ICOT Technical Memorandum: TM-0476

ThM-T6

Learning General Rules with Exceptions :

An Application of Circumscription

by

J. Arima

March, 1988

CHY8E, 1COT

Mita kokusar Blde, 21F (3 A56-3191 5

|G DT 4-28 Mita -Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Learning General Rules with Exceptions:
An Application of Circumscription

Jun Arima

ICOT Research Center

Institute for New Generation Computer Technology
Mita Kokusai Bldg, 21F
4-28 Mita l-chome, Minato-ku, Tokyo, 108, Japan
Phone: +81 3 456 4365, C.Mail Address: arima%icot jp@relay.cs net

Abstract

This paper attempts to formalize a general and real type of learning, learning
general rules with exceptions. For this purpose, the circumscription technique is used,
and a new form is proposed. The possibility that our new form is collapsed into first order

logic is also discussed.

Paper length: 4000 words.
Topie: Knowledge Representation.

Keywords: Formula Circumscription.

1. Introduction

Research of non-monotonic reasoning is an attempt to formalize aspects of non-
monotonicity in human reasoning processes, Many researchers seem to have
concentrated their efforts on narrow applications. This paper proposes a new application
of non-monotonic reasoning, learning general rules with exceptions and attempts to
formalize it using formula circumscription [4]. It also proposes a new form, called
directional generalization rule, and discusses the possibility that our new form is
collapsed into first order Jogic.

McCarthy provides eircumseription [3, 4] as a form of non-monotonic reasoning,
Formula circumseription is one version of circumseription. It is a general formulation in
that a wit is minimized, whereas the earlier form minimizes some predicates. Formula
circumnscription is a powerful formulation to express non-monotonic reasoning, but in
order to utilize it, we must specify many predicate parameters. Especially, the wil to be
minimized seems the most difficult but the most important to be given, because there are
no constraints to decide it and the problem is left entirely in our hands. Moreover, to give
the wif means to select one of some types of reasoning by giving predicates the intended
interpretation. Hence, how to specify the wif is a problem. In this paper, limiting the use
of formula eircumscription in an application, it is used and specified in a generalization
rule, and it is shown that formula circumsecription is a useful approach to formalize some
aspects of learning,

The second section introduces a specialized form of formula circumscription, which is
simple and will be helpful to understand not only our arguments afier that but also what
formula circumseription can express. It is called partially directional circumseription. Its
intvitive idea is to assign the same value to entities with respect to a certain property, P,
as a certain property, A, as far as possible in the domain which satisfies a certain
property, @®. Namely, its formulation means that entities which satisfy property P
generally satisfy property A among the entities which satisfly property @. In this sense,

we say that P is directional to A inside © or P is directed to A inside @,

In the third section, partially directional eircumscription is applied to formalization
of a particular aspect of learning, learning general rules with exceptions, and a new form,
directional generalization rule, is proposed. There, a comparative binary relation on the
number of elements satisfying each property which oceurs as its arguments is introduced.
Depending on the relations, we select the directivity of P. Intuitively, the form expresses
the idea that, inside a certain domain @, most entities have a certain property P if there
are much more entities satisfying the property P than not so far as we know.

The fourth section explores how to use our new formulation and the possibility that it

is collapsed into first order logic.

2. Partially Directional Circumseription:

A Special Formulation of Formula Circumseription

To obtain a special and important class of formula circumseription, consider the
simples.t version, predicate circumscription, and consider what character the formulation
has. In learning processes, some inductive reasoning is necessary. However, predicate
circumseription is clearly not sufficient for formalizing such inductive reasoning directly,
because simply minimizing the extension of some properties cannot formalize induction
which generalizes such properties. For this reason, we try to extend predicate
circumseription. Predicate circumseription can make the extension of property P
minimal. When we consider that it makes the extension of P closest to the extension of
'false' (its extension means empty set and it is denoted by L) as far as possible, we can
extend predicate circumseription.

That is, what we want is a formulation which can give an extension of P so that the
extension will be closest to the extensions of our intended predicates. With such
formulation, it will be possible to give P the intended meaning and to realize flexible
reasoning, not only induction. Moreover, even if new information contradicts the old

result of formulation, the result is revised non-monotonically because such formulation

does not fix the extension of P to our intended extension, but simply makes the extension
closest to ours.

