ICOT Technical Memorandum: TM-0422

I'M-0422
Introduction to CAL({Extended Abstract)

by
K. Sakai & A. Aiba

December, 1987

1987, 1COT

Mita Kokusal Blde 21F 04 456-3191 5

|G DT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

P— P —

Introduction to CAL
(Extended Abstract)

KO SAKAT and AKIRA AIBA
Institute for New Generation Computer Technology
21F, Mita IKokusai Building,
4-18, Mita 1-Chome, Minato-ku, Tokyo 108, Japan

December 4, 1987

Abstract

Constraint logic progeamming (CLP) is an extension of logic programming by introducing
the facility of writing and solving constraints in a certain domain, CAL (Confrante avec
Logique) 15 a CLP language in which (possibly non-linear) polynomial equations can be
written as constraints, while almost all the other CLP languages proposed so far accept only
linear equations. The Buchberger algorithm to obtain Grébner bases has been adopted as
the constraint solver in the CAL interpreter.

1 Introduction

A number of extensions of logic programming languages have been proposed. One g jur Ltrend is
to try to introduce specific computational power in certain domains such as algebraic treatment
of mathematical formulae. This kind of extension can be summarized by a common keyword
“constraint™,

With respect to constraint logic programming (CLP), which is an amalgamation of constraint
and logic programming, there is an important language scheme called CLP(X), proposed by
Jaffar and Lassez [6]. A system named CLP(R) was implemented in Monash University as its
instance [4]. CLP(R) handles linear equations and inequations as constraints. There is another
important CLP lauguage with algebraic constraints: Prolog III of Colmerauer [2]. Tn Prolog III,
the user can write not only linear constraints on rational numbers, but also Boolean and other
constraints.

This paper describes a CLP language named CAL (Contrante avee Logique) and its future
extensions. Since the current CAL interpreter employs the Buchberger algorithm to compute
Grabner bases of equations as its constraint solver, it can handle non-linear polynomial equations
as well. This makes CAL very powerful and flexible.

At present, CAL can run in DEC 10 Prolog on DEC2060. The system is being transferred
into ESP on the PSI machine now. We also have a modified version of CAL that can solve
Boolean equations. This Boolean CAL has an algorithm to compule Boolean Grébner bases of
Boolean equations as its constraint solver instead of the original Buchberger algarithm.

As a [uture extension, we will introduce types into constraints to select the solver correspond-
ing to the type of constraints automatically. Moreover, we will prepare a facility to incorporate

user-defined constraint solvers.

2 Constraints in CAL

The meaning of the word “constraint™ depends largely on the context. In CAL, it means an
arbitrary algebraic equation in the form of a polynomial. The CAL constraint solver solves these
constraints incrementally, that is, constraints in CAL are active according to the terminology
of Dincbas [3]. If constraints contradiet each other, the contradiction is detected as early as
possible. This saves a lot of computing time if there is a failure. Moreover, even if information
obtained from the given constraints is insufficient to determine the values of all the unknowns,
relations between the unknowns can be obtained. Althongh constraints in the form of inequations
are not allowed in the current system, they can be added easily by being treated as passive
constraints [3].

In CAL, there are two kinds of terms; Prolog terms and the terms occurring in constraints
(polynomials). The equations between Prolog terms are handled by unification as is usual in
Frolog, and those between polynomials are treated only by the constraint solver.

3 Buchberger algorithm and Griébner bases

Buchberger [1] introduced the notion of Grébner bases and showed an algorithm to compute
a Grobner base of a given system of polynomial equations. His algorithun lhas found many
applications in computer algebra over the last few years. The CAL interpreter regards a Grobner
base ol & system of polynomial equations (constraints) as its solution. TLis section summarizes
the theoretical background of Grébner bases and the Buchberger algorithm.

We can assume that a polynomial equation has the form p = 0 without loss of generality.
Let £ ={p =0,...,p. = 0} be a system of polynomial equations. Let I be the ideal generated
by {P1....,Pa} in the ring of all polynomials. There is a close relation between elements of T
and solutions of &, which is proved easily by the Hilbert zero point theorem [3].

Theorem 1 Let p be a polynomial. Fvery solution of E is a solution of p = 0 if and only if
some power, P, 15 in 1.

Moreover, the following corallary of the above theorem is very important to detect inconsis-
tency of constraints,

Corollary 1 F does not have any solution if and enly f 1 € T,

Now the problem of solving constraints is reduced to the membership problem of the gen-
erated ideal. Buchberger gave Lthe following algorithm to determine whether a polynomial is a
mermber of the ideal.

Suppose that there is a system of algebraic polynomial equations (constraints). Each equa-
tion can be viewed as a rewrite rule which rewrites the maximum monomial to the rest of the
polynomial under a certain ordering between monomials. For example, under the lexicographic
ordering between monomials, the polynomial equation a4z —z = b can be viewed as the rewrite
rule # — » — b+ a. When the left hand sides of two arbitrary rewrite roles are not mutually
prime, these two rules are said to overlap. In such a case, the least common multiple (LCM) of
their left hand sides can be rewritten in two ways, but the result, called a critical pair, might
not converge by further rewriting. Namely, their irreducible forms may be different. In this
case, Lhis pair is added to the system of equations. Repeating this process eventually yields a
confluent. rewriting system. This confluent system is called Grobner bases of the original system
of equations. The following theorem [1] states the relation between ideals and Gribner bases.

