ICOT Technical Memorandum: TM-0388

TM-0388

ESF Guide

by
5. Uichida

Seprember, 1987

1987, 1ICOT

Mita Kokusai Blde. 21F 1031 436=3191 —5
“ :D I 1-28 Mits 1-Chome Telex TCOT 32464

Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technt;Iugy

PSI: Personal Sequential Inference Machine

ESP Guide

English Edition

August 1987

Institute for New Generation Computer Technology

This manual describes the language specifications of the programming language ESP (Extended Self-
conteined Prolog) which is available under the operating system SIMPOS (Sequential Inference Machine

Programming and Operating System) of the sequential inference machine PSI (Personal Sequential
Inference Machine).

(i)

PREFACE

ESP (Extended Self-contained Prolog) is a programming language, developed by introducing the modular
programming capability based on an object-oriented paradigm into the logic programming language
Prolog, and has the advantages of both logie programming language and object-oriented programming
language.

ESP features:

(1) the advanced modular programming eapability based on an object-oriented paradigm, which
facilitates modular programming and synthesis and reuse of modules, allowing efficient development

of a large program.

(2} the unification and the backtracking capabilities of Prolog, as well as the class and the inheritance
capabilities of the object-oriented paradigm, allowing hierarchical knowledge representations.

(3) a variety of macro expansion capabilities, allowing concise program description and improving

program readability.

ESP, having these features, is a knowledge-representation and system-deseription language with an
advanced description capability and a high applicability to general-purpose use, while Prolog is mainly
used for development of a rather small artificial intelligence program. ESP may be used for the following

purposes;

(1) development of artificial intelligence programs, from a small-sized program to a large-sized, practical

program such as for machine translation or expert system
{2) development of system programs such as an operating systemor a compiler

This manual describes the language specifications of ESP, and has been written for readers who are
familiar with Prolog. The object-oriented paradigm is explained in appendix H "WHAT IS 'OBJECT-
ORIENTED'."

CHAPTER ONE "GENERAL" briefly described the language specifications and features of ESP.

CHAPTER TWO "CHARACTERS AND REPRESENTATION FORMAT OF LEXICAL ELEMENTS"
deseribes the representation format and function of the characters and lexical elements which are
basic units for ESP programming. This chapter and chapter three are the main part of this manual.

CHAPTER THREE "FORMAT OF CLASS DEFINITION" deseribes the structure and description
format of a class, which is a program module unit of ESP. A class is formed by combining words and
lexical elements according to the prescribed rules.

CHAPTER FOUR "BUILT-IN PREDICATES" briefly explains some main built-in predicates, which
are provided by PSI machine instructions, KLO. For details of the entire KLO built-in predicates, see
the KLO Built-in Predicate Manual.

(i1}

CHAPTER FIVE "PROGERAMMING TECHNIQUE" describes how to write a good ESP program in
terms of ease of reading, ease of debugging, execution speed and memory efficiency. To write an ESP
program, vou should thoroughly understand the programming technique described in this chapter as

well as the language specifications.

(1id)

TABLE OF CONTENTS

CHAPTER ONE GENERAL

1.1 Extended Features of EBP i e s
1.2 Class Definition oo imrmrs s assme e s s et e e s e e s
1.3 Method Definition and Method Call s
L4 £1288 "EIASE"™ eeeeeeeeer et e e e e ehesbe e Re e anae e ranes
L5 Macro s S R ———

CHAPTER TWO CHARACTERS AND REPRESENTATION FORM OF

LEXICAL ELEMENTE e ssecs et esn s sananans
2.1 Characker Sk i it s e e Ae e e
2.2 Lexical Elements ... PO
A% T -1 v v+ TP TP R creeeeeeaes
24 Precautions on Operator-Applied Terms and compound Terms e
2.5 Implementationof Termson PSl s s
CHAFTERTHREE COMPOSITION OF CLASSDEFINITION s insemsnnnnines

30 I - T - ¥ [OO UPPR
3.2 InRerilBnce i e et e
3.3 Method Definition et OO PPR
3.4 Method CaIL e oot e b AS SRR
35 Slot
BT L O LT e Y- U PSSP
3.7 Macro L e Ao re g4t HaS SR s ran ammnEe s wvannaden RS ESSERE E3S FHBETEEAS

371 General e eeteeeembeisimeteseiassememnresenieneeneeeemieteninisiisiaiiestiane e s e nr e es

3.7.2 System-Defined Macros .

37.3 Usesr-Defined Macros N
3.8 Multi-Class Name Space (Package) e

3.8.1 Class Specificalion

382 Package Environment and Externally Declared Class

383 Useof Mackge in SIMPOS e sas s s s s i

B84 REBEFICLIONE oo ceeceeimeeaes s s ssmen s e s rn e s b ms e s s s s s e

(iv)

3.8 ESBPProgramin PSI e e 80

CHAPTER FOUR BUILT-IN PREDICATES e 54
41 Data Manipulation USSP < |
4.2 Arithmetic Operations S U 100
43 Logical Operatloms et 103
44 Comparizon operationg o e 105
4.5 Data Type CONVETSION ooiriiiimsimisisiomiseisisesss s esaet 0544 o488 0neennsrassssarsne 110
4.6 Execution Order Control e 111
CHAPTER FIVE PROGRAMMING TECHNIQUE s 113
51 Writing a clause PSSO 113
5.2 Controlling Program Execution ST RSRURTRRRUROTE B 1|
5.3 Data ManipulBBion i st sns s m e e st s s nns e 123
B B0l et st er s ean et ten 133
5.5 Clause IndeXing e 134
APPENDIX A GRAMMAR OF ESP e 136
APPENTIX B TABLE OF STANDARD OPERATORS ..o 142
APPENDIX C LISTOF STANDARD MACROS e sninens T —— 143
APPENDIX D LIST OF BUILD-IN PREDICATES e 145
AFPENDIX E KEYBOARD CODE ENTRY TABLE ..ooiiiivcevicicicciicecece e, 148
APPENDIX F s 151
APPENDIY G PRECAUTIONS FOR CONVERSION FROM PROLOGTOESP 155
APPENDIX H WHAT I3 “0OBRJECT-ORIENTED" S | - -

(vl

TERMINOLOGY

Prolog

A symbol manipulation language developed based on predicate logic. Prolog has several advanced
capabilities for describing an artificial intelligence program such as unificaiton and backiracking, and
has been widely used as a programming language for artificial intelligence applications, as well as LISP.

predicate logic

A formal method of logic that is used to conclude whether a given proposition, for example, "Socrates is
martal” or "The sun rises from the west"” is true or false from the known true facts (propositions).

compound term

A formal description of the attribute of a thing or the relation between things. A compound term is a basie
description unit in predicate logic, and is described in the form of fla,b,...). In Prolog, { is caled a predicate
name, and a, b, ... are called arguments.

{(Example) oni{pentablel ... The pen is on the table.

catimichael) ... Michael 1= a cat.

As shown above, the atiribute or relation to be notified is written in front of the parenthesized thing lor
things).

clause

A program deseription unit in Prolog. A Prolog program is written as a set of clauses. A clause is
deseribed in the format of A:-B,C,..., where A, B and C are compond terms. The number of compound
terms on the left side of ;- is limited to one at most, and a clavse in this format is called a Horn clause.
Clauses are used to describe facts, rules and guestions. A Prolog program is executed in this way: a
question is given from outside to the program, and an answer is made by repeating inferences based on
the facts and rules written in the program.

Faets, rules and questions are described in the following formats:

Faet human(zpocrates).

This is the abbreviated form of human(socrates):-.
Rule mortal{X):-human(X).

Question --mortal(socrates).

(vi)

head, head part

The left side of - of a clause,

body, body part

The right side of :- of a clause.

goal

Individual compound terms in the body part,

predicate

In Prolog, a set of clauses, each having the same predicate name and the same number of arguments in its
head part is called a predicate.

(Example] married (taro,hanake) ... clause predicate
married (jiro,yukika) e clause
parent-of {tare,yoshiol ... clause predicate
parent-af (taro,nobua) ... clause

built-in predicate

A predicate that is already provided in the language processing system of Prolog. Standard predicates
that are often used in many kinds of programs and predicates that the user may feel are difficult to
describe (because they are complicated to deseribe of because they would be inefficient if they were
described by the user) are provided as built-in predicates. The typical built-in predicates are for 1/O
operations and arithmetic operations.

KL{, KL{ built-in predicate

The machine instructions of 'Sl are called KLO, and their capabilities have been extended based on
Prelog. The built-in predicates provided by KLO are clased KLO built-in predicates. In the ESP manual,
the KLO built-in predicates may be referred to simply as the built-in predicates.

{vii)

predicate call

An action to call the corresponding predicate from a goal of the body part of a clause. The corresponding
predicate means a predicate that has in the head part the same predicate name and the same number of
arguments are that goal.

unification

An action to make two patterns (structures) identical to each other in terms of the pattern by substituting
appropriate values for the variables in the patterns. In Prolog, when a predicate call is performed,
unification is performed between the goal (compound term) and the head (compound term) of the clause of
the called predicate. For example, parent-of(taro X) and parent-of (Y ,yoshio) both become parent-
ofitaro,yoshi) by substituting yoshio for X and taro for Y, thus the unification succeeds. In the case of
parent-of(X,yoshic) and parent- of(Y nobuo), however, the unification fails because yoshio and nobuo are
both constants and the values are not the same

hacktracking

A solution search methoc. When there are several selection branches in the course of the path to the
solution, the solution is searched for by selecting one branch. If it is not the branch to the solution, then
the branch point is returned to and another branch selected. This method is used in execution of 2 Prolog
program: if the predicate called from a goal has more than one clause, the program is executed by
selecting these clauses one by one in the order that they appear in the source program. If the execution of
a selected elause fails, then the next clause is executed.

logical variable

Variables used in Prolog are called logical variables. A logical variable is defined (i.e., has a value) only
through a unification operation, and cannot be redefined (i.e., the value cannot be changed) and behaves
like a constant until backtracking occurs. When backtracking occurs, the variable is undefined (ie., the
value iz released), then it can be redefiend with a new value through the next unification,

side effect

Similar to the side effects of a medicine, it means an unexpected effect that is brought about
unintentionally, besides an intentional function provided by the program. Variables used in a procedural
language such as FORTRAN or C have side effects. A value substituted for this kind of variable remains
unchanged even after the program is ended. Consequently, the internal state of the program is different
between when the program is called and when the program is ended. Because of this, when the program is
called the second time, the program does not always give the same result as the previous time.

In Prolog, an execution result that is not restored by backtracking is a side effect. Variables of Prolog do
not have side effects since they are undefined by backtracking.

(viii)

object-oriented, object-oriented paradigm

A new programming method, where the concepts of struclured programming and abstract dala type in
the conventional procedural languages have been expanded further. A program is described on the basis
of an object, which is a unified entity of a procedure and data. (They are different entities in conventional

languages.}

¢lass, class object

Objects that have comon characteristics and behavior may be defined together as one elass. In object-
oriented langauges, a elass is the module unit for the programming. A class definition itself may also be
treated as onc object, and a class that has been processed into executable format is called a class object.

inheritance

The capability to include the attribute (i.e., the contents of the definition) of a class (or classes) in the class
being currently defined. When defining more than one class, if you define those definitions that are
common among the classes as an independent class, you can concisely deseribe a class definition by
including that class through inheritance in the current class definition. Inclusion of a single other class is
called single inheritance, and inclusion of multiple other classes is called multiple inheritance.

instance, instance object

An ohject generated by a class object. As many instances as necessary are generated by a class object.

method

A function that an objeet provides to the outside. An object generally has more than one function, and
these functions are identified by the method names. The method of a class object is called a class method,
and the method of an instanee chject is called an instance method.

method call

An action to send a method name and parameters from one boject (the sender) to another object {the
receiver] so as to request the receiver to execute the corresponding method. The method name and
parameters to be sent are called a message.

{ix)

CHAPTER ONE GENERAL

ESP is knowledge-representation and system-description language, developed by introducing the
modular programming capabilily based on an object-oriented paradig‘m into Iug'lc programming language
Prolog. This section describes the concepts of ESP,

1.1 Extended Features of ESP

Figure 1-1 shows the difference in the programming paradigm between Prolog and ESP,

e e e L L L L L L 1
: :
i .' siot ||| st
E : Method Method
: !
1 1
1 i
I ey
i i
i i
i s
: RS E Local predieate Local predicate
l i
: H j
]]
i]
E I st | ||| st
1 : Method Method
| 2 B | cee [
| I
I |
L] I
i ; Local predicate Local predicate
L]
e] Class
(i} Prolog (i) ESP

Fig. 1-1 Difference in Programming Paradigm between Prolog and ESP

In Prolog, facts and rules are described in clasues (Horn elauses), therefore, a program written in Prolog
is composed of a sct of elauses. In other words, a Prolog program is composed of a set of predicates since a
group of clauses having the same predicate name and the same number of arguments is referred to as a
predicate. Because Prolog does not have as the language specifications a meodular programming
capability, if you want to expand your program, you do it by adding or modifving the predicates.

