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Inferring Parsers of Context-Free Languages from Examples
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Abstcact We consider a grammatical inference of context-lree languages from their structurai descriptions. In

the context of inferring parsers, the sitructnre of the grammar inferred is significant. The structure of context-fres
languages is described by the shapes of derivation Lrees. We will present an efficient inductive inference
algorithm for parsers such that a grammar (or parser) inferred by the algorithm 15 ol only a correct grommar

which correctly generates the language but alse assign a correct structure on the sentences of the language

L. Introduction

In this paper, we will study inductive inference
of parsers (or grammars) of context-free languages
from examples of their structural descriptions.
The problem of identifying a “correct” grammar
for a language from finite examples of the
language is known as grammatical inference. In
the context of grammatical inference, a “correct”
grammar only means a grammar which correctly
generates the language. However when we
consider the problem of identifying a parser for a
languape, the structure of the prammar identified
Consider the following
example., The grammar Gy below describes the
set of all valid arithmetic expressions involving a
variahle “v" and the operations of multiplication
*«" and addition “ 4.

is more significant.

S 5—E
55— Av E—~F
Aoyt E—F<+E
A—wix F—w
A——v+A F—vXF
A—uxA

G} (Gz)

However the structure assigned by grammar G
to sentences is semantically meaningless. The
same language can be described by grammar G2
helow in a meaningful manner. Here the phrases
are all significant in terms of the rules of
arithmetic. Although G| and Gz are weakly
equivalent, this fact is not very relevant from a
practical point of view sinee it would be unusual to
consider a grammar such as Gy which structures
sentenees in a nonsignificant manner.

Thus in the context of inferring a parser, since
a grammar is intended for use in a practical

sttuation entailing the translation or
interpretation of sentences as in a compiler, it is
necessary that a grammar inferred must not only
generates the unknown language, but also assign
a meaningful structure on the sentences of the
language, To do so, it is oecessary lor us to
assume that information on the structure of the
language is available to the inference algorithm.
In the case of context-free languages. the
structure of the languages is usvally described by
the shapes of the derivation trees. Such structural
descriptions are called skeletons. A skeleton is a
kind of tree whose interior nodes have no label,

On the other hand, the set of derivation trees of
a context-frec lapguage is rational, where a
rational set of trees is o set of trees which can be
recognized by some tree automaton. Furthermore,
the set of skeletons of a context free grammar is
also rational. Based on this fact, the problem of
inductive inference of parsers of context-free
Ianguages from the sentences and structures is
reduced to the problem of inductive inference of
tree automata. Then we can get an efficient
inductive inference algorithm for parsers of
context-free languages which is extended from vae
for automata [1]).

2, Basic definitions of tree

Definition Let N denotes the set of positive
integers, Dom is a tree domain iff it satisfies that
{a) DomcN* and Dom is finite, (b} Dom is prefix-
eloged, i.e. if m, neN* and mneDom then meé Dom,
i¢) ni¢Dom implies njeDom for 15j=i, jeN. A
direct successor {direct predecessor) of a node x is a
node y, where y=xi (yi=x) for i¢eN. A terminal
node in Dam is one which has no direct successor.
The frontier of Dom, denoted frontierfDom), is the



set of all terminal nodes in Dom. The interior of
Dom, denoted cnteriorfDom), is Dom —
frontier{Dom),

A ranked alphabet ' is a finite set of symhbols
associated with a relation recI'%{0,1, 2,... m}. For
each n=0, the subset {acI" : (n, nj¢r } is denoted by
[Cn. A tree over [ is 2 mapping t : Dom—T, which
labels the nodes of the tree domain Dom. We
require the following condition : if t{m)=fel'y,
then for i¢N, mi¢Domit) iff 1Z2i=n. I'T denote the
set of all trees over I'. Let t=flty,...,t;) be a tres
over I, The replacement of terminal nodes labeled
cél’ with a tree u iz defined as tle—u)={(m, x) :
tim)=x and x=¢c} U{(ni, x) : tinl=¢, wlil=x and
ieDomfu}}. Let § be a new symbol of arity 0. ['g7
denotes the subset of (TU{$})T which is the set of
all trees te(TU{3}T such that t exactly contains
one $-symhol. For trees te['™ and 563", we define
an operation “#" to replace the node labeled § of 5
with t by s#t=3(St),