Theorem 2 Let i be o Grobner base of a system of equations {p; = 0,...,p, = 0} and I be
the ddeal generated by {py,...,pa}. Then a polynomial, p, is in I if and only if p is reduced to
by 12

The following is a rigorous definition of the Buchberger algorithm. Let E be a set of equations
and K be a set of rewrite rules. Hy the algorithm, the Grobner base of E is obtained in R in
the form of rewrile rules.

1. Sel B — 5.

2. For each equation { = r in E, simplify ! — r by rewrite rules in R and ordinary algebraic
and arithmetic siinplifications. Let ¢ be the result. If € = 0, then delete the equation ! = r
form £. (Otherwise, replace [= r in F with the cquation € = 0.

4. If £ = ¢, then terminate.
4. Select an equation ¢ = 0 from E.

G. Let IY be the maximum monomial in ¢ under a certain ordering. Then solve ¢ = 0 with
respect to I, and obtain the equation I' = '

Add a rule I' — +" into R.
Create all the critical pairs among rules in # and add them as equations into E.

Goto 2,

E

4 Execution of a CAL program

The execution of a CAL program is illustrated by an example. As explained in the previous
section, a feature of CAL can be seen when constraints are non-linear. The following is an
example of proving a geometrical theorem; the four midpoints of the edges of a quadrangle form
a parallelogram. The program is as follows:

mid(AX, AY, BX,BY,CX,CY) : —
AX 4+ CX = 2% BX,
AY + CY = 2 & BY.
paralAX, AY,BX,BY,CX,CY, DX, DY) : —
(AX - BX) % (CY — DY) == (AY — BY) + (CX — DX).

The above clauses state the conditions for midpoint and parallel. The clanse “mid” states
that the point (BX,BY) is a midpoint of the segment (AX,AY)-(CX,CY). The clause “para”
checks whether the segment (AX,AY)-(BX,BY) and the segment {CX,CY¥)-(DX,DY) are parallel.
The symhal == in the body of this clause denvtes the predicate which checks the equality of
its right and left hand sides under the current collection of constraints. This is obtained by
transforming the following equation:

AY — BY CY = DY

AX — BX CX —DX

—

representing the equality of the tangents of the two segments.
Ta prove the above problem by this program, the following goal sequence should be evaluated:

7= mid(0,0,x4,y4.x1,¥1).
mid({xi,y1, x5, v5,x2,y2),
mid{x2,y2,x6, y6,x3,0),
mid(x3,0,x7.0,0,0),
para(x4,y4, x5, y5,x7,0,x6,y5),
para(x4,y4,x7,0, x5, y5,x6,y6).

Refer to the following figure for the coordinates.

e

(x1,¥1)

(0,0} (x7.0) (x3,0)

Figure 1 Courdinates for a Geometric I'roblem

The above goals are evaluated as follows:

1. A goal mid(0,0,x4,y4,x1,y1) is unified to the head of a clause for mid. Then the con-
straints O+x1=2%x4, and O+y1=2#y4 are obtained.

2. A goal mid(x1,y1,x5,y5,x2,y2) is unified to the head of a clause for mid. Then the
constraints x1+x2=2+x5, and y1+y2=2+y5 are obtained.

3. A goal mid(x2,y2,x6,y6,x3,0) is unified to the head of a clause for mid. Then the
constraints x2+x3=2#x6, and y2+0=2+y6 are obtained.

4. A goalmid(x3,0,x7,0,0,0) is unified to the head of a clause for mid. Then the constraints
x3+0=2#xT, and 0+0=2%0 are obtained.

5. At this moment, the obtaining constraints are as follows. Note that they are simplified.
x1=2%x4
yl=2%y4
x1+x2=2%x5
yl+y2=2%y5
x2+x3=24x6
y2=2=y6
x3I=2=xT

6. A goal para(x4,y4,x5,y5,x7.0,x6,y6) is unified to the head of a clause for para. Then
the equation (x4-x5)#(0-y6) == (yi4-yE)#{(xT-x6) is checked under the constraints ob-
tained so far. Both sides of this equation are simplified to x2+y2 by the current Gribner
base. T'his equation holds under the constraints,

7. A goal para(x4,yd,x7,0,x5,y5,x6,y6) is unified to the head of a clause for para and the
aquation {(x4-x7)e(y5-y6) == (yd-yS5iw(xT=-x6) is checked. Doth sides of this equation
are simplified to y1+(x1-x3), and therefore the equation holds.

During execution of CAL programs, each encounter with a constraint causes invocation of
the constraint solver. If the new constraint is proved to he inconsistent with the previous ones,
the exccution fails and backtracks.

The above example uses Grithner bases indirectly via the predicate ==, The following is an
example of using Grobuner bases of constraints directly.

horseandman(Horses, Men, Heads,Lege) : —
Heads = Horses + Man,
Legs = 2 + Man + 4 = Horses.