On the other hand, an ESP program is written in maodules ealled elasses. Because of this, predicates used
in ESP are clasified into two kinds: a local predieate (a predicate that ean be referenced only from within
a class) and a method (a predicate that can be referenced from outside a class.) These predicates have
basically the same characteristies as the predicates of Proleg. However, some extended features have
been added to the method of ESP, such as the demon function,

The following items can be written in the body of an ESP predicate:

Prolog ESP
built-in predicate (K L0} built-in predicate
predicate (user-defined) method (system-defined, user-defined)
local predicate (user-defined)

In ESP for PSI, KLO built-in predicates (or simply built-in predicates) mean the predictes provided by the
'Sl hardware, while in Prolog, built-in predicates mean the system-defined predicates that can be used
without user definition. Two kinds of methods are available in ESP: system-defined methods and user-
defined methods. The system-defined metheds (the methods of SIMPOS system-defined class) provide
funetions that require considerably complicated processing, such as file 'O functions.

Another extended feature introduced to ESP is a slot. In Prolog, variables, called logic variables, are
defined through unification and can be redefined only after their values are released by backtracking.
This function is useful to write an artifical intelligence program. However, the logie variahles have a
dizsadvantage in that they cannot have side effects. A slot is a variable that can have side effects and can
be redefined at any time like those variables used in a procedural programming language such as
FORTRAN or C, Also, a slot is not retracted to the previous value by backtracking. From the viewpoint of
a logic programming language, a slot is used to change the system of axioms. From the viewpoint of
knowledge representation, a slot is sued to express a “has__a” relation.

Inheritance is the capability to inelude the function of a different elass in the current eless definition. (See
Fig. 1- 2.) In ESP, the multiple inheritance funetion is provided so that more than one class can be
ineluded.

When including the functions of other ¢lasses through inheritanee, if the methods or slots of the same
names have been defined in both inheritance destination class and inheritance source class, the
inheritance is processed according to the prescribed rules (override, synthesize, ete.). The inheritance
function facilitates reuse or synthesis of functions and improves programming efficiency. The inheritance
funection ean also be used to deseribe an “is__a" relation in knowledge representation, and use of this
funetion, together with a “has__a" representation by a slot, allows concise, hierarchical knowledge

representation.

class A class B

inheril,ﬂ.nue(1\ f)

l When defining class C,
l the functions of class A
and class B are ineluded

through the inheritance
class B function.

Fig. 1-2 Explanation of Inheritance Funetion

1-2 Class Definition

This section explains the ESP way of class definition. A class deflinition consists of the following

components:

{1 class name

{2) inheritance class name

(3) clasz slot and class method

(4} instanee slot and instance method

i5) local predicate

The class name identifies the elass and must be unique in the SIMPOS system. A class (or classes) to be
inherited is specified by the inberitance class name (or names). Then, slots (variables) and methods of the
class and instance are defined. Slots are equivalent to variables used in a procedural language and have
side effects. However, slots do not need to be declared for a data type, and thus may have any type of data
such as integer number, floating-point number, vector, or list. A method iz a function that the object
provides to the outside, and can be called from the outaide. Sending a method name and parameters as a
message to an object causes the object to execute the specified method with the pessed parameters and fo
return the results to the message sender. This message passing capability has been realized by using the
paradigm of the vnification mechanism of Prolog as is.

Figure 1-3 shows a typical description format of a class definition,

class class name has
nature inheritanee class name
COMBONEnt class slot definition Definitions of elass
componelt slot and class
method
class method definition
INStance 0 T T e eSS s mms s
instance slot definition .
component Definitions of
instance ohject
instance method definition
lacal =000 sesssssccccssmccmsssmssssssssss—s—ss————
local predicate definition
end

Fig. 1-3 Typical Class Definition Form

In the fipure above, the underlined words are the kevwords (operators) prescribed in the ESP language
specifications. A class definition starts with the operator “elass” and ends with the operator "end”. The
operator “nature” specifies the class name (or names) of a class (or classes) to the inherited. ESP supports
the multiple inheritance function: more than one class can be inherited. The slot and the method defined
before the operator “instance” are called the class slot and the elass method respectively. The slot and the
method deflined afler the cperator “instance™ are called the instance slot and the inslance method
respectively. A local predicate is written after the operator “local”, which is a predicate to be used locally
within the elass.

Figure 1-4 shows a program example.

class my window has
nature standard o window;
wcreate. my window(CLASS, Window) ;-
create{CLASS, [size{Q00, 250),
position{100, 100)], Window),

ractivate{Window) ;

insiance
component
user _name,
group _name;
'message 1{Window, String0, String1) -
write 1{Window, string),
write 1{Window, String1),
user _ name (Window) ;

‘get _ group name W, W!gmup_name] ;

local
user _name{Windﬂw} 1-
iputc (Window, #7:7),
writel{Window,
Window!user__name),
swrite (Window, key # 11),
wwrite (Window, key#er);
write 1{Window, String) :-
string (String, Size,),
:puth (Window, String, Size) ;

end.

Fig. 1-4 ESP Program Example of Class Definition

The source program of a class definition is compiled, determined for the inheritance, and converted to a
format that can be executed as a class object. When determining the inheritance, those slots and method
that are defined in the class(es) to be inherited are all included. However, if a method in the class to be
inherited has the same name as one in the current elass definition, the method in the eurrent class
definition takes precedence. (The actual inheritance processing for slots and methods is more
complicated. For details, see chapter three.)

When a class object receives an instance generation request (:new method call), the class object generates
the instance objects by making copies of the instance object definition part in the memory. (See Fig, 1-5.)

Since multiple instance object share one instanee method part (and the local predicate part), only the part
that corresponds to the instance slot part iz actually generated in the memory (heap area). The instance

slot part in the memory is a one- dimensional array {veetor).

class object :new method call
instance instance inslance
inztonce abject object object

abject A M -

definition part=—
A

Fig. 1-5 Generation of Instance Object from Class Object

The use of a class slot/class method is explained next. You may want to manage instance objects (referred
tn as instances heraafter) generated from the same clazs. For example, when you penerate instances from
a class where a limited number of resources are defined, the number of instances to be generated is
limited, therefore, vou need to check instance peneration. Or, if yeu want to collect the penerated
insta rnees Lo reuso 'l.]l!'.']'rl_ ¥y m’.r&d Ly munago l..llf.' g|.1n|.~r.|,1L!.'1,| lr]&il:uu;r.'s, Th'ls rurlu:ih.m may 'vﬂ' rcuii:m.'rd by
making un ebject that executes this funetion. However, the smarter sclution iz to make the class object do
it. The class slotelass method iz used for this purpese. new i a method to request a elass to penerate
instances. The new method 15 a elass method (which the system internally generates and adds Lo all

.
classes,}

L3 Method Delintlion and Method Call
A method is defined in the lolewing lormat:

amethod namelObjectarg 1 urg__n)

-poal__1,goal__ 2. poal _n;

where,
method __name: Method name
TG Variable Lo receive on olject
arg 1, arg no Arguments
goal__1,..goal__n: A string of goals, A local predicate, a built-in

predicate, or 4 method can be specified.

The method definition has been realized by extending the predicate format of Prolog. The following
extensions have been made,

= Putacolonin front of a predicate name. A predicate name preceded by a colon is interpreted as a
method name, diseriminated from a local predicate. Also, the entire predicate is interpreted as a
method definition.

¢ The first argument in the head is used as & variable to receive an object (an instance object or a

class object).

= The second and the following arguments in the head are used as the purameters for data transfer
with the method caller.

A method call is described in the body of the method and the local predieate. The description format is the
same as that of the head part of the above method definition format:

c methudu_na*ne{l:)bject, arg 1,.arg n),..

R , —— d

Eaerséd Goal part

When a method call is issucd at program execution, it is processed in the following sequence:

¢ the method name and the parameters are passed Lo Lhe object specified by the first arpument
(Ohject), and '

= the objeel executes the method specified by the passed method name, using the passed
parameters, then

¢« the execution results of the method are returned to the output arguments and the object
proceszing is terminated.

This sequence of processing for a method call is actually accomplished using the unification mechanism of
Prolog as is. That is, an "objecl + mechod name” is used instead of the predicate name at unification
between the goal and the clause head of Prolog. (See Fig 1-6.)

The differences between the predicate call of Prolog and the method call of ESP are as follows:

@ The method Lo be referenced by an ESI® method eall is determined by the object (specified by the
firsl argument), the method name and the number of arguments, while the predicate to be
referenced by a Prolog predicate call is determined by the predicate name and the number of

arguments,

® The first argument fur « methed call specifies the object to which the message is to be sent.

method call: ... , :methnd_name{ﬂbject,arg_l, ,arg_n}.....

I f !
(] /)
/

ohject method definition ! I 1

specified by — unification
variable methnd_name {Db.arg_l ,arg__n}

“Dject”

Fig. 1-6 Method Call Processing in ESP

There are no other differences except the above. Unificalion is performed in the same way, and

backtrucking at failure is also performed in the same way,

Specification of variable “Object” at & method call is performed as follows, First, a class ohject is specified
us #class name. For example, the class object of class “window™ is specified as #window. On the other
hand, an instance object has no name, thus eannol be specified by a name. When an instance is generated
by ‘new methed or an equivalent method, the class object returns the identifier for the instance object (the
pointer to the instance object generated in the memory). This identifier may be used later to specify that
instarce object, (Ses Fig 1-7)

:create(#fdd_ volume,Volume),
% Call elass method ereate of eloss object
% fdd__ wvolume and request to generate an instance.
% Claszs method ereate internally penerates the
% instance by using :new method and returns the

% pointer to variable Volume.

rretrievel #directory, Device,” > device 2 fdd 1"},
% Request elass object directory to generate an
% instanes, Class methad retrieve internally
% generates the instance by using 'new methoed and

T returns the pointer to variable Device,

‘mount(Volume,Device,),
% Call :mount method of the instance (of class

% {dd__volume) specified by variable Volume.

dink(Volume,“ >=FD1"),
@ Call link method of the instance (of class

% fdd__velume) specificd by variable Volume.

:make(#{dd_ binary file File,"FD1>MYFILE", 20},
% Call clazs method :make of ¢lass object
G fdd__binary_ 0le, penerate the instance, and

% receive the pointer in variable File.

cioselFile),
% Call -close method of the instance {of class

G fdd__binary_ le} specified by variable File.

Fig. 1-7 Specification Example of Class Object and Instance Object

1.4 Class “class”

A class named “class” has been provided sz o system-defined class, and is implicitly inherited to all
classes. In class “class”, the common functions (methods) that all ¢lasses should have are defined, so that
the user does not have to define these functions by himself at definition of a class. These functions

inelude:
= class method (:new) that generates an instance object
= classfinstance method that reference (cget_slot) and set (:set__slot) the value of a slot
= classfinstance method Crefute) that dynamically specifies a method name to eall the method

Faor details of the funcitons provided by class “class”, see chapter three section “Class ‘class' "

1.5 Macro

One of the features of ESP is a strong macro expansion function, The maero expansion function works for
& certain character string pattern appearing in an ESP program, and the string is automatically
expanded to the prescribed pattern. The macro expansion funciton allows concise program description
and improves program readability. Besides the system-delined macros, the user can define his own
mucros. For details of the macros, see chapter three, section “Macra®,

=10 -

CHAPTER TWO

CHARACTERS AND REPRESENTATION FORM OF LEXICAL ELEMENTS

This chapter describes individual lexical elements that make up an ESP program. Fhe first part deseribes
the kinds of characters that you ean use to write an ESP program. The second part explains the
representation format of the lexical elements that are the basic components of an ESP program.

In this chapter, the explanations are made without strict definitions for ease of understanding. For the
formal deseriptions, see appendix A.

2.1 Character Set

An ESP program, similar to a program written in an ordinary programming language, is composed by
writing characlers such as “a”, *b™ and “¢”. For ESP programming, you can use the following characters.
These characters are all interpreted as differenct characters, including the difference between the
upperease and {he lowerease letters.

Alphanumeric Characters

- Digits (0,1,..,9)
- Lowercase letters (a,h, ...z, and kanji characters)
- Uppercase letters (A, B, ., Z, and ¥__ " {underscore))

In ESP, the kanji character set {including hiragana, katakana and Greek letters) belongs to the lowercase
character set, and can be used nol only as character string data but also as basie program units as well as
the lowercase alphabet. For example, you ean use kanji characters for deseribing an atom (explained

later) such as a class name or a predicate name and for deseribing a logical variable name.