Definition [4] A skeletal alphabet Sk is a ranked
alphabet consisting of the singleton {0} of the
special symbol o associated with a relation
rgC folx{1,2,...m}. A skeleton over an alphabet A
isa mapping s : Dom—AUSk where o is notin A,
mapping frontier{Dom} to A and interior{Dom) to
Sk. Let t be a tree over . The skeletal {or
striuctural) description of t, denoted s(t), is a
skeleton over T'y such that

#(%) = t{x} forxéfrontier{Dom)

=g  for x¢interior{Dam),

Let T be a set of trees. The corresponding sheletal
set, denoted 57T, is S(T)={s(t}: tisin T}.

3. Tree automaton and context-free grammar
Definition A deterministic (frontier to root) tree
automaton over I' is a 4-tuple To=(qQ, I, §, F),
where (a) @ is a nonempty finite set of states,
{b) T is & nonempty finite ranked alphabet,
(e) B=(8p,61,....0m) is a state transition function
such that By : [y X (QUI)* —Q (k=1,2,....m),

and Ggla)=a for ac [y,
(d) FcQ is the set of final states,

If 6 is a state transition function from
M (QUIg)k to 2%, then Ta is nondelerministic,

& can be extended to [ by letting : S(flty,....te))
=B8g(F, 8(ty},....5(t)). The tree t is accepted by Ty
iff 8{t)eF. The set of trees accepted by Ty is the
subset L{T 4) of T'T defined as ; L{Ta)={t: 8L} F}.

In this definition, the labels on the frontier are

taken as “initial” states.
Definition A context-free grammar is denoted
G=(N, L, P, 8), where N and T are alphabets of
nonterminals and lerminals respectively such that
NnE=@. P is a finite set of productions: cach
production is of the form A — a, where A iz a
nonterminal and a is a string of symbols from
{NUE)*. Finally, 8 is a special nonterminal called
the stari symbol. We define two relations = and
=" between strings in (NUI)*. If A— is a
production of P and a and y are any strings in
(NUE), then cAy=afly. =" is the reflexive and
transitive closure of =. The lenguage generated
by G, denoted L{G), is {w : wis in E* and S=*w}.

G=(N, I, P, 5] is called a wide-sense context-
free grammar if G is an usual context-free
grammar but may have more than one starting
symbaol.

For A in NUE, the set Dai(7) of trees over
NUE, called a derivation tree of 3 from A, is
recursively defined as :

DuplG)={a} forA=ack,
={Alt),...tk) : A=By~-By, tieDg (G)
(l=i=k)} for AeN.
For the get Dg(G) of derivation trees of G from the
gtart symbol 5, the S-gubscript will be deleted,

Definition Two context-free grammars Gy and
Go are said to be equivalent if LIG1=LiGe). Gy
and Gg are said to be structurally equivalent if
S{DNG | )) =5(DIG2h.

For each wide-sense context-free grammar G,

there is a context-free prammar G’ with a unique
start symbaol sueh that G’ is structurally
equivalent to G.
Definition-A Let G=(N, L, P, 3) be a wide-sense
context-free grammar. The corresponding
{nondeterministic) tree automaton Ta(G)=1(Q,
SkUE, 8, Flover SkUE ig defined with (1) state set
Q=N, (2) for each production of the form
A—Bj--By, the transition 8, : Sk, X (QUEI"—Q as
Snlo, By,...By)=A, and (3) final states F=§.