This is the basic idea of the formulation which is proposed in this section. However,
some refinement is still necessary. In many applications, it is necessary to change the
interpretation of P according to the properties of entities. Therefore, we propose a
formulation so that we can change the directivity of P, that is, the extension which P is
intended to be closest to, according to property @, and the formulation is called “partially
directional circumscription”.

In this paper we write t instead of a tuple of finite terms for brevity. By n-ary
predicate, we mean an expression, Ax.(a(x)), where x is a tuple of n variables and a(x) is a
formula in which x occurs free and no other variables oceur [ree. That iIs, a predicate 1s
obtained from a formula by A-abstracting all of the free variables in it.

Let P be a tuple of distinct predicate symbols, P1,-+.Pn, and ¥ a tuple of predicates,
Wi,-,%n, where Pi and Wi have the same arity. [¥/P] means a substitution,
representing [W1/P1, ,Wn/Pn)] and usually abbreviated [¥). We write a(x)['¥/P] for the
result of replacing simultaneously each occurrence Pi in a(x) by Wi. And Vx.(P(x) =

Wix))means Vx.(Plx) 2 Wix)) A Y P{x) C ¥(x)).

Dehnition | partially directional circumscriplion].
Let P be a tuple of distinct predicate symbols, and let A be a formula. The partially

directional ctreumscription of P to A inside @ is

A[P]
ANV (ALp] A Vx((D(x) D ((P(x) = Alx)) D (p(x) = Alx)))) 2 Vx.(D(x) 2 (Plx) =plxI))),
(D1)

;where @ and A are predicates in which no predicate symbols in P occur. This formula is
denoted by Pd-circum(A; P ~ A / @), and asserts that the extension of P cannot be made

closer to the extension of A inside an extension of @. That is, intuitively, it assigns the

same truth value to each entity satisfying @ with respect to P as with respect to A as far
as A holds,

In this paper, L represents a property, Ax.(false), with respect to which for all tuples
of entities the false value is assigned constantly, and similarly, T represents a property,

Ax.(true), with respect to which the true value is assigned constantly.

Proposition 1.

1) Pd-circum(A; P ~ L/ T) = Circum(A; P), where Circum(A; P) is the predicate
circumscription of P in A.

2) Partially directional circumscription is a special formulation of fermula
circumseription.

Proofs.

1) By predicate calculus.

2) Partially directional circumscription is equivalent to the formula circumscription

which minimizes the wif =(d(x) 2 (P(x) = Alx))).

Proposition 1 says that predicate circumscription is to make some predicates directional

to Malse in a whole domain,

3. Directional Generalization Hule:

a Form of Learning General Rules with Exceptions

One aim of concept learning [5), it can be considered to be to obtain some properties
which, for some set of entities, all entities have in common. Here, more generally, we
want to consider a certain type of learning, in which one aim is to obtain some properties
(or knowledge) which, for some set of entities, most entities have in common. One of the
obvious reasons why such learning general rules is important is that every rule generally

has its exceptions in itself.

After this, we consider a case that P is directional to either | or | inside P, not only
because it makes our problem simpler, but because it seems to be enough useful to
formalize such learning at present. We must still choose negative or positive directivity of
the property inside each domain. On what should the judgment depend? The key idea of
this solution is very natural. We introduce a comparative relation on the number of
elements, and, depending on it, we select the majority. We represent itas'>>"."'">>"isa
binary relation and its parameters are predicates. We say that a surpasses [and write
'‘a == [Is intended meaning is that the number of entities satisfying property a is so
much greater than the other that we can consider unknown entities to satisfy property a
rather than fi.

For all predicate a, p and y:

Axiomson "= ="

I (@>>PAPE>>7)I@>>7) (A1.1)
Il —ia>>a) (A1.2)
I (a>>AVelalx) Drx) 2 == (A1.3)
IV (ea>>=AVYe(#x) DBx) Dia >> r) (AL.4)

Next two axioms is not essential, but here, we consider these as axioms.

V aa=#=1l2(a>>1) (AZ.1)
VI bhoaz=T2(T=>aq), (A2.2)

where a = [l denotes Vx.(a(x) = f(x))and a # [denotes = Vx.(a(x) = B(x)).
Surpassing relation "> >"may be given by using a function to count up entities which
satisfy some conditions and by using some adequate evaluate functions for *>>’, or may

be given directly based on our intuitions.