Special Characters

@, #, % ", &, +,-, =, ~, (accent grave), ?,/, ¥ = (back-slash), (period), :(colon), <, >, *

Delimiting Characters

{l }! r:]! {I }: -!': :# .{Wmmﬂ.},, ;{SEmiCD] Un}
Besides these characters, you can also use three special-use characters (" and " and %) and three
formatting character codes {space, new-line, and tah),

An ESP program may be written with these characters.

-11 -

2.2 Lexicl Elements

An ESP program is formed with lexical elements that you make by arranging the characters deseribed in
the previous section according to the rules explained below, There are five kinds of lexical clements:

Lexical element Example

atom esp T F a1l
integer number, floating-point number 123 1.0°-3

character string “string” e Ty
variuble X __wvar

delimiter } (

(1) Atom

Atoms correspond to the names of various kinds of entities used in ESP and play a very important role
in ESP programming. Class names, predicate names, and various kinds of keyvwords of ESP are all
atoms. In ESP, an atom is notated as described below. Those atoms that are dynamically generated by
a built- in predicate (explained later) will not have a notational name unless otherwise given
explicitiy.

String of alphanumeric characiers starting with a lowercase
Examples: esp name_ with__underline

esProlog kIO o sHs TR naiz

3 E&Wat

String of special charncters
Examples: :- 7 +

Note that a period (.} and a eircumflex (*), when used conforming to the notational rules for a floating-
point number (explained later), are not interpreted as an atom. Also, a period, when used alone,
indicates the end of a term. However, consecutive use of periods like “=.." is valid for an atom.

=12 -

(2

String of characters enclased in single guotes (]
Example: ‘33%var
Note that to include a single quote as part of the string, write two single quote consecutively.
Example; ‘describe’ 'name’

An atom notated by enclosing a string in single quotes is called a quotad atom,

Foursymhbols (! :, ;)

Note that these symbols are not an atomn when they are used for the special purposes described
later (that is, when they are used az a delimiter for a list or a vector.)

* [] (nulllist)

Integer number, floating point number
In EBP, two kinds of numbers can be used: integer numbers and floating-point numbers.®

Example: 0986 -3 3.14159265
51.2°8 1.0°-3

You ean perform arithmetic operations and logical oprations on these nubmers by using appropriate
built-in predicates. The built-in predicates for double-word operations (which are applied to a pair of
two words of integer numbers) are alse available. (Sce chapter five} However, you cannot directly
perform an arithmetic or logical operation on a mixture of integer numbers and floating-point
numbers: you have to change the data types to either type before performing the operation.

& PSI expresses these numbers in 32 bits,

n.'13-|

4 Integer number
A decimal number is expressed as a string of digits or a string of digits preceded by “-".*

Example: 125 -3 1986 0

An integer number other than a decimal number may also be expressed using macros (explained
later).**

Example: 164 “FFio™ B#*71"

radix value

The radix is expressed by a positive decimal number. The value is expressed using ten digits from 0 to
9 and letters from a to = (or A to Z). Letter a {or A) represents decimal number 10, letter b (or B)
represents 11, and so on. The uppercase and the lowercase letiers are pot discriminated. Up to what
digit or letter can be used depends on the radix used.

Floating-point number
ESP can handle floating-point numbers.

Example: 1.0 -21 141421356
91.2°8 {namely 51.2 x 10 8}
1.0°-3 (namely 1.0 x 10-3)

Bl 2% -4

| L exponent part

sign for exponent part

decimal part

integer part

* +1 means a compound term +{1)={+ 1} (explained later}, diferent from integer 1,

#+ SIMPOS provides the notation from binary number to 36 nary number as Macro.

<14 -

(3)

(4)

=3

The integer part is a string of digits or a string of digits precided by “-". The decimal part and the
exponent part are a string of digits. The decimal part may be omitted, but the decimal point (namely a
period) cannot be omitted. The sign for the exponent part is either “-* or *+", The plus sign “+" may
be omitted. If the exponent part is zero, then the symbol © and the following part may be omitted.

Because the expression of a floating-point number iz a lexical element, no formatting charaeters such
as a space must be inserted before and/or after the decimal point “.", the symbol *, and the exponent

part sign.

Invalid examples: 1.010°3 20" 3 2°3

Character string

A string of characters enclosed in double quotes (") is called a character string. You can include a

double quote in the string by writing two double guotes consecutively.

Exemple: “flower” """ Michael™ is a cat™
TmETHwAZIELTERL, "

Variuzhle

Variables are expressed as & string of alphanumeric characters starting with an uppercase letier (or

an underscore “-"). Kanji characters may be used as a variable name if preceded by an underseore,

Example: X - RE232C Variable_ 1
KonDo #3)

Those variables whose name is expressed with the same siring of characters are interpreted as the
same logical variable within that clause definition, However, a variable expressed only with a single
underseore is interpreted as a different variable even if it appears at more than one place in the clause
definition, and a variable of this type is called an anonymous variable.

Delimiter
A delimiting character si interpreted az a delimiter.

Example: [Welcome,psi} { This,is,a,pen}

t LI S I O N |

Delimiting is done by on delimiting character and is used for clarification of a syntactical structure.

-15-

{6) Comment

A string of characters starting with a percent symbol (%) up to the new-line is intarpreted as a
comment and does not have any effect on program execution. [However, & perceat symbol in a quoted
atom (a string enclosed in single quotes) or in a character string (a string enclosed in double quotes)

does not indicate the beginning of a comment.

2.4 Term

An ESF program is composed of structures ealled terms, the basie units of a program. Elements such as
itneger numbers and variables, and structural data such as strings, vectors, compound terms and linear
lists are generically called terms. The structural data may have another term as its element. That is, a
term hag a hierarchical structure (or a recursive structur). In fact, an ESP program itself is one large

complex term structured from a combination of various terms.

The term include the following entities:

{1) Atomic literal

Term

atomic literal

logical variable
string

vector

compotnd term
operator-applied term

list

Example

123 4.5

esp
MITSUBISHIE var
“String"

{a,b,c}

fix,1)

X=Y+1

[1,a,x2]

An atomie literal is an atom, an integer number ar a floating- point number.

Example:

{2) String

A string is a structure formed by arranging integer numbers in one dimension. A siring is mainly
used as a character string whose elements are character codes, bul it can also be used as an array of

esp 123 45 6.7°-8

integer numbers. A character string is a kind of string and is expressed as follows:

Example:

“String" "X FF"

- 16 -

There are four kinds of bit widths of a string element: 1 bit, & bits, 16 bits and 32 bits, which are called
bit string, byte string, double-byte string and word string respectively. The character strings enclosed
in double quotes in the examples above are a 16-bit string and have as the elements the character
codes corresponding to the particular characters. Strings other than a character string can be
expressed using a macro as follows:

Bit string
Oor 1 can be written as an element.

Example: bits#{1,0,1}

Byte string

An integer number between 0 and 255 (i.e, non-negalive integer that can be expressed in & bits) can
be written as an element. A character string preceded by ascii# is a byte string whose clements are 8-
bit ASCII codes coresponding to the individual characters of that character string.

Example: bytes#{0,100,16#"F0")
ascii#"abe"
Double-byte string

An integer between 0 and 85535 (i.e., non-negative integer that ean be expressed in 18 bits) can be

writlen as an clement.

Example: double__bytes#{0,1000,16#"ABOD"}

#* Word string

An integer hetween -231 und 23! (Le., signed integer that can be expressed in 32 bits) can be written as

un ¢lement.
Example: words#{0,1000,-1,16#"FFFF0000"}

Each element of these strings must have been determined by the time of compiling and cannot be lelt

g5 4 variable.

The individual string elements are numbered 0, 1, 2, . from left to right sequentially, and a
particular element can be specified by that number. Thus, you can take out a specified string element

as follows:

p(X,Y) - 8 = “abedefgh”
string__element(S 3}, Y); .. 'fB

=17 =

(3)

In the above example (1), string_element is a built-in predicate that takes out the element at the
position specified by X within the string specified by S and unifies it with Y. If you call the above
predicate with p(2,A), the character code {integer) of the letter “¢" is unified with variable A,

Vector

In ESP, you can use a vector** (one-dimensional array) that is structural data formed by arranging

terms in one dimension.

Example: {0,1} {} {bx} {cid e}l

A vector is expressed by enclosing one or more terms with { and |}, and each term must be delimited by
a comma if more than one. { } is a null vector (a veclor thal has no elements). The individual vector
elements are numbered 0, 1, 2, ... from left to right sequentially, and a particular element can be
specified by that number.

p(X,Yk- V={abcdef}

vector__element(V,X,Y);

vector__element is a built-in predicate that takes out the element at the position specified by X
within the vector specified by V and unifies it with Y. If you call the above predicate with p{2,A), the
atom, ¢, 15 unilied with variable A.

* If you want to compose a string dynamically at execution time, use built-in predicatles. (See
Chapter five.)

** In PS5l a vector is realized using a stack vector.

nlﬂ-l-

{4) Compound term
A compound term is expressed as follows:
Funetor (Arguments)

Example: fiX) data(july,1,185%)
fig(X), {3,4},"string™)

The functor is an atom. The arguments are a string of terms, each delimilted by a comma. {1t is notl
allowed to make a compound term that has no elements.) A compound term is a special representation
of & veector whose first element is an atom and whose number of elements is mroe than one. A
compound term is internally the same as a veetor of that type. A compound term is used for writing
the header part of a predicate, ete.

Example: The compound term representation (left) is internally the same as the vector representation
irightl.

fix) {f.X}
date(july,1,1959) {date july,1,1959}
f{g(X),{3,4},"string") {f{g.X}.{3,4}, "string"}

Therefore, unification of {X,1) and f{Y) will succeed, and X is unified with . and Y with 1.
The following vectors do not have the corresponding compound term representations:

X, Y41,2; . The first element is not an atom.
tatom) The number of elements is not more than ene,

A tree structure representation is often used to show the structure of a compound term, in which a
functor is represented as a parent and arguments as children.

Example:
f date /f
x July 1 1959 g {3.4} "string”
X
flx) date(july, 1, 1959) fla(x),{3.4}, string™)

-19 -

{6} Operalor-applied term

If the functor of & compound term could be written as an operator, the program would become more
readable. For example, when representing the addition of X and Y, if it could be written

as X+Y¥

instead of +(X,Y)

it would be more readable. In ESP, similar to a usual programming language, you can use arithmetic
operators. In this case, X + Y, for example, is internally converted to the same structure as + (X,Y).

In ESP, to realize this representation of operator-applied terms, operator precedence grammar is used

for syntax analysis.

There are three kinds of vperators: infix, prefix and postfix. Infix operators are used to represent a
compound term having two arguments, and prefix and postfix operators are used to represent a
ecompound term having one argument.

Inflix operator ... A compound term is represented by the first argument (term), an inlix operator,
and the second argument (term) in that order.

Example: X+7Y 1+2*3
T T

Prefix operator ... A compound term is represented by o prefix operator and an argument (term) in
that order.

Example: -1 +13
i i

Postfix operator ... A compound term is represented by an argument (term) and a postfix operator
in that order.

Example: ™
1

Individual operators have been given a priority, which indicates the degree of operation conjunction.
An operator of a less priority has a greater degree of conjunction. For example, the expression 1+2%3
should nurma!]}r he prui:essed with the mulf_ip“mlion 2%3 first and then the addition,

*
T+ (2*3) /,/
1 \\\

+(1,%(2,3))

{+.1,{"23}) TN
2 3

=420 -

To indicate that operator * has a greater degree of conjunction than operator +, in ESP, operator *
has given priority 400 and operator 4 has given priority 500.

Besides the priority, the position and the degree of conjunction are specified using the type of
operator. For example,

1+2.-3
1-24+3

the former expression should normally be processed with the addition first while the latter with the
subtraction first. That is, the order of operation for addition and subtraction is determined by the
operator position but not by the kind, therefore, it cannot be determined only by the priority.

{1+ 2)-3
(1-2+ 3

If you represent a caleulation expression using a tree structure as shown above, you can specify that
an operator of the same priority is permitted to be placed at the left branch and prohibited to be placed
at the right branch,

ESP has the following seven types of operators:

#+ Infix operator: xfx sy wix
#* Prefix operator: x Iy
Postiix operator: xf oyl

findicates an operator, and x and y indicate arguments. x and y specify the degree of conjunction. If
the argument is an operator-applied term, argument x of operator f can only have an eperator whose
priority is less than that of operator f. Argument y of operator f can only have an operator whose
priority is equl to or less than that of aperator £

The above examples of addition (+) and subtraction (-) are of sperator type yfx because an operator of
the same priority is permitted on the left side and prohibited on the right side.