Proposition 1 Let G=(N, E, P, 5) be a wide-sense
context-free grammar and TaA(G) be the
corresponding tree automaton in the sense of
definition-A. Then S(ING)) =L{TA(G)).
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Definition-B Let Ta=(Q, SkUL, &, F) be a tree
automaton for a skeletal set over &, The
Mﬂ"ﬂl‘pﬂﬂ-diﬂg‘ wide-sensge r_*ﬁralext-frﬂn? EVARLTLL P
GiTal=IN, E, P, B) is defined with {1} non-
terminal alphabet N =4, (2) for each o of arity n
and n-tuple (%4,...%.) of QUE, the production
Px,...x,€P 23 8nl0, X1,0enkn}—%~%p , and (3) start
symbols S=F,

Proposition 2 Let Ty =(Q, ZUSk, §, F) be a tree
automaton and G(Ta) be the corresponding
conttext-free grammar in the sense of definition-B,
Then LITa)=S(IHGIT AN

4. Stale characterization matrix

Definition LetS be a finite set of trees over EUSK
which includes the set {o(a) : 0¢8k; and a¢Z' for
i= 1}, XiS)={ois) : 0e8k;, 3¢iSUEY, and v(3)¢S for
iz1}, and E be a finite subset of (EUSk)eT. S is
called subtree-closed if 3¢5 implies all subtrees
with depth at least 1 of 5 are elements of 8. E is
called §-prefix-closed with respeet to 8 if ecE
except § implies there exists an " in E such that
e=e'#0(s),....5 - 1,5.8i,....5n = 1} fOr 50me s,....5n_1
ESUE,

A state characterization matriz is a triple (8, E,
M) where M is a matrix with labeied rows and
columns such that (1} The rows are labeled with
the elements of SUX(S), (2) The columns are
labeled with the elements of E, (3) Each entry of M
is either 0 or 1, (4) IT's;, 5;¢ SUX(S) and ¢4, ;¢E and
ej#si = ej# 35, then the (s, ej) and (5}, g;) positions in
M must have the same entry. The data contained
in M is DIM)={(e#s, y) : 3eBUX(S), ecE, and the
entry of M is ve{0, 1}}. For s in (SUX(S)), rows)
denotes the finite function [ from E to {0, 1}
deflined by fle}= DiIMN{e#s).

A state characterization matrix is called closed
if every row(x) of xeX(5) is identical to some
row(s) of 865, A state characterization matrix is
ealled consistent if whenever 5 and sz are in 5
such that rew(s;) is equal to rowi{sz), for all
Qe U= 1€SUE, row{o{uy, ety 1,510l = 11)
is equal to row{oluy,...,uj—1,52.9i,...,un— 1)) for

1=i=n.

The idea of the closed, consistent state
characterization matrix is essentially the
extensions of Angluin’sone [1].

Definition Lel (S, B, M) be a closed, consistent
state characterization matrix such that E contains

£. The constructed tree automaton Ta(M) over
ZUSk from (S, E, M) is defined with state set @,
final states F, and state tranﬁt,ion function § as
follows.

Q = {row(s): 5635},

F = {row(s) : s¢S and D(M)(s)=1},

Oplo, rowl(sy), . row(s,)) = row(olgy,....5,)),

Ggin) = a forack,
where the function row is augmented to be
row(a)=a for a¢

Theorem 3 Supppose that (S, E, M) is & closed,
consistent state characterization matrix such that
3 is subtres-closed and E is $-prefix-closed with
respect to 3. Then the constructed tree automaton
Tald) agrees with the data in M. That is, for
every tree 5 in (SUX(5)) and e in E, #e#slisin F
iff D(M)e#s)=1.

5. Inductive inference algorithm for context-
free grammar

We assume that a finite alphabet £ which the
unknown context-free grammar (3 is defined over
and a skeletal alphabet Sk for the G are given,

Definifion (construction of 8 context-free
grammar) Let (3, E, M} be a closed, consistent
state characterization matrix such that E contains
$. The consiructed urde-sense conterl-free
grammar GIM)=(N, X, P, 8) from (8, E, M) is
defined with nonterminal alphabet N, start
symbaois FCN, and a finite set of productions F as
follows,

N = {rowis}: s¢S),

3 = {rowi(s): se8 and D{M)i{s) =1},

P = {row(ols],....55) = row(s )-row(sgl},
where the function row is augmented to be
row(a)=a foraeXL.

