from an
specified attribute name.

(2) num{attribute name) : means the
number of messages which is received
to or sent from an specified
ATTTribute name,

(3} priorityiinteger) if some
transitions are pos=sible then execute
the stransition which has highest
Priority.

Exagpple.

Consider & keycheck progrem which
receive a list of keywords and a
Wword., It returns YES if a word is in
the list. otherwise it returns NO.
In this case, checking should not be
carried out before all keywords are
sent. Such & restriction can e
described as:

keyword ({val (keyword) & eof)~ priorityiil)

L& wordipriority(2)) LL empty

.F-""{F 'rhf:?
e ;
Cvngd J
~ OO,
ci‘a.-u:.r
g £

o

Fig.2 state transition graph
for Fleocopndl) &5 Glcondl)

4. CONCLUSICHNS

We develop a new specification
language CITL. which is an extensicn
of ITL.

Qur approach is similar to predicete
path expression(s). But cur
specification is Tbased on temporal
logic and a synchronizer is generated
using a decision procedure. 50
verification of a given specification
ie simultanecusly carried out in the
decigion procedure. In CITL. a
decision procedure is applied
ignoring conditional formulas but
other parts are verified by the
decision preocedure.

Wolrer's workl4] is closely related

to ours. lie constructe a
synchronirzation ProOgram Ifrom &
specification in ETL{extended

pPropositional tepporal logic) which
iz an extension of PTL. However his
synthesized program is CSF and no
special synchronization mechanism is
proposed o there left difficulty to
read his program. Furthermore ETL
cannat EXpress - specification
compl¥ing with dynamic situations.

ACKNOWLEDGEMENTS

The authors thank to ICOT and Dr.
Hideo Nakamura for their supports and
useful advices.

REEFERENCES

(1] N. Uchihira et al., Concurrent
program synthesis with reusable
components using temporal logic.
LPC"ET.

(21 B.C. Moszkowski. Heasoning about

Digital Circuits. Fh.D thesis,
Stanford University. 1983.

(3] M. Fujita. et al. TOKIO : Loglc
programming language based on

texporal logic and i1its ceompilation to
Frolog. ICLP. 1586.

[4] F. Wolper. Synthesis ol
communicating processes from temporal
logic specification. Ph.D thesis.

Stanford University., 1982.
[51 8. Andler. Predicate path

expressions. ACH Bth POPL. 1973,