Therefore, operator “+" (y[x type) and operator *." (xfy tvpe) are parsed into different struetures as

shown below,

-1-211-

+={+{1,2),3)
{+.{+.1,2},3}

Hl

1+2+3=(1+2)+3

n

a;b;c = a;{b;a) = ";(a;" (b))
= {(;).a.{l;}.b.c}}

In ESF, the operators listed in appendix B have already been defined.

* SIMPOS allows the user to add new operators or modify the standard operators.

(6] List
ESP can use a linear list similar to Prolog.

Example; [1,2,3]
[1,f(x},{1,2}, [a,b]]
1,2 1Tail]
[XIY]

[1isanulllist, and in ESP it is defined as an atom. A non- null list consists of the car part and the edr
part: the car part is the first element and the edr part is a list of the remaining elements.

The car part of [1,2,3]i5 1, and the cdr part is 2,3. A list may be represented in one of two ways: (1)
specify all elements and delimit each of them by a comma or (2) specify some of the elements (each
delimited by a comma) followed by * " followed by a list of the remaining elements, The following lists

have the same meaning

- 22

(1,2 3]

[L,2 130
(112,31
(11213

You may specify a variable on the right side of “ 1"
P 1,21T)T),

If you call the above predicate with P(L,[]), then L iz unified with [1,2 1]]], that is, [1,2]. I you call
it with P(L, [3,4]), then L is unified with [1,23,4], that is, [1,2,3,4].

2.4 Precautions on Operator-Applied Terms and compound Terms

The representations of an operator-applied term, & compound term and a vector described in the previous
section are rather complicated and not easy to understand. This section deseribes the precautions when

writing these Lerms and vectors.

(1) Delimiter " has a special use

A comma () used to delimit each element of a term, list or vector is not an operator. If you want to
write an operator having the priority of 1000 or more as an element, you must enclose it in

parentheses.

A comma in [x,y,2] is a delimiter.

A comma in a(b,e) is a delimiter.,

A comma ina ((b,e)) is un operator (atom).
A comma in {1,2,3} is a delimier.

A comma in pi-g,r; is an operator (atom).

fip:--q,r) results in a grammatical error because the priority of the operator - is 1100, It
should be written as either

flip:-q,r)} or f{(p:-ql,r). However, they have different meanings. The former is & one-
argument compound term whose element is {p:-q,r), while the latter is a two-argument
compound term whose elements are (p:-g) and r.

{+,-,=}does not result in an error. The individual elements are an atom,

-93-

The following two representations have different meanings:

f{1,2,3) = {£1,2,3}

f Three-argument compound term
where {'is the functor

f(1,2,3) = {f, {03, 1, {(), 2. 3}}}
f

One-argument compound term
where {15 the funelor

/

(2) An operator is interpreted just as an atom

An operator is interpreted as an atom if the priority is less than that of the adjacent operator. If not so,
enclose the operator in parentheses. The priority of an operator can be changed only by enclosing it in
parentheses. Note that enclosing an operator in single quotes () does not change the prierity of that
operator,

X =+ is correcl (because the priority of + is 500 and the priority of = is 700.)
X ="="results in an error. It should be written as X=(=).
{3) Precautions for prefix operators

If you want to put a prefix operator in front of a parenthesized entity, you should insert one or more
formalting characters (e.g., space) between them. Qtherwise, the prefix operator is interpreted as an
atom and becomes the functor of a compound term,

-(XY) = {- X, Y}

X ¥
A0 Y) = {-, {().X Y1) -
X Y

2.5 Implementation of Terms on I*SI

The terms deseribed in section 2.3 may be implemented in many ways. This section describes, from
among the internal representations on PSI, only those related to the user program and the precautions for
their usage.

(1} Integer number

P51 provides 32-bit integer numbers. It also supparts those built-in predicates that are used for B4-bit
double-length arithmetic operations to a combination of two integer numbers.

A negative number can be written by preceding a string of digits with a hyphen (-). A string of digits
directly preceded by a hyphen, “ 10" for example, is read in as a negative integer number at parsing.
However, if a space is inseried between the hyphen and the digit string, “- 10" for example, it is read
in as a compound term of * -’ (10)", then converted to a negative integer number by a macro.
Similarly, a radix- of-n notation, “16'A0" for example, is read in as an integer number at parsing.
However, “164"A0" is read in as a eompound term, then converted into an integer number by a

MacTo.

_ a5 .

(Z) Floating-point number

A floating-point number is implemented by a total of 32 bits: 8 bits for the exponent part, and 24 bits
for the data part.

{3} Vector

Vectors, compound terms and operator-applied terms are all implemented using a stack vector that is
a one-dimensional structure having a fixed number of clements. Therefore, unification can be

performed between these entities.

11X = +{1.X)=1+X

{4) List

A list is composed of a stack vector having two elements. The second element of the two elements is
the car part of the list, and the first element of the two elements is the cdr part.

1,21 = {{[1.2}. 1}

1]

1 2

[1,21X) = {{X,2}, 1}
- X
3 2

[] is an atom that indicates the end of a list. Since a list has the structure shown above, the fallowing
relation holds:

fla) = {fa} =[a 1 1]

Therefore, note that unification of [{X) and [1 1Y] succeeds and X is unified with 1, and f with Y.

- 26 -

(3) String

The length of each element of a string may be 1, 8, 16 or 32 bits. Because the data part length of one
word of memory in P8I is 32 bits, in an 8-bit string, for example, the four elements are packed in one
word. Like this, a string can be used not only for a character string but also to pack integer data in
less bits,

-7 -

CHAPTER THREE COMPOSITION OF CLASS DEFINITION

The ESP language accomplishes modular programming by adding an object-oriented function to logic
programming language Prolog. Modules in ESP correspond to “classes” in an object-oriented language.
This chapter describes definition of a class, the basic unit of an ESP program.

The farmat of a class definition is sutlined below.

class class-name with macro mecro-bank-name | has
[nature inheritance-clasz-definition]
[class-slot-definition

elass-method-definition I
[instance
instance-slot-definition
inztance-method-definition]
[local
lpezl-predicate-delinition |
end.

As shown above, an ESP program starts with the keywaord “class” and ends with the keyword “end".

Thase parts enclosed in square brackets [and 1 may be omitled, Hereinafter, square brackets [and)
indicate that the part enclosed in | and | may be omitted unless these symbols are confused with those

used for a [st.

3.1 General
(1) Defining a predicate

A simple exampel i5 shown below.

class with_ap pend has

rappend (Class, X, ¥, Z) :- @
append(X, ¥, Z}, |
local
append([], X, ¥) ; o
append (W X], ¥, [W | Z]) :- @
append (X, ¥, 7} ; —
end.

— 28 —

This is a deseriplion example of Tuppend’, the most basic among the list processing of Prolog. The part
indicated by & is writlen according to the same notational eonventions for clauses and predicates as
those used in an ordinary Prolog, except that a elavse ends with a semieolon, not a period. A predicate
as shown at & is called a local predicate. A local predicate is formed by writing, between the
keywords “local” and “end”, a series of clauses that have the sume name and the same number of
arguments.

|-

i A local predicate is literally a predicate that can be referenced only within the class

L]Dca]]:,r. Therefore, it cannot be called from other classes.

Sinee a lacal predicate can be called only from within the class, the funclion carnol be used from
vutside the class unless it is interfaced with the outside. A funection called “method” is used to
accomplish this interface.

A method can be called aot only from within the class where the method is defined, but

also [rom eutside Lhe c]a:—;s,

ESI" 15 an object-oriented language. That is, & eombination of data and procedures, culled an object, is
processed as a wnit, and exchanging messages between objects iz always carried out by using a
melhod.

Method call
Objeet 0

Method

Method cali

Method call
[Lm:a] predicate O

(Luca] predicate 1)

A method is delined as follows:

append (Object XY, 2) [:-body | ;

colon method name T arguments

Anobject is passed to thiz argument.

— 28 —

You can call & defined method by writing the body part of a clause as follows:

head ;- string-of goals,

:append {ij:.-E. [1,2], 3], X),string-of-goals;

colon method object arguments
name

The first argument of a method eall specifics the shject for the method to be called. The object needs to
have been determined only by the run time. That is, the boject may be written as a logical variable at
class definition, and the variable may be determined to be a method to be called dynamically at run

tirne,

pxY):=qiX 1),

When X is object 1 When X i= ohject 2
- Q(Obj, 1); . Q(Obj, 2):
Object 1 Ohiect 2

Upon execution of predicate p, il the value of variable X is object 1, then the method <13 is executed
and variable Y is unificd with 1. If the value of variable X is object 2, then variable ¥ is unified with
2. In this way, a method to be called may be determined dynamically at run time.

There are two Lkinds of metheds (class and instance), which are related to a class ohject and an
instance object respectively,

- 30 =

class with member has

:member (Class, X, List) :-

:new (Class, Inst object), * Class method

:member (Inst__object, X, List) ; definition
instance
:member (Obj, X, List) :- _I Instance method
member (¥, List) ; _i definition
local
member (X, |><|_]]II ; T Lacal predicate
member (X, [__| L}) - member (X, L} ; | definition

end.

As shown above, there are three kinds of predicates:

{1} elazs method
(2) instance method
{3) local predicate

Head unification and backtracking are performed for these predicates, similar to those predicates

used in Prolog.

The first argument of a method call specifies an ohject. One class objeet, and only one class object, can
exist in a class and can be directly specified by writing “#class-name”. As many instance objects as
necessary can be generated by class methed “new”, which is a method automatically provided to any
classes.

* Class method “new” is a special method to be avtomatically provided lo any ESI® class, and generates

instance ohjects from a elass abject.

-al —

#elass-name class-object
:new(#¢lass-name, instance-object)

(class object)

Class method *member” of class "with_member'" in the above example may be called by the

following:
rmember{#with member, 1, [3,1,2])

#with__member denotes o class object. Method “member is called, and the first argument (logical
variable “Class”) is unified with the elass object (#with member). Then, class method “new”

enerates an instance object, and “member” of the instance method is called.
£ i

In peneral, since a method accompanies a mechanism that makes the dynamic call possible, the speed
of & method call is slower than u local predicate. It would be reasonable that a predicate for a
predicate recursive call within a class iz made as a loeal predicate, This point will be discussed in
chapter five "PROGRAMMING TECIINIQUES"™.

The following shows a simple ESP program

class binary treel has
:adu:l[_, Tree, Key, Data) -
inserty{Tree, kKey, Data);
traverse(|, Tree, List) -
traverse(Tree, List, []);
local
insert{Tree, Key, Data) :-
unbound{Tree), !,
Tree = {Key, Data, , };
insert({Key0, , Left, }, Key, Data) :-
Keyl = Key, !,
insert{Left, Key, Data);
insert{{Keyd, e _}, Key,) -
Keyl == Key, !, fail;
imsert ({ , , . Right}, Key, Data) :-
inse;{F!E;h? Key, Data);

traverse{(T, L, L) :- unbound(T)}, !;
traverse({Key, Dala, Left, Right}, List, List0) :-
traverse(left, List, List1),
List1 = [{Key, Data}|List2],
traverse(Right, List2, ListQ);
end,

This program registers given key-and-data pairs in a binary tree structure according to the greater-
less relation between keys and lists the data by keys. In this program, a vector is used to express the
node of each binary tree.

Structure of each node

{Key, Data, Left__node, Right_ node}
Key: key

Data; data

Left _node: ieft child node

Right node: right child node

A node is maintained so that the left branch of the node has only such 8 node whose key is less than
that of the node eoncerned and the right branch has only such a node whose key is greater. When
giving data, you start at the reot of the tree and proceed to either left or right branch depending on the
greater-less relation® of key. In this program, if' a left or right branch does not exist, it is expressed
with an undefined veriable. For this, vou only need to perform unification when adding a new node.
{10, "datal0”, , 1

{5, “datas”, , Rights} {20, "data20"”, L }

{0, “datald”, . }

Suppose that the node whose key is § has no right branch and thus Right5 is an undefined variable.
When logical variabie Treee has as its value the root of this binary tree, if vou perform the following

methad call;

fadd{#biﬁary_tree'l, Tree, 7, “data7?”)
a new node

{7, "data?", , }
is renerated and unified with variable Rights.

With this program, if a node of the same key exists above the tree, the method sdd fails.

Reverse listing of the key-indexed data can be dene by scarching for the left branch, the node and the
right branch in that order,

.‘trau&rse{#hinary_treeh Tree, List)

* For details of the greater.less relation expressed with >, <, > = and = <, see section 3.6 “System-
Defined Macros™.

=33 =

As a result, the following list is unified with List:

[{0, “data0"}, {5, “datas"}, {7, "data?"},
{10, “datal0®), {20, "data20"}]

With thiz program, a new node is added by performing unification to an undefined logical variable,
However, onee a logical variable is defined, it is not undefined and thus cannot be redefined uniil it is
backtracked by failure. Because of this, the structure of this program does not allow the overriding of
a value or the deletion of a node if the key is the same.