Now we introduce a formulation on learning general rules. Its idea is that, in a
certain domain K, most entities have a certain property P if there are much more entities
satisfying the property than not so far as we know. We want to consider that the entities
which is shown to satisfy a certain property from flacts are all that we know satisly the
property. For this purpose, we use the following two predicates.

For some properties P! and (P}, let

ALP AV (Py(x) DP(x)) (M1)
and

AIFPI AV P(x) D TP(x)) (M2)
hald.
(M1) expresses that an extension of | P that is smaller than or equal to an extension of P,
where | P represents such an extension of P. That is, | P, expresses a minimal extension
of P, and similarly, NP1 expresses a maximal extension of P, Using these predicates, the

formulation which we want is partly as follows.
At (D) A LPyix)) == Ax(D(x) A ~IPUx)) D Pdcircum(A:P~T/d) (L1)

Ax.(P(x) AP j(x)) expresses a minimal set of entities which exist inside ® and satisfy P,
For Vx.{ = TPH(x) D —P(x)), Ax.{ $(x) A —TPI(x)) expresses a minimal set of entities
which exist inside ¢ and do not satisfy P. That is, (L1) declares that under A, P should be
directional to | inside & if there are more entities satisfying P than not inside ® so far as
we know. Of course, it means that most entities satisfying @ have a property P and,
hence, anything that has a property @ should be considered to have the property P if there
is nothing in knowledge A that prevents it from doing so.

Here, we use a simpler form of (L1). If we substitute TP for p in Pd-circum(A ; P ~ T/®),

in the result Pd-cireum(A; P~] /@) is

AlP)

AATPI A V(D) D (P(x) D TPx)) D Va(P(x) D (Plx) =TPIx))). (L2)

A[P] and the antecedent of remaining part of (L2) follows from A and (MZ2). Consegquently,

we can obtain a simpler form of (L1),

Ax.(Dix) AP x) =22 e (D) A TP) D Ve(D(x) D(Plx) = TPlx)). (L3)

With respect to ‘Ax.{ P(x) A ~TPUx) == Ax.(P(x) A (P)(x)), we can similarly obtain

Ax(D(x) A TP Ix) > = Ax.(Dlx) AL Py(x)) D Ve (dix) D (Plx) = | P)x}) (1.4)

Wow from A, (M1), (M2), (L3) and (L4) we can get a form of learning general rules with

exceptions,

A[P]
MYLP) TP
ANP AV Pyx) 2 Px))
AA[TPI A Vx.(Plx) DTPYx))
D {Ax (P A P(x) =2 Ax(D) A TP x)) D= (D(x) 2 (P(x) = TPx))}
A @ix) A = TPI(x) > > Ax(@) A LPx) 2 Ve(P(x) D (Plx) = (Py(x))
). (D2)

We refer to this form as the directional generalization rule and this is denoted by

Directional-G(A; P/ &),
Example 1:
In a DB with (F1), three birds, tweety, jack and p-suke are registered, and the

information, “p-suke cannot fly" is given. This may be represented as follows:

Bird(tweety) A Bird(jack) A Bird(p-suke) A = Fly(p-suke). (E1.1)

Also, assume that enough information including (A1.1~4) and (A2.1~2) on surpassing
relation ‘> =" is given. That is, assume the following knowledge except for the above

basic axioms:
Ax (x=tweety) < < Ax.(x=jack v x=p-suke)
A dx(x=jack) < < hx.(x=p-suke v x =tweety)

MAx (x=psuke) < < Ax.(x=tweety v x=jack). (E1.2)

Mow consider this with respect to Fly. In this case, 1 clearly satisfies the condition of

(Flyas (Pyin (M1), and Ax.(—x=p-suke) for TFly1{. Therefore, using (E1.1),

Ax.(Bird(x) A Fly(x)) = 1, (E1.3)
Ax.(Bird(x} A =TFly Y (x)) = Ax.{x=p suke). (E1.4)

Now from (A2.1)

Ax.(x=p-suke) >> L (E1.5)

follows. So, using (E1.3)~(E1.4) and Directional-G(A; Fly / Bird), it gives

Vx.(Bird(x) D = Fly(x)). (E1.6)

t How to compute these generally is beyond the scope of this paper. However, Lifschitz proposes
g useful way in the case that a givenformula satisfies a certain class{2]. And next section will
show a solution based on the Lifschitz’s way,

This result shows generalization of knowledge. From (E1.4) and (E1.1) we can see that
both Tweety and Jack may not he able to fly.