{Algorithm 1)

Input : An eracle EX(} for a sullicient set of examples of the
sheletal deseriptions of the unknown context-free grammar
3, e of S(DIGN,

An aracle MEMBERI(s) on a skeleton s as inpuk for a
membership query to pulpul 1 or @ am:r.rdiﬁu to whether 5 is
a skeletal deseription of a derivation tree of G from 5, L.e.
s€ S(DICY),

Chatput : A sequence of conjectures of context-free grammar,
Procedure

&= [oia): ocSk; and A€ X for i 1)

E:= {§k

TA:= @; CFG:= @; Examples ;= &;



ennstruet the initial matrix (5, E, M) using MEMBER;
TA = TyiMn
CFG:= GiM);
do forever
add an example EX(} to Examples;
while there is a negative example — 3¢ Exumples which TA
accepts s or there 15 a positive example +s€ Examples
which TA does not accept 5;
add 5 and all its subtrees except constants to 5,
extend (5, E, M) to E#(30UX{51) using MEMBER;
repeat
if (5, E. M) 15 not consistent
then find 3) and 5gin 8, uy,...u, - | £5UE, e€E, and i
(1= iZn) suck that row(s;} is equal to row(sy) and
DHedoluy,... - 1,50,0,.. g 1)}
Die#otuy, .. uj— 152,00 in -1
add e#falug,..., 0 _ 5000, ) to B;
extend (5, E, M) to E&ISUX(5)) using MEMBER;
if (5, E, M) is not closed:
then find olf)€ X(5] [or 86 (50U E)" such that row(n(s)) iz
dilferent from row(s) for all 5€5;
add o8] to 5;
extend (5, E, M) to E#(SUX(EN using MEMBER;
until (5, E, M) is closed and conaistent;
TA .= TalM);
CFG = G{M),
end;
ouatput CFG;

end,

(Correctness) Let G be the unknown context-
free grammar. (Fiven the oracles BEX and
MEMBER for G, the algorithm [ identifies in the
limif o minimal nonterminals wide-sense confexi-
free grammar CFG such that LICFG)=L{G), CFG
is structurally equivalent to G and no two
productions in P have the same right side,

In [2], this type of identification is called
structural identification in the limit.

(Time complexity) The algorithm I infers a
conjecture of conlext-free grammar and requests a
new example in fime polynomial in |, m and n after
the last example has been added, where | is the
number of examples known at the time of the
request, m is the maximum size of them and n is
the number of states in the minimum tree
automaton for S{ID{GH.

Definition (construction of a parser) Let (S, E, M}
be a closed, consistent state characterization

matrix such that F contains $, The constructed
parsing Frolog program PARSER(M) using
difference-lists from (S, E, M) is defined with the
predicate set Predicate, the finite set of function
symbols Funetion, the calling predicate stfT X X",
and the finite set of clauses PARSER(M) as follows
Predicate = (phreggg (T, X, X' 36 51U {ter e fa]XT1,X1 : 0ET),
Funetion = {f, ... 5 8},
PAHRSER{M) =
{5t T Xo, X102 = phrpywigd T Xy ). 1565 and DIM)isk= 1}
Wphrspwime,, o il frowiois, ... s 0T Dol Ko Kp)
fe R Ty X X b Rl T o g K.

(R = phvegus g€ 5 and By = terg if gy =a€ D1 = 1= n))

Uftergia, [a)X],X) a€X)

6. Discussions

As Crespi-Reghizzi et al. [3] suggest,
grammatical inference may be useful in specifying
programming languages. Then an application of
our algerithm is designing programming
languages or synthesis of compiler, because the
structure or syntax of programming languages is
usually defined by means of a context-free
grammar. As in [3], the definition of structure
and the definition of meaning should be
intereonnected since structural orderings are an
aid to interpreting a sentence, Thus in inferring a
programuming language, a grammar inferred for
the language should be constructed such that it
not only generates correctly sentences but also
assigns o each sentence a structure reguired by
the designer. Then our approach will provide an
effective method for the process of programming
language design.

This is part of the work in the major R&D of
FGCP, conducted under program set up by MITL.
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