The following program uses an algorithm in which nodes are copied one after another and behaves as
if & value is overridden if the key &5 the same. The structure of each node is the same as:

{Key, Data, Left__node, Right _node}
except that []is used, instead of an undefined logical variable, to indicate that there is no child node.

With this program, when edding data, any nodes Lo be passed are all duplicated. Therefore, you can
easily achieve the extension to maintenance of all data whose key is the same and deletion of nodes,
Since the strueture of the tree itself 1s almost the same as the previous program, method “traverse”
may be written in almost the same way,

class binary treel has

radd(_, Old_ tree, Key, Data, New tree)} .-
insert (Old__tree, Key, Data, NE;-tTEE];
traverse(|, Tree, List) -
traver.s;{Tree, List, [1):

local

insert([], Key, Data, {Key, Data, [L [1}} - ;

insert({KeyD, Datal, LO, R}, Key, Data, {KeyD, Datad, L, R} :-
kayd = Key, !,
insert{L0, Key, Data, L);

insert{({Key0, _, L, R}, Key, Data, {Key, Data, L, R}) :-
Keyl == Key, !

insert({Key0, Data0d, L, RO}, Key, Data, {Key0d, Datald, L, R}) :-
insery{RO, Key, Data, R};

traverse([], L, L) - !
traverse({Key, Data, left, Right}, List, List0) -
traverselLeft, List, List1),
List1 = [{Key, Data}|List2],
traverse{Right, List2, Listd);
end,

{2) Inheritance

ESP can use the inheritance functien of an object-oriented language. This facilitates incluzion of the
function of other classes.

The following class “[l'st_hand!er" inherits the function of the class "with append”, thus it becomes
u class having the class methods “append” and “reverse”, Therefore, vou ean call the method
“append” or “reverse” for the class object of the class “list handler”,

class list__handler has
nature with_append ;

reverse(Class, X, Y) - reconc (X, [], ¥)
local

recone ([], X, X) - !

reconc (W [X], ¥, Z) :- reconc{X, [W|Y], 2) ;

end.

(3) Slat

The nature, characteristic and internal state of an object are stored as a variable called a slot, For
example, for the object of a window, the position and the size may be given as & slot. The value of & slot
is not lost by backtracking and can be rewritlen any time,

A lpgieal variable of Prolog, once defined, is oot undefined and thus cannot be redefined until
backtracking oceurs by failure. Contrarily, when backtracking oeccurs by failure, the value of a
variable is release and cannot be preserved. To solve this problem, ESP supports various kinds of
functions to implement side effects. A slob is typical among them. The following shows an example of
where a slot is used to maintain the internal state of an object.

class lock has

instance
component state = unlocked | e K
docked{lack) - Locklstate = = locked ; wmeeeemene 3
dfock(Lock) - Locklstate = locked : e 3@
runlock(Lack) - Locklsiate := wnlocked ; - &

end.

- 35 —

The instance object of the class "lock™ indicates a particular lock. The lock has either "locked” or
“unlocked" state. To indicate this state, in the class “lock”, the instance slot "state” is defined and
given the initial value of “unlock” as shown by <212, The predicate shown by <2> means access to
the value of that slot and it succeeds or fails depending on the slot state.

Object!slot=name ... Referenceing the slot value

Object!slot = name: = value ... Substituting a value to the =lot

There are two kinds of slots (elass and isntanee), which are related to a elazs ohject and an instance
object. A value is substituled by overriding the previous value. Also, a value is not released by
backtracking. On the other hand, a slot cannot store an undefined variable or a vector (as well as a
fist). The progrommer may use either the technique of dragging with an argument using a logical
variable or the technigue of storing to a slot, depending on the use of the program. A slot is described
in detail in section 3.5.

The following shows a simple program using a slot. This iz a program in which the previously
described class “binary__trec2" has been rewritlen using a slot instead of a veetor. IF it were wrilten

using & vector, the following problem would arise:

If you want to add items with which you can perform overriding for the logical variable of a
node, vou need to duplicate all those nodes you pass.

® Because the tree itself has the structure of a stack vector that does not have side effects, you
eannnt release the stack that will be necessary for control at run lime, therefore, you cannot
handle a large amount of data.

Class “binary__tree2” in the following program uses an object- oriented function. That is, in all
instance objects, the child branch is given as a slot value. The following four instancs slots are
provided:

key . Rey

data .. Data

left ... Instance ohject indicating the left branch
right .. [Instance object indicating the right branch

Sinee key and data are stored in slots, an undefined variable and a vector (as well as list) are not
allowed,

Storage of structural data may seem difficult since a vector and a list cannot be stored in a slot,
However, this can casily be implemented using an instanee object as shown. Also, since you can issue
a method for that object, various kinds of operations can be widely selected.

— 36 —

class as bimary tree element has

instance
attribute key,
data,
left =],
right := []:
end.

class binary treed has
nature
25 binary tree element

:ereate (Class, Qbj) -
new{Class, Obj),
Objlkey = 'SSroot’;

instance

add(Ob), ey, Data) -
Keyl = Ohjlkey,
insert (KeyD, Key, Data, Obj),
fail:

addl .,)

straverse(Obj, List) -
traverse (Objteft, List, List1),
traverse (Objlright, Listt, []};
ttraverse (Obj, List1, Listd) -
traverse{Objllefs, List1, List2),
List2 = [{Objlkey, Objldata}|List3],
traverse (Ohjlright, List3, List0);

local

insert (Keyld, Key, Data, Obj] -

Heyld = Key, 1,

insert element {left, Key, Data, Obj);
insert (KeyD, Key, Data, Obj) :-

Keyd >= Key, !,

Objtdata - Data;
insert{ , ey, Data, Obi) :-

insert _element (right, Key, Data, Obj};

insert element {Position, Key, Data, Obj) :-
P = Obj!Position,
1 atomiP), I,

cnewl(#binary treel, Element),
Obj!Position -= Element,
Elementlkey := Key,
Element!data := Data;

:add(P, Key, Dawa));

traverse([], List, List) = 1:
traversa(Obj, List, List0) :-
straverse(Ob), List, Listd);

and.

- 37 -

3.2 Inheritance
The definition part of inheritance specifies the classes to be inherited and their order.

[Example] nature classt, class2;
nature classt, *, class2;

Write keywerd “nature” followed by the class name atoms of the classed to be inherited or an asterisk
(indicating that the self-class is to be inherited), each delimited by a comma, and wrile a semicolon at the
end. The order of inheritance is significant and affects the inheritance of a method or a slot. (See section
J3tad.a)

The order of inheritanee is determined as follows:
(1) If no inheritance definition is specified, the self- class is the only one class 1o be inherited,

(2) I an inheritance definition is specified, the self- class and the classes specified in the definition
are inherited. The order of inheritance is determined by the order in which the classes are
written. The seliclass is designated by an asterisk (*). If the asterisk is omitted, il is assumed
Lhat the self-class is at the beginning.

(3) If the same class name is specified more than once, the class name appearing first is valid.
The following shows an inheritance example.

Suppose that class "a” is inheriting classes “al” and "a2”, and class “b" is inheriting classes “b1” and “b2",
and elass "¢" is inheriting classes “a2"” and “b1".

class a has

nature al,a2; at a2 b1 b2
AYAYAY/
a C b

class b has
nature hi, b2;

end.
class ¢ has

nature az,bl;

and.

I class ex1 has
nature a,b;
end.

In this case, the order of inheritance is as follows:

Lyt a—al—a2 h—=bh1—h?
inkeritance of a inheritance of b

@ class ex? has
nature a,c ;
end,

In this case, the order of inheritance is as follows:

Bu— a—ral—sa? c—hl
inheritance of a inheritance of ¢

& class ex3 has
nature a,* ¢ ;

end.

In this case, the order of inheritance ie as follows:

a—al—al exd-s c=h1
inheritance of a inheritance of ¢

As ubove, the order of inheritance is on the depth-first basis. The inheritance loop as deseribed below ig
not allowed.

class exd has

nature ex5;
end. exy =w=—exb

class ex5 has
nature exh; exd

end.,

class ex6 has
nature oxd;
end.

-39 =

All ¢lasses implicitly inherit the meta-class “elass”, in which some basic method have already been
defined, including method “new” that generates new instance objects. For details of class "class”, see

section 3.6,

3.3 Method Definition

A methed is inherited to the child ¢lass. Those methods having the same name and the same number of

argumetns, among the inheritance classes, become the same predicates.

class ex1 has
Pl 1
end.
class ex2 has
nature exl1;
tpl_. 2

end.

In this case, the class method “p” of the class "ex2" has the alicroative and has the same meaning as when

written as below,

class ex has

pl_. 2
el 1)
end.

There are the following three kinds of methods:

(1) Beflore-demon predicate
This iz defined as follows:

before:method-namelarguments) [:-body |

(2) Principal predicate
This is defined as fallows:

‘method-namelarguments) [-body | ;

(3) After-demon predicate
This is deflined as follows:

aftermethod namefarguments) [-bady | ;

— 40 =

A demon indicates preprocessing or postprocessing for an erdinary principal predicate. (From a viewpoint
of a logic programming language, a demon limits the applieation of axioms)

class lock has
instance
component lock = unlocked ;
:unlocked(Obj) :- Objllock = = unlocked ;
lockiobj) -+ Objllock = locked |
runfocki{Ob)) = Objllock ;= unlocked ;
end,

class with a lock has
instance
component lock is lock ¥
before :open(Obj) :- unlacked{OnjHock) ;s @

end,

class door with a lock has
nature with a _In:k‘ :
instance
ropen(Ob]) - s 0 s e

end.

The instunce object of class “door__with _a lock” indicates a door with a lock. 'Lhe door can be apened
vnly when it is not locked. That is, when method “:open{Obj)" is issued to the instance object of class
“door__with_a_ lock”, the before-demon predicate shown as (I is executed before the principal
predicate shown as &, and if it is ascertained that the doar is unlocked, then the door can be opened. If the
before-demon predicate @ fails, the prineipul predicate 2 is not executed and method “:open{Qbj)”
results in failure.

* This indicales to generate an instance object of the elass “lock” and store it in the slot “lock” in
advance. (See section 3.5.)

— 41 —

A method is formed from an AND combination of the following three predicates:

(1) AND eombination of before-demon predicales
This is what is made by performing an AND operation to the before-demon predicates of all inherited

elasses in the order of the inheritance,

(2) OR combination of principal predicates
This is what is made by performing an OR eperation to the principal predicates of all inherited classes

in the order of the inheritance,

(3) AND combination of after-demon predicates
This is what is made by performing an AND operation to the aflter-demon predicates of all inherited
classes in the order of the inheritance,

The before-demon means preprocessing, and what is first inherited is executed first. After-demon means
posi- processing, and what is first inherited is executed last. That is, they grow towards the outside of the
principal predicate.

class ¢lass? has class class3 has
before:get(X) - ¢ (b2} before:gel(X) - o (b3)
iget(¥) - L ; lp2) rget(d) - L. . (p3)

after get(X) ... ; (a2) after get(X) - ... ; (a3)

inherilance

class classl has
nature class?, classd

befgre:get(x) - i {h1)
get(X) - ... (pD)

after cget{X) -.....; (al)

{alipl)... mean the predicates in a class {i.e., a group of clauses having the same predicate name and the

samée number of arguments).
With the above cxample, method “:gel(¥)" of class “class1” is composed as follows:
rget{x):

b1, b2 b3 (pl;p2;p3;fall), a3 a2 al;

AND combination OR eombination AND combination
of before-demaon af before-demon of before-demon
predicates predicates predicates

Since they are combined as above, the following points need to be noted:

(1} Since before-demon predicates are combined by AND, if any of them fails, the principal predicates are
ot execited, I 2 middle predicate has an entity that is to be unified with an argument, the result is
passed to a later predicate call. Therefore, it is possible to determine the value of an argument in a
before-demon predicate and pass that information to the principal predicate.

class ex1 has
before pl_ .Y} - Y =1 ; = @D

e,

class ex2 has
nature el
ol _,K}I -ohady [e 3

end

Il you call class method “p" with :p{#ex2, A), (U causes unification of 1 with A and then & is ealled.

Therefore, it is the same as the case when @ s ealled with :p{#ex2, 1).

(2} If a principal predicate has alternatives {i.e., multiple solutions), they may be limited to one of them

by an after-demon predicate,

-3 -

class ex3 has

gt 1
al . 2)
al L 3)

and.

class exd has

nature ex3 ;
after :qi } :- relative _cut{T'l o

end,

A call by :q(#ex3, X) results in alternatives, while a call by :q{#ex4, X} does not.