Now, we add new information to the DB, “Tweety can fly (Fly(tweety)). Then (Fly, is
hx.(x=tweety) and Fly?is unchanged. Under this circumstance, we cannot obtain either
‘Ax.(Bird(x) A (Fly(x)) > > hx(Bird(x) A =TFly(x))' or ‘Ax.(Bird(x) A ~IFlyl(x)) > >
hx.(Bird(x) A (Fly (%)), Hence, (E1.4) is not a theorem of the DB any more. However, if
the DB also knows “Jack can fly (Fly(jack))", the theorems will change more
dramatically. In this case, using (E1.2) Ax.(Bird(x) A (Flyy(x)) => Ax.(Bird{x) A
~ I Fly(x)) follows. Therefore, the directivity of ‘Bird’ changes and using Directional-G{A

A Fly(tweety) A Fly(jack); Fly / Bird),

Vx.(Bird(x) 2 (Fly(x) = - x=p-suke) (E1.4)

is obtained. This means “P-suke is the only bird that cannot fly,” P-suke comes to be

considered to be abnormal with respect to flying inside the world of birds.

4. An Application to is-a Hierarchy and Consideration on a First Order Formulation

Consider a simple example of an is-a hierarchical system.

Example 2.
Let A be

(@ =D V¥x.lalx) D B(x)) AP >>a), forallpredicate aandf, (E2.1)
/v 3parrow = Bird (E2.2)
A Penguin = Bird (E2.3)
A Bird = Animate (E2.4)
M Reptilian = Animate (E2.5)
M = 3x{Sparrow(x) A Penguin(x)) (E2.6)

M dx(Bird(x) A Reptilian(x])) (E2.T)

AVx (Sparrow(x) D Fly(x)) (E2.8)
A ¥x.(Penguin(x) 3 — Fly(x)) (E2.9)
AW (Reptilian(x) O —Fly(x)) (E2.10)
A Sparrow > > Penguin (E2.11)
A Reptilian > > Bird, (E2.12)

where the intended meaning of binary relation = is‘is-a’.

Now, let us consider the general rules with respect to Fly inside each class of this
hierarchical system. As we define the interpretation of Fly using directional
generalization rule inside each class, the obtained definition of Fly inside a class must
influence definition of Fly inside other classes which are obtained later. We define Fly
from lower class to upper (from leaves to root), then we can obtain natural results. In this

example, if we define Fly inside Animate previously to inside Bird, we obtain

Wx. (Animate(x) A —Sparrow(x) DFly(x)). (E2.14)
However, rather than (E2.15), we prefer

Vx. (Animate(x) A —(Bird(x) A —Penguin(x)) DFly{x)) (E2.15)
as a result in which we generalize a rule with respect to Fly inside Bird previously and
then using the rule obtained we generalize it inside Animate. llence, we must use the
directional generalization rule in the following way:

Directional-G{Directional-G(-+ Directional-G(A; P/ Cy) - ; P/ Cp)i P/ Cp), (01.1)

which is denoted by Directional-G{A; '/ Cy, -, Cpn.1, Cn). That is,

Directional-G{A; P/ Cy, =, Cp1, Ch) = Directional-G(Gn; P/ Cn), (01.2)

where Gg = A, Gj = Directional-G(G;.;; P/ Ci1)and ~(Ci = Cjl¢1 = =) We refer te
Directional-G(A; P/ Cq, -, Cp.1, Cpn) as the priorifized directional generalization ruie,

An unsatisfiable point of this formulation is on computational aspects. Directional-
G(Gi; P / Ci) is expressed by second order logic and unfortunately Directional-G{A; P /
C1, =+, Cn-1, Cn) become more complicated. Then, let us try to collapse these formula ions
into first order logic, giving some constraints to given formulas. The basic idea is this: the
essential reason for second order logic formulation is that there are some candidate
properties of (P (or IP1) based on their minimal (or maximal) models with respect to P.
Therefore, if there exists the minimum (or maximum) model (considering logically
equivalent models as one model), there exists the only candidate of (P (or TPT) and we
can handle | P, (or, TP7) as a constant property. That is, we assume that a set of entities
which we know satisfy P corresponds to a minimum extension of P which satisfy given

facts, Now we revise our formulation, (M1), (M2) with respect to | P and 'Pin this sense

as follows:

ALPIA YD, (Alp] 2 Vx, (P (x) D plx) (M17)
and

A[TPIIAVYp. (Alp] D Vx. (p(x) D TP x)). (M2

We refler to such a predicate, (P, as a minimum candidate predicate (abbreviated
min.c.p.}of Pin A and to 'P1 as a maximum candidate predicate (abbreviated max.e.p.) of
Pin A,

Now, let us consider the maximum model in more detail.