This program solves the Horse-and-Man problem. Let horseandman(H,M,5,14) be a goal.
Then a Gribner base of the constraints given in the body, i.e. {Horses = 3,Man = 2}, is com-
puted and displayed.

5 Configuration of the CAL interpreter

The interpreter for CAL consists of three modules; preprocessor, inference engine, and constraint
solver. These modules are related as shown in the following figure.

(AL source
User Preprocessor

Result } CAL internal form

Inference engine

Constraint } 1 Solution

Constraint solver

Figure 2 Configuration of the CAL interpreter

CAL source programs are received by the preprocessor and transformed to the corresponding
internal forms. They are then passed to the inference engine and stored in the system.

CAL goals are received by the inference engine and translated into the internal forms. They
are then executed immediately according to the CAL program currently stored in the system.
When the execution is suecessfully terminated, the result is displayed on the terminal.

Whenever a constraint is obtained during the execution, the constraint solver is invoked to
solve it. The constraint solver computes a new Grobner base from the new constraint and the
old Grébner base for the previcusly obtained constraints,

6 CAL for Boolean expressions

The previous sections discussed the original CAL for algebraic polynomial equativns in the
domain of all rational numbers {or, more precisely, all algehraic numbers). We implement
a madified version of CAL, which accepts Boolean expressions as constraints whose typical
domain is the set of the truth values. Its constraint solver uses a somewhat different algorithmn
from Buchberger's original algorithm to abtain Boolean Grébner bases. The precise definition of
Boolean Grobner bases and some theoretical considerations are in preparation for publication.

This version of CAL makes it very easy to write programs that require logical evaluation.
For example, writing a program which verifies logical circuits will be easy.

7 Future extensions

At present, we have several plans to extend the facilitics of CAL. In the current version of CAL,
the {virtual) value of each variable in constraints can be any algebraic number, i.e. a complex
number which can be a solution of a polynomial equation with integer coefficients. However, if
it is known that the value of a certain variable can only be a real number, then a contradiction
is immediately detected from constraints such as #* + 1 = 0. Thus, if there were a powerful
constraint solver with knowledge about the smaller domain, the computation time might be
reduced significantly.

Oune may want to write non-algebraic constraints such as sin(X) = 1 and €* = 7. In this
case, we might have to widen the domain to the set of all complex numbers,

There must be a wide variety of these kinds of requirements in writing and solving constraints.
The only thing we can do to satisly these requirements is to make the constraint solver completely
open and customizable. In this policy, the system is designed to allow users to redefine the
constraint solver for their own purpose, for example, new types of constraints, other domains,
and efficiency. In this sense, the two versions of CAL described above are different instances of
the same language scheme. Because of this, the constraint solver can work almost independently
of other modules in the system,

The first plan of the extension of CAL is to allow the user to write constraints for different
domains in the same CAL program. For example, suppose that one constraint is for 2 Boolean
value and the other is for an algebraic value. In this case, the system should pass the constraints
to the corresponding solver. That is to say, a Boolean constraint should be solved in the boolean
solver, and an algebraic constraint shomld be solved in the algebraic solver. To recognize the
corresponding solver Lo each constraint, we are now planning to introduce types to constraints.
In fact, types will be assigned to the parameters of cach predicate. Suppose that the predicate
p has the type boole % algebraie and the following clause is given:

pl= X, ¥+1} - ...

If the goal p{a, b*c) is given, it is matched with the head of the above clause, and the
constraints = & = a and Y+i=b*c are passed to the hoolean solver and the algebraic solver,
according to the assigned types.

We can imagine a more complicated situation. For example, let X be an algebraic number,
and let 4 and B be vectors of algcbraic numbers. To solve constraints such as X + 4 = A
and (A, B) = 0, where (A, B) denotes the inner praoduct of A and B, the vector solver and
the sealar solver prohably have to cooperate with eacl other. Therefore, there may be cases in
which interface among constraint solvers is needed. lowever, we helieve that this problem can
be solved within user-defined constraint solvers, and will not cause a modification of the overall
design of the CAL system itself.

References

{1] B. Buchberger. Grobuer bases: An Algorithmic Method in Polynomial Ideal Theory. Tech
nical Heport, CAMP-LINZ, 1983.

[2] A. Colneraver. Opening the Prolag Il universe: A new generation of Prolog promises some
powerful capabilities. BYTE, 177-182, August 1957.

[3) M. Dincbas, H. Simonis, and P. Van Hentenryck. Ertending Equation Solving and Constraint
Handling in Logic Programming. Technical Report TR-LP-2203, ECRC, February 1987,

[4] N. Heintze, J. JafTar, C. §. Lim, 5. Michaylov, P. Stuckey, R. Yap, and C. N. Yee. The C'LP

Frogrammer’s Manual, Version 7.0, Department of Computer Science, Monash University,

1986. Internal Memo.
[5] D. Hilbert. Uber die Theorie der algebraischen l'ormen. Math, Ann., 36:473-534, 1890,

[ﬁ] J. daffar and -1, Lassez. Constraint Logic Programming. Technical Report, IDM Thamas
J. Watson Research Center, 1986,