* Multi-level cut. ! and relative__cut(0} perform the same operation. In the case of the parsed run code,
however, the operation is not guaranteed,

44 _

3.4 Method Cail
There are the following three kinds of method calls:
(1) Normal method call

[Example] cappend (Obj, [1,2],[3,4], %

method class object or instanes ohject
name

(2} Chass method call with a clags name specified

{The class name is not preceded by a colon.)

[Example | ex3 @ create (#exd, X)

—_———— -

class method class
nAMe name objeel

(3} Instance method eall with a elass name speeified

(The class name is preceded by a eolon.)

[Example } rex3 o initialize (Obj, X)

class method instance object
name TAITEe

With a normal method eall, the method to be actually ezlled is dynamically determined by the abject
specified at the first argument. The argument only needs o be an object at the call at run time and thus it
muy be a variable that will be unified with an object just before the aetual call,

With a class meothod call with a elass name specified, the elass method of an explicitly specified elass (ie., a
combination of the methed defined in the class and the mwethod defined in the parent class) is called. The
first argument of the method call must be & class object, and the specified class must be the parent class of
that class boject. The class object only needs to be determined at run time, but the class name must be

explicitly specified at cluss definition.

— 45 -

class ex5 has

ol 1)
pl_.2)
el ,3)

end.

ciass exh has
nature ex5 ;
after :pl _,) :-relative _cut(l) ;

end,

class ex7 has
nature ex5, exb

end.

If class method “p” is called with ex5:p(#ex7,X), the class method of class “ex5” which has alternatives is
called. If class method “p" 15 called with ex6:p{#ex7,X), the class method of class “ex6” which has no

alternatives is called.

An instance method call with a class name specified is also accomplished in the same way, except that the

clase name must be preceded by a colon, -

For a methaod call, as described above, the object at the first argument only needs to have been determined
by the run time. In the usual notational convention, however, the method name must be specified with an
atom at clase definition. ESP supports a means by which the method name and the number of arguments
may be dynamically determined. This is achieved using method “refute” of class “class” which is
automatically inherited to any class.

rrefute {ohject, method name, argument-vector)

class object or instance object

--------------------- e A o e T e e e o o .

* For details of class “class”™, see section 3.6,

— 46 —

This calls the methed (specified by "method-name™} of the chiect (specified by “obiect™) using the elements
of “argument-vector” as the arguments. The argument-vector is a vector whose elements are related to
the arguments sequentially from the beginning. The method-name and the argument-vector may be
specified by a logical variable, which only needs 1o have been defined by the run time of -refute.

class ex0 has

pl L Obj, Pos, ArgVect) :-

method _datalVector),
vector__element(Vector, Pos, Method name),
crefute(Db), Method name, ArgVect) [o @
local
method _data({test0, test!, test2}) ;
end.

If elass method “p" s culled with :p(#ex0,0b},0,{X.Y}), thern T calls :1testD{Obj,X,¥). If class method “p" is
called with :p(#ex0,0bj,2,{}), then T calls (test2{0bj)

- 47 —

3.5 Slot

ESP is a programming language developed by introducing the feature of an object-oriented language to
Prolog, and has two kinds of variables:

® Logical variable of Prolog
® Slot, which stores the nature and internal state of an object

The logical variable features (1) it is defined by unification and (2) it is undefined by backtracking. In
other words, it is a variable that does not have side effects. On the other hand, the slot has the same
nature as a variable used in @ procedural language. That is, the slot is a physical variable that can be
redefined arbitrarily. Alse, it is not undefined by backtracking In other words, the slot is a variable that
has side effects.

The logical variable and the slot are the same in that they do not need to have their data type determined
in advance, that is, they can have a value of any data type, such as an integer number, a floating-point
number and a string. (However, the sloft cannot have a stack vector or & variable that dees not have a
value *} That slot is one of those functions that support the ESI™s powerful programming capability.

To reference a slot, you need o specify the object and the slot name as a pair. Generally, more than one
instance objecl is generated for 2 class and these instances have the same stot name. Hecause of this, yvou

need to specify a particular slot of & particular object.

There are two kinds of slots: attribute and component. A slot name must be an atom. A slot is defined, as
shown below, starting with the keyword ("attribute” or “component”), followed by a slot definition
{delimited by & eomma if more than one) and ending with a semicelon.

attribute slot1, slot2;
component slot3, siotd;

You can specily the initial value of a slot at slot definition.
(1) Slot name (atom) only

Integer 0 is stored as the initial value.
(2) slot-name := initial-value

Give the initial value by a known value, The initial value must be an atomie, string or class object
(#clags-name). (You cannot specify such a term that cannot originally be substituted to a slot, such as
a vector, list or variable.)

¥ you may use the pool function (see chapler six) Lo store the structural data (e.g., list or vector) as the
slot value.

_ 48 —

(3) slot-mame is class-name
Generate an instance object for the class specified by “class- name” and store it as the slot value.
(4) slot-name := initial-value - hbody

This is what is called a slot initialization predicate, which stores the execution result of “body™ as the
slot value,

Storage of a slot initial value (i.e, execution of a slot initialization predicate), if it is a class slot, is
performed when the class is generated. Therefore, since the class is not generated if the initialization
predicate fails, you should not use an initialization predicate for a elass slot if possible, Note that this
applies not only to the case of (4) abave, but alse to the case of (3) and the case of the storage a elass ohject
of (2). For an instance slot, the storage of the initial value is performed when an instance object is
generaled by method “new”,

class ex(has

atiribute a ;
component b := 12, ¢ := “string”, d := #exl
attribute {d = W :- :create(#essential window, W),

sat _size:‘w, 100, 100)],

e 15 lock ;

As shown above, you may write the keyword (“attribute” or “component™) as many times as you want.
(However, you eannot write it between method definitions.) If the body part of a slot initialization
predicate has more than one goal, enclose them in parentheses as follows:

attribute
{a := X :- hady!, body2),
(b := ¥ = bedy3, body4),

If you write “a 1= (X :- bodyl, body2)” instead, it is interpreted as an instruction to store a
compound Lerm having ™" as the functor into the siot, and it results in an error at initialization,

* Because the priority order of the operators are;
- greater than , greater than ;=

— 49 _

A slot can be initialized as described above. However, you should pay attention when using a slot

initialization predicate for the following reasons:
o [fthe initialization predicate fails, generation of the class ohject or method “new” fails too.

The executivn order of initialization predicales is unceriain. Pay attention especially when
writing a predicate that has side effects.

® When initializing an instance slot, you cannot use the ohject of the instance slot itself,

For initializalion of a class slot, it would be safer to use an initialization class method instead of the above
initialization specification function. For initialization of an instance slot, you can issue an instance
method of its own using an after-demon for method “"new™.

Sinee the sccond argument of the afler-demon of method “new” has already been unified with the
instance object just generated, you can issuc an instance method of its own class and access to the
instance slot. From this viewpaint, it is more advantageous than when using an initialization predicate.
On the other hand, initialization by a demon has a difficulty in alteration by overriding using an
inheritance. You may use either technigue &s required.

class ex1 has
atiribute (window = W := :createl#essential_winduw, W,
'set size(W, 100, 100});
instance
attribute list 1= L :- :create(#list, L);

end.

class ex1 has
atribute window
iset_ window(Class) :-
screate{#essential _ window, W),
rset size(W, 100, 100),

Class!window = W

after new(_, Obj) :-
cereate(dlist, List),
Oty llist @ = List ;

[nstance
attribute list ;

end,

- 50 —

There are four kinds of slots;

Class attribute slot
Clasz component slot
Instance attribuie slot
Instanee component slat

Only the following two puirs nmong Uhe fowr slols can have the sume slot nume in the same elass:

Class attribute slet and instance component slot

Class component slot and instance attribute slot

The other pairs cannot have the same zlot name. For example, the followig definitions are not permitied:

class ex1 has
attribute sloti
componenl siotl

end.

class ex? has
component s ot
instance
component slot?

end

An attribute slet and a component slot are dilferent in the following points. An attribute slot corresponds
to a global variable of a procedural language and ean be referenced by gspecifying a pair of an object and a
slot mame atom {rom oulzside the class definilion. A component slol corresponds to 2 lecal variable and
ciennuel by relerenced from cutside the class definition. It can be referenced within the same class

definition, similar to an atiribule slot, by specifying apair of an object and a slot name.

Atrribute slat ' Tobal variable

Componentslot - Local variable

An attribute slot name iz associated with a special identifier for each class, and the slot is actually
aszociated with the identifier only for slot access within the ¢lass, Therefore, if a slot name is specified
statically at definition, you cannet access a slot of the same name in a different elass, Contrarily, il a slot
nuine is speeified dvnamieally at definition, it is not converted to the identifier specifie to a class, you

cannot access the component slot even in the same class definition,

=51 =

class ex0 has
component slotd 1= 0 ;
wgetliClass, X} :- X = Classlslotd |
get0t(Class, Obj, X} :- X = Objlslotd ;
:get02(Class, Obj, X} :- p(Slet), X = Obj!Slot ;
local
pislatd) :

end.

class exl has
nature ex ;
getClass, X) :- X = Classlsloth ;

end.

class ex? has

nature ex(;

component slotd = 2 ;
rget2{Class, X) - X = Class!slot)

end.

class ex3 has
attribute slotd = 3

end.
The particular results are as follows:

geti#fexd, X} .. X =10
:geti(#ex1, X) ... Error
get{#exd, X) ... X =10
iget2{#fex?, X) ... X =2
getliffex2, X) ... X =0
wgetli{#exd, #exO, X) ... X =10
iget0t{#ex0, #ex3, X) ... Error
igetd2{#Fexd, #exd, X) ... Frror
igetld(#exl, #ex3, X} ... X =3

An attribute slot and a component siot are processed differcnily ab class inheritance. If the same variable
name exists in hoth inheriting and inherited clase definitions, the slot is provessed as follows:

Mtlribute slots degenerated to sne variable,

Componentslots: remain as they are, and are not degencrated,

class €1 has
attrinute a, b ;
component d, & ;

end.

Cioss o has

nature <1
attribute a, ¢
component d, f

end.

In this case, the class object of class “c2" has the arca Lo store the following slot values:

attribute a

component d of ¢l

e of ¢l

d of ¢2

f of 2

- i3 —

class with a front door has

instance
component door = closed ;
:cpen_‘fmnt{l:}bj} - Objldoor ;= opened ;
:elose front{Obj) :- Objldoer := closed ;
end.
ciass with_a back_door has
instance
component door = closed ;
:open _back(Obj) :- Objldoor = opened ;

iclose back(Obj) :- Objldoor @ = closed |

end.

class room has
nature
with a front door ;
with a back door ;

end.

Therefore, you should take the above difference into consideration when you determine whether to define

a slot as an attribute slol or a component slot.

In the above example, if you define the slots “door” of “with _a front door” and of
“with a back door” as an attribute slot instead of a component slot, then both slots are degenerated
and thus when you open the frﬂnt_dour, the batk_dour resets gy if it is opened too. If attribute slots ure
degenerated, the initial value first inherited has priority over the others,

— B4 —

class at has

attribute slotd = 1
end.

class a2 has

attribute sletd = 2 ;

end.

class a3 has
nature al, a2 ;

end,

class ad has
nature az, al ;

and,
The initial value of #a3'slotd is 1, and that of #adlslotd is 2. If an attribule slot and a component slot
coexist as a resull of the inheritance, they become as follows:

class al nas
attribute sletd .= 1 ;e -“_TJ

end.

class a2 has

nature al ;
component slotl = 2 ;e 2;
‘get2{0bj, X) - X := Objlsiotd ;
end,

class a3 has
nature a? ;
rget3[Ob), X)) - X = Objlslotd ;

end.

-85 =

With class “a2”, component slot “slotD” has priority over attribute slot “slot0". This priority order holds
regardless of the order of inheritance. Since component slot “slot0” cannot be accessed from class “a3”, the
attribute slot is accessed instead. Therclore, variable X of :get2(#a3,X) is unified with 2, and variable ¥
of :get3(#a3,Y) is unified with 1. In other words, you cannol use format “object!slot-name” to access the
attribute slot (U from within class “a2”, and similarly you cannot use the same format to access the
component slot @ from within class “a3™

As described abeve, you cannot store such a data ilem as an undefined variable, stack, veetor or list in a
slot. To store struclural data in a slol, you may use the pool function (which is a structure having side
effects, actually an instance object.) Far details of the pool function, see section six "BASIC CLASSES"

The following program example has a function to convert a general term to an instance object (strictly
speaking, an instance object with the converted data store in the instance slot). The program has the
following three slots:

frozen s Maintaing information about the stored undefined variables and vectors.
variables e Maintainz the number of the stored undefined variables.
externals - Maintains items that can ariginally be stared (e.g., integer numbers and strings).

frozen consists of a 32-bit string, whose upper 2 bits are used o indicate the type of stored data.