Proposition 2 (logically uniqueness of min.c.p. and max.c.p.L.
On the premise of a given formula, A, for any predicates, pl and pZ2,

1) Alpl] A Yp. (Alp] 2 Vx. (plix) 2 p(x)))

AATp2) A Vp. (Alp] O Vx. (p2(x) D plx))}

2 Wx. (plix) = p2(x)) (P2.1)
2)A[p11AVp. (Alp] D Vx. (p(x) D plix))
A Alp2] A Vp. (Alp] D Vx. (p(x) D p2(x)))

O Vx. (pl(x) = p2(x)) (P2.2)

P'roof. By predicate calculus.

Proposition 2 says that if there exist a predicate that satisfy (M1’) (or (M2’)) any

predicates satisfying (M1") (or (M2") is logically equivalent to the predicate.

Theorem 1.a.

On the premise of a given formula, A, for any property, (P}, in which no predicate in
P oceurs,
1) Vx. (| Py(x) D P(x)) D Vp. (Alp] D ¥x. (| Pi(x)D p(x)))
holds, and
2) there exists a minimum model of A with respect to P if there exists | P, such that
ALP] A= (| Py(x)D Pix)) holds.
3) P isamin.cp. if A[LPJ] A ¥x. ((P(x)2 P(x)) holds.
Proof.
1) Assume A Vx. (| Py(x) 2 P(x)) A Alp] for some (P, and p. Using Kleene's theorem [1],
Alpl - ¥x, (| Py(x)2 P(x))[pl. Here, no predicate in P occurs in (P, therefore, | P [p]l=1P.,.
So, Alp] = ¥Vx. (Py(x)Dp(x)). From thisand A = Alp], A = Vx. (\Piy(x)2p(x)).
2) Using this assumption and 1), A[{P)] A Vp. (Alp] 2 Vx. (| Pj(x) D p(x)) follows. A model
M in which the extension of P’ is equivalent to the extension of | P is minimal with respect
to P for all models.
3) Using this assumption and 1), and predicate calculus.
Theorem 1.b.

On the premise of a given formula A, for any property, TP, in which no predicate in P

oCcurs,

1) V. (P(x)D TPI(x)) 2 Vp. (Alp] D Vx. (p(x) D TP Hx))

holds and

9) there exists a maximum model of A with respect to P if there exists [Pl such that
AITPT] AWz (P(x)D TP)(x)) holds..

3) P1is a max.c.p. if A[TP7] A Wx, (P(x)D TP)x)) holds.

Proof. Similarly for Theorem 1.a.

If we restrict (P and TP1 to predicates such that no predicate in P occurs in the
predicates, we can leave out second order formulas Vp. (Alp] O ¥x. ((Py(x)D p(x)) and Vp.
(Alp] D Vx. (p(x)D TPUAx)) from (M1') and (MZ'} using Theorem 1, and we can also omit
the second order guantifiers in (D2) using Proposition 2. Therefore, our new

formulation, first order directional generalization rule, is

AlP]
A Ex) A (P)(x) > > hx(K(x) A TP D V. (Kix) D (P(x) = TPi(x)))
A Gkl K A =TPI(x) > > A K(x) A (Pax) D Ve (K(x) 2 (Plx) = (Py(x))
), (D3)

where | Pjis min.c.p. and TP7is max.c.p. in which no predicate in P occurs.
It can be easily shown to there exist such |Pj and TP7 for a certain class of given formulas.

Next, we show this.

Definition [independently separable formulal.

A formula, A, is an independently separable formula of P if A can be transformed into the
following form,

U A Vx.(L(x) D P(x)) A Vx.(P(x) 2 G(x)), (D4)

where no predicate in P occurs in U, L{x) or G{x).