[(— Indicates a variable. The remaining 30 bits are used to indicate the variable number.
LB BEETTETpS Indicates a stack vector. The remaining 30 bits are used to indicate the tengih,
00 oo Indicates normal data. The remaining 30 bits are used to indicate the position of the data

stored in slot “externals™,

Since uny of them does not need as much as 30 bits in most cases, data eompression using an B-bit string
instead of the 32-bit string would improve efliciency.

Two methods are provided: class method “freeze” which converts a term to an instance chject, and
instance methad “melt” which reconverts it

Hfreeze [#fmzen__mrm, [1, 2, %, ¥, X], Qbj)

This example converts the list [1,2,X,Y,X] to a format suitable for storage in the slot and stares it in the
slot of instance object *Ohj",

Then, if you exccute

imelt{Oh),Out)

~ BB —

[1.2.A.B.A] is returned to Out. The undefined logical variable names are just for convenience and do net
have a special meaning. When “frecee” is perforined, if the undefined variables are identical to each other
(zince they have been unified with each other, for example), they remain identical even after “melt”. The
same function a5 this program example has been provided by SIMFOS with the same class name
("{frozen__term™), which uses the built-in predicates "stack to heap wvector” and
“heap_tn_stack vector”. Hlowever, vou may learn a data storage t;c]'maue f':'nE this program

example.

class frnzen_terrn has
Areere(Class, Term, Frazen) :-
‘newl(Class, Frozen),
{ freeze(Term,
0, var,
0, Frz, Frnzen_llst, [1,
0, Ex, Ext_list, []),
new string(Str, Frz, 32}, fili_'_str‘ng[Frozen_list, 0, 5tr),
new heap vector(Vcl, Ext), Fil!_vectorf‘;xt_list, 0, Wct),
ar
Vet

Frazenlvarables

Frazenlexternals

Frazen!frozen

Str
fail;

true J;

instance
atiribute

frozen, variables, externals;

meltiFrozen, MMelted) :-
new_stack_ue:tor[‘-.-’ars, Frozen!vanables),
stringiFrozen!frozen, Length, 32),

meltid, . Frozen!frozen, Vars, Frozenlexternals, Melted};

-57 —

lecal

freeze(X, W0, V, FO, F, FLO, FL, EO, E, ELO, EL) :-
stack wvector(X, 2), first{¥, ¥}, unbound{Y), 1,
freeze vector(2, X, V0, V, FO, F, FLO, FL, EC, E, ELO, EL);
freeze{'ﬂﬁR'{‘u’}, W, W+1, F, F+1,
[V + 16#"B00DDO00|FL), FL, E, E, EL, EL) -
freeze('$5VAR'(N), VW, V, F, F+1,
[N + 164 “800000007|FL], FL, E, E, EL, EL) :- J;
freeze(X, VO, Vv, FO, F, FLO, FL, EQ, E, FLO, EL} :-
stack wector{X, NJ, I,
freeze wector{N, X, V0, \, FO, F, FLO, FL, EO, E, ELO, EL);
freezelX, V, V, FO, FO+ 1, [E[FL], FL, E, E+1, [X|ELL EL) ;

freeze vectorls, X, Vo, v, FO, F,
[+ Y64 "COOD0000" | FLO), FL, EQ, E, ELD, EL) :-
freeze_args!ﬂ, S, M, W0, Vv, FO+1, F, FLO, FL, EO, E, ELD, EL} ;:

freeze argslS, S, , W, W, F, F, FL, FL, E, E, EL, EL} - };
frecze args(K, S, ¥, V0, v, FO, F, FLO, FL, EO, E, ELO, EL) :-
vector element(X, K, XX),
freeze{X¥, WO, V1, FD, F1, FLO, FL1, EO0, EY, ELO, EL1),

freeze_arqs{l{-{-]‘, g, ¥, W1, VW, F1, F, FL1, FL, EY, E, EL1, EL);

fill_string{[1, _, _) - Y
fill__string([HIT), K, 5) :-
sel_ string ‘element(s, K, H), fill stnng(T, K+1, s},

fill wector(il, .)} == 1
fill__vector([HIT], K, 5) :-
5et_uectnr_elemer:1t5. K, H), fill vector (T, K+1, 5);

melt{kn, ¥, 5 W, E, M) :-
string_element(s, K0, 5K},
melt one(SK==30, SKA6#“IFFFFFFF", KO+1, K, 5, V, E, M};

melt_nne[ﬂ, K, W, M, 5 W, E, EK} :- I, % normat
uc-cmr_efernent(E, K, EK) ;
melt onel(t, K, N, N, 5 W, E, K} == !

melt_one(2, K, N, N, S, V, E, VK) = 1, % variable
vectur_elernentt"u", K, WVE):
melt one(3, Size, ND, N, S, V, E, X) :- % wvector

" melt vector(Size, NO, N, 5, V, E, X);

melt wvector(Size, NO, N, 5, WV, E, X} :-
new _ stack vector(X, Size),
melt args(d, Size, NO, N, 5, V, E, X);

melt args(Size, Size, N, N, ., ,)} 1
m&ll_argsl{ﬁ, Sizge, NO, N, 5, W, E, X} :-

“melt{NO, N1, 5, V, E, XK),

vector _element(X, K. XK),

melt args(K +1, Size, N1, N, S, V, E, X};
end. -

— B8 =

3.6 Class "class"

Class “class™ 15 imphicitly inherited 1o any ESP classes and provides the basic methods that can be used in

any classes,
(1} Methods cormmen to classfinstance
:get_slot{Object, Slot-name, "Value)

Uniifies the value of the slot specified by the “Slot-name” atom of “Object” with the value passed Lo
the argument, value,

'set slot{Object, Slot-name, Value)

Updates the value of the slot specified by “Slot-name” atom of "Ubject” with the value passed to the
argument, value,

:method{Object, "Method-name, "Number-of-arguments)

Succeeds il “Object” has the method of “Methad-name” and “Number of arguments”, olherwise fails.
If this methad is ealled with *“Method-name” or “Number-pi-arguments” remaining as a variable, it

returns the information of all methods of the object as the alternatives one after anather,
slot{Object, “Slot-name)

Suceeed if “Objecl” has the slot of “Slot-name”, otherwise fails. If the method is called with “Slot-
name” remaining as a variable, it returns the names of ali sltos of the ahject as the alternatives one

after another,

iis__class(Object)

Succeeds {"Object” iz a elass object and fails if it is an instance objeet.
rrefute{Object, Method-name, Argument-vector)

Calls the method specified by “Method-name” with the “Object” and the elements of “Argument-
vector” used as the argumetns. To specify “Argument-vector”, use a stack veector,

:class__object(Object, “Class-object)

For a normal method call, it returns the elass object of the class Lo which the specified object belongs.
Faor a method call with a elass name specified, it returns the class object of the specified class.

rundefined method{Object, Method-name, Argument-vector, Address)

This method is called when an undefined methed attempts to be called, and gencrates an

exceptiontogether with the given information.

"Address" is the address (integer) of the method call that has performed the call for the undefined
method. Usually the user does not use this.

— 59 —

(2)

The user can handle an undefined method call by overriding this method in the class definition, Since
this method has been implemented in a special way, it will not be called as an alternative even if the
overridden methed fails.

:undefined _slot{Object, Type, Slot-name, Value, Address)

This method is called when access of an undefined slot is attempted, and generates an exception
together with the given information,

*Type” indicates the type of built-in predicate that has accessed an undefined slot (the type is either
“get slot” or “set slat”) “Value” is the third argument of “get_slot” or “set_ slot”. "Address” is
the aﬁdress (inmgﬂr_] at which the undefined slot access has been made. Usually the user does not use
this address.

The user can handle an undefined slot access call by overriding this methed in the class definition,
Since thiz method has been implemented in a special way, it will not be called as an alternative even

if the overridden method {ails,
Clags method
:new({Class, ~ Instance-object)

Generates one new instance object and returns it in the second argument. The slot of the generated

instance is initialized according to the instructions written in the program.
package name{Class, “Package-name)

Unifiey the package name atom of the package helonging to “class” with the package name passed to

the argument, value.

:ciasi_name{{:lass. ‘Class-name)

Unifies the class name atom of *Clazs” with the clasz name passed to the argument, value.
telass_id(Class, “Class-identifier)

Unifies the class identiflier atom of *Class" with the class identifier passed to the argument.
:super(Class, "Parent-class-object)

Succeeds il the zecond argument is the specified class object of the parent class of the class to which
this method belongs, otherwise fuils. [f the method is called with the second argument remaining as
an undefined variable, it unifies all ¢lass objects of the parent class with the second argument as the
alternatives one after another,

- 60 —

{3 Precautions

For improvement of the exceulion speed, methods “get__slot” and “set_ slot” have been implemented
in a special way. Because of this, you cannot define a principal predicate (a normal method) and a

demon for these methods.
Also, the following methods eannot define & principal predicate (they can define demons.)
new, super, and class_object

To the other methods, you can define a principal predicate and demons freely.

— 61 —

3.7 Macro

3.7.1

General

The ESP language supports various macro expansion functions and this is one of the main features of
ESP. A macro expansion function automatically works to a specific pattern appearing in an ESP program
and expands it to & prescribed pattern. Besides the system-defined macros, you can define your own

IMACras.

The example programs described in this manual use many macros. Generally, macros may be classified
into three kinds:

{i)

{11}

(iii)

Macros ko express a constant value

Example: 16# A0000 => 40960
duuble_Eytes#UZS} == a 16-bit string whose length is 1 and whose Oth
element is 123

Arithmetic operations

Example: Z=X+Y =2> add(XY.Z)
An arithmetic operation expression using general operators is converted to a built-in

predicate.
Macros related the ESP execulion mechanism

Example: #class-name =2> aclass object
X:=0bjlsiot => set slot(Objslot,X)

The system-defined macros are expanded as follows:

<ohject pattern> =3> <generaling predicate>,

< expanded pattern>,
< testing predicate ="

For eample,

< pbject patlern>

ig expanded to

< generating <expanded
predicate > pattern =

* No system-defined macros require a testing prdicate. It is related to 2 user-defined macro. (See section

38)

— B2 —

The way a maero is expanded differs a little depending on the position where the object pattern
appears,

@ When the object pattern appears as one of the goal in the body part
Example 1:

piX)-..one goal(X),....

- —- = =

< ghject pattern >

is expanded to

p(X):-...., =generating predicate >,
< expanded goal =,
< testing predicate> _._.;

Example 2:
plObj,X):-X = Objlelement;
iz expanded o

plObj, X):-slat{Obj element, X);

2 When the object patiern appears as a term which is an element of a body argument or of a
structural argument

Example 1:

piX}-......one_ goallterm),....;

< ohject pattern >

is expanded to

p{X)-......, <generating predicate>,

one__goallterm’),
< expanded pattern
< testing predicate >,.....;

- 63 —

Example 2:

p(X.Y. Z):-gl X +Y]|Z1);

< ohject pattern >

is expanded to

p(X.Y,Z):-add(X.Y Alal A |Z]);

<expanded <generating
pattern> predicaie >

When the object pattern appears as a term which is an element of a head argument or of a
structural argument in the head part
Example 1:

p{t_e_rg'-_}:-.._. Jlast__goal(Args);

< object
pattern >

is expanded to

plterm’):- <testing predicate>,...._. last _goal(Args), <generating predicate>;

<expanded pattern >

Example 2:

pla.A + B):-ga,B);

< abject pattern >

is expanded to

<expanded <generaing
pattern > predicate >

Pay attention to the following case:

plObj,Obj!slot name):-1;

— B4 —

At a glance, slot access seems to be performed before the cut, but in fact it is expanded as follows:
plObj,5):-1 si0t(Obj,sl c:t_name,i]l;

If you want to make it be a program that branches based on the slet value, you must explicitly
gpecify slot access in front of the cut of the body part.®

p{Ob),5).-5 = Obj !siot_name,!.‘

1.7.2 System-Defined Macros
(1) Macros to express a constant valpe
Base# Character-string’

The “Character-string” is expunded to an integer value of the radix specified by the “Base”. The base
may be between 2 and 36, The character string may contain ten digits from 0 to 9 and letters from a to
z {or A to Z). The uppercase and lowercase letters are not diseriminated. Up to what digit or letter can
be used depends on the radix used.

Example: 16#A000 -> 40960

#Character”

The “Character” is expanded to the eorresponding characte code (integer).**
Example: #4° - > 9025

control# Character’
meta# Character
control_meta# Character’

The "Character” is expanded to the same code (integer} as when you press that character key on the
keyboard while helding down the control key, the meta key, or both, respectively.

key#Name, meta#Name

The "Name” iz expanded to the code (integer) eorresponding to the special key designated by that
name ¢n the keyboard. The following speeial key names are supported:

abort, help, bell, bs, cr, del, esc, if, tab, up,
down, left, right

S R R S e e o o o S S o o o o

* This point is also related to TRO (Tail Recursion Optimization) deseribed later. That is, even if the
last goal is written as indicating itself, a generating predicate is inserted after it when the macro is
expanded, and TRO may not work,

** The standard character eode system of PSI eonforms to the JIS 16-bit code system,

- G5 =

(2)

pf#Number

The “Number is expanded to the code corresponding to the funetion key of that number on the
keyboard. The number may be an integer value between 0 and 18.

keypad# Character’

The “Character” is expanded to the code corresponding to the character on the key pad provided on
the right side of the keyboard. The character may be a digit (0 to 9) or a symbol (comma, period, or

hyphen).
mouse#Click

The “Click” is expanded to an atem eorresponding to a mouse click input. The click may be 1, 11, m,
mm, r, or rr (which corresponds to one left click, two left clicks, one middle click, two middle elicks,
one right click, and two right clicks, respectivley.) The expanded atom may be expressed in the form
of ‘mouse# 1, for example.

ascii# Character-string’
The "Character-string” is expanded to the corresponding ASCII code string (a string of 8-bit codes).
string# Character-string’, jis# Character-string’

The “Character-string” is expanded to the same string of JIS 16-bit codes as when you simply write
“Character-string”, This macro has been provided on PSI so as to maintain compatibility with the
developing eross-system. Usually vou do not need to use this macro on PSIL

words#{Vector} ... 32.bit string
double_bytes#{Vector} .. 16-bit string
bytes#{Vector} ... B-bitstring
bits#{Vector} ... l-bitstring

Each element of the string is given by an integer value (code), not a character. You may give an
integer value for each element that can be expressed by as many bits as allowed for that string.

Example: bits#{1,0,0,1,13}
double bytes#{16#FFO0 164 12487}

At expansion of these macros, the object pattern directly corresponds to the expanded pattern without
any generating predicate added.

Arithmetic operations

The arithmetic operations are grouped mainly into two kinds: those related to the unification and the
comparison and the other related to the operators,

I} Unification, comparison

¥ ois ¥ sesnensunify(X,)

¥ = ¥ weesens unify(X, Y)

X == Y e gqual(X, Y)

¥i== Y e not__equal(X, Y)

K =;=0% - dentical(X, Y)

X ==Y wesnes nut_identical[}{, ¥
¥ o< ¥ =eee less than(X, Y)

X =< Y = not less than(Y, X)
X=X e less than(Y, X)

X = Y nc-t_less._than{x, ¥)

For details of comparisons using built-in predicates for each data type, see the built-in predicate
manual. The following biriefly describes only those eompurisons that are often used:

(i} Comparison of aloms

Atoms are compared with respeet to their atom numbers {integer), regardless of the
corresponding names.

(i) Comparion of strings
Strings arc compared with respect to their character codes on the lexical order basis.
‘aa’ < 'bb’
& = ‘ab’
A comparison using operator = = or =:= succeeds only if both entities are identical as well as
their stored locations.

‘abc = Tabd ... fails
abe’ = = "abc’ ... fails
abc’ =:="abc ... fails

equal__string('abc’,'abd) ... succeeds™

e V= {"abe", 0,1}, The string of the Oth element of V is unified with
firstiVX), X. The string of the 0th element of V is unified
first{\/, ¥}, with Y.

X==z=Y, Succeeds.
K==, ... Succeeds.

i i ot e e g o e o g o e 1 S i . o e o . o o e o o e e Y N NP N P N W R W W

* This is the buill-in predicate that eompares the strings, only with respect to their elements.

= BT =

(iii) Comparison of stack vectors

The length and elements of vectors are compared. First their length are compared. If their lengths
are identical, then their elements are compared, sequentially starting from the Oth element.

(1.1} = {2}
{12} > {1,1}

U= ar ¥ig" causes unification.
{¥,1} = {2,¥} .. Xand 2, and 1 and Y are unified.

A comparison using *= =" succeeds if the number of elemments is identical and if every
correspondign element holds the “= =" relationship. A comparison using *=.=" succeeds only if
their stored locations are identical as well.

= {1, 2, a} Succeeds
= {1, 2, a} Fails

{1, 2, a}
{1, 2, a}

...... . vo= {{1, 2 a} 3}

first{v, X,

first{V, ¥),

X wim ¥, e Succeeds

{iv) Comparison of different data types

The following shows the comparison between some of different data types. (For details, see the
built-in predicate manual.) This comparison is not made on any logical basis but just for
convenience. Therefore, vou should aveid comparison between different data types if possible.

(less) undefined variable — atom — integer number —
floating-point number — vector — string (greater)

— 6B —

& Arithmetic operations

The following maero operators have been provided for two- argument and one-argument
arithmetic operaitons. For details of each built-in predicate, see chapter four.

Object pattern Generating predicate* Expanded pattern
K+ ¥ addi(X, Y, Z) Z Addition
= subtract (X, Y, Z) Z Subtraction
ey multiply (X, ¥, 2) Z Multiplication
wry divide (¥, Y, 7) z Division
X odivY divide_with__r&maiﬂder{x, Y,Z,_] Z Division (integer)
X mod ¥ divide_with__remainder LY, L 2) Fid Remainder
=% minus (X, Y) ¥ Reverse sign
HINY and (X, Y, 7) Z Laogical multiply
L ATA ar{¥%, Y, Z) z Logical add
X owor ¥ wor (M, ¥, Z) z Exclusive OR
X ==Y Shiﬁ_righlf)(. Y.zl Zz Right shift
X<<Y shift_left(X,v,32) Z Left shift
W) complement (X, Y} Y Reverse bit

(3] Macros related to ESP execution mechanism
The following macros have been provided which are directly related to ESP program execution,
#Class-name
Use this to denote a elass object of the cluss specified by “Class-name”.
:Method-name{Arguments)
Is expanded to an ESP method call.
Class-name:Method-name{Arguments)

Is expanded to a eall for the clazss methad of the class specified by “Class-name”, This mayv be used to
call an instance method of the parent elass which has been overridden by the child class.

:Class-name:Method-name({Arguments)

Is expanded to a call for the instance method of the class specified by “Class-name”. This may be used
to call an instance method of the parent elass which has been overridden by the child class.

* Usually, the macros are expanded on PSI to these built-in predicates,
** Because a backslash () is not declared as an operator by default, you need to enclose the argument
in parentheses,

- 69 —

(4)

X = Obj!Slot__name
X = =0bj!Slot name
objtsiot_name = X
Objislot _name= =X

Gets the value of the slot (specified by “slot__name”) of the object (specified by “Obj!") and unifies it
with X. “Obj!" and “Slot__name"” may remain as a variable and only need to have a value (object and
slot name atom respectively) by run time,

Obj!Slot_name:=X
Substitutes X for the siot (specified by "Slot-name") of the object (specifies by “Obj").
Ohj!Slot_name

This i5 a pattern that appears as an element of an argument or a structural argument. The predicate
that reads put the value of the slot (specified by *Slot__name™) of the object (specified by “Obj")
becomes the generating predicaie, and the result becomes the expanded pattern,

Other macros
unigue__atom(undefined-variable)

Generates a unique atom and replaces with it. All those undefined variables that are identieal in the
elass are replaced with the generated atom, For example, describing unique__atom{A) causes not only
that deseription to be replaced with the generated unique atom but also every variable A in the class

is replaced with the generated atom.
standard#input

Is expanded to the standard input port provided in the processing being currently executed (usually
an instanee object for the standard input is set up.) For the debugger and the shell, the initial value
will be the window.

standard#output

Iz expanded to the standard output port provided in the process being currently executed (usually an
instance objeet for the stundard oulput is set up.) For the debugger and the shell, the initial value will
be the window.

standard#message

Is expanded to the message output port provided in the process being currently executad (usually an
instance object for the standard output is set up.) For the debugger and the shell, the initial value will
be the window.

- 70 —

{5) Suppression of macre expansion

In prineciple, macros are automatically expanded, However, you may suppress the macro expansion by
using a back-quete symbol (7). The back-quote key is at the top right on the PSI keyboard.

“iterm)
Suppresses expansion of maeros in the term and treats the term as is,
“(term)

Suppresses expunsion of only top-level macros in the term. The deeper-level macros are expanded.

o(X, ¥} - al(X-2)-{Y-3)};
!

pix, ¥ - subtract{x, 2,A),
subtract(Y, 3, 8),
subtract(A, B, C),
alc);

pOC Y - gl T {(X-2)-(¥-3)))
L
PIX Y e a((XKe2)-(Y-3));
Vectors combined by the operator “."

PO YYo= g ((X-2)-(Y-3)))
1)

pl¥,¥):= subtractiX, 2, A},
subract(Y, 3, B),
qla-g);

Macro expansion does not recognize the difference between a macro that appears in a goal of the body
(which iz directly executed) and a macro that appears in an argument (which is treated as data).

piX,Y):- glX = Y);
1
pUX, Y) o= qlunify(X, ¥});
plX,¥):- glX:¥):
This attempts to be expanded to a method call and results in an error.

- T1 =

With this example, if you want to write a compound term whose functor is = or :, you must use a
single back-quote ("} or a double back-guote (*°) to suppress the maero expansion.

p(X,¥):- q("" (X =Y]);
pld, ¥yi- g™ (X :¥)):

A single or a double back-guote (" or *7) is an atom. For example, ~*(X} is a compound term whose
funetoris " ",

plx,¥y:- gl (X-2,¥-3)); -+ Atwo-element compound term whose functor is ™~ .*

1

P(X,¥):- subtruct{X-2, A),
subtruct{y-3, B),
gl " (A B)),

p(X,¥):- a(’ " ({X-2,Y-3)));

i
P(%) - qliX-2,Y-3));

If vou want to write a one-element compound term whose functor is 7 or ™7, write as follows:

UL AY) L. B}

3.7.3 User-Defined Macros

Besides the standard svstem-defined macros deseribed in the previous section, you may add your own
macros and modify them. Different from a class definition, definition of a user- defined macro is
accomplished by a macro bank. The macro banks that you have defined are stored in the system and you
can uge them at any time,

The ESP mucro expansion [unclion docs nol only replace a certain pattern with a predefined pattern but
also inserts necessary goals before and after the goal containing that pattern andfor adds a newly
generated predicate. An ESP program consists of a class definition part (which defines inheritance
clagses, cluss slots and class metheds), an instance definition part {(which defines instance slots and
instance methods) and a local definition part (which delines local predicates). Each part is composed of a
series of Prolog clauses terminated by a semicolon. Macre expansion is carried out in two levels: the first
level macre expansion is performed when a given term is disassembled to clauses (class- definition-level

* As explained in section 2.4 "Precautions for Operator- Applied Terms and Compound Terms”, p(X,Y)
and p((X,Y}) have different meanings.

- 73—

expansion). The second level macro expansion is performed when each clause is disassembled to
components (clause-level expansion),

A macro bank is defined as follows:

macre bank macro-bank-name has

{atom)

[nature macro-bank-names;]

slod definition

maero delinition

local

loes] predicate definition

end,

Slot definition, similar to a slot of ESP, corresponds to an instance slot. Since macro definition is
performed by the instance object of this maecre bank, you may use slot definition to maintain the
intermediate state of macro expansion.

Macre definition is a series of macro definition statements terminated by a semicolon. There are three
kinds of maero definition statements:

i) macro definition statement for clause-level expansion
i} macro definition statement for class-definition-level expansion
iii} insertion statement for a clause
(1} Clause-level maero definition

A claus-level macro is for an argument of the head part of a Prolog clause and for a goal and its
argument of the body part. A clause-level macro is defined as follows:

<gbject pattern> == <expanded pattern>
[when < a series of generating goals > |
[where < @ series of tersting goals> |
[with < a series of added predicates >]
[by <instance object >
[:- < expansion condition >

- 73 =

The underline parts indicate a keyword. The object patiern and the expanded pattern are a term and
may include a variable. You may omit those entities that are enclosed in square brackets and . If you
omit a series of added predicates, a term (a unifiable term) that matches the object pattern is

generally previous seclion.

object pattern ==> generailing predicate
expanded pattern
testing predicate

Similar to a gystem-defined maero, the generating predicate, the expanded pattern and the testing
predicate are placed in different places depending on where the object pattern has appeared.

If you define
ve(X,N) = > E when vector__element(X,N,E)
the macro is expanded as follows:

pl¥,¥) - alvelX,¥));
i
p(¥X, ¥} :- wvector _element{.){, ¥, Z),
alZ) ;

PIX, Y, velX, Y1) - al6Y);
i
pl:x.l Y, Z} o q{xa TL

vector__element(X, ¥, 7} ;

With a macro definition statement, similar to the body part of an usual ESP program, you may

gpeeily, in the part following *-", execution of a loeal predieate call, a method eall or a built-in

predicate. A macro bank