Proposition 4,

If a formula, A, is a independently separable formula of P, there exist a min.c.p. and a
max.c.p.in which no predicate in P occurs.
Proof. Let A be eguivalent to' U A ¥x.(L{x) 2 P(x)) A Vz(P(x) 2 G(x)). Then L is a
min.c.p. and G is a max.c.p. in which no predicate in P occurs..
Propaosition 5.

If both A and B are independently separable formulas, A A B is also an
independently separable formula.

Proof. By predicate calculus.

Now, if a given formula, A, is an independently separable formula, by the way shown in
the proof of Proposition 4, both a min.c.p. and a max.c.p in which no predicate in P occur
are easily obtained. And, mareover, the first order directional generalization rule is also
an independently separable formula by Proposition 5. Therefore, the prioritized

directional generalization rule can be collapsed into first order logic.

Example 2 (continued).

From the definition of prioritized directional generalization rule,

Directional-G(A; Fly / Bird, Animate) (E2.16)
= Directional(Directional-G(A; Fly/ Bird); Fly/ Animate) (E2.17)

Here, A is an independently separable formula. So, we can easily find that a min.c.p. of
Fly in A is Sparrow and a max.c.p. of Fly in A is Ax.—(Penguin(x) v/ Reptilian(x)) by the
way shown in the proof of Proposition 4. Therefore,

Directional-G(A; Fly / Bird) (E2.18)

A
A (Ax.(Bird(x) A Sparrow(x)) > > Ax.(Bird(x) A (Penguin(x) \/ Reptilian(x}))

5 Vx.(Bird(x) D (Fly(x) = = (Penguin(x) \/ Reptilian(x)})
A (Ax(Bird(x) A (Penguini(x) v Reptilian(x))) > > Ax.(Bird(x} /A Sparrow(x))

2 Vx.(Bird{x) D (Fly(x) = Sparrow(x)})) (E2.19)
= A AVx(Bird(x) A —Penguin(x) 2 Fly(x)) (E2.20)

Similarly, a min.c.p. of Fly in Directional-G(A; Fly / Bird) is Ax.(Bird(x) A —Penguin(x))

and a max.c.p. of Fly is Ax.(Penguin(x) \/ Reptilian(x)). Therefore,

Directional-G(A; Fly / Bird, Animate) (E2.21)
A

M Yx(Bird(x) A = Penguin(x) D Fly(x))

AV (Animate(x) A —(Bird(x) A S Penguin(x)) 2 - Fly(x)) (E2.22)

4. Conclusion and Remarks

In the example 2, assume that all that we know about foo is that foo is a bird and we
want to know whether foo can fly or not. In this case, we may need introduce predicates
allowed to vary in our formulation like parallel circumseription[2]. Other solution
without introducing such predicates is to add
Ax.(x =foo) = Bird
and necessary formulas which expresses that Ax.(x=foo) is disjoint to some other classes
like (E2.6).

Partially directional circumscription can be easily extended to its more general

version based on formula circumscription,

A[P]

ANpLA[p] A Vx.((P(x) D ((E(x) = A(x)) D (Elplx) = A(x))
3 Wx((x) 2 (E(x) =E[pl(x))),

where wiT E means some concepts, expressing the property which we want to generalize.
We hope this research extends the sphere of interest of researchers in non-monotonic
reasoning and serves as a new stimulus to machine learning, analogy and inductive

inference.

ACKNOWLEDGMENTS

I would like to thank Dr. Koichi Furukawa and Mr. Hirohisa Seki for their useful comments,
Also, I wish w0 express my gratitude to Dr. Kazuhire Fuchi, Director of the ICOT Research Center,
who provided me with the opportunity to pursue this research.

REFERENCES
[1] Kleene S.C.: Introduction to Metamathematics, North-Helland, 1971, CH. VL.
[2] Lifschitz,V.: Computing eircumseription, in: Proceedings of Ninth International Joint Conference
on Artificial Intelligence, Los Angeles, CA (1985) 121-127.
[3] McCarthyJ.: Circumseription - a form of non-monotonic reasoning, Artificinl Intelligence 13
(1980) 27-39.
[4] McCarthyJ.: Application of ecircumscription to formalizing common-sense knowledge, Artificial
Intelligence 2B (1986) 89-116.
[5] Cohen,P.R. and Feigenbaum E.A.: The Handbook of Artificinl Intelligence, Vol. 3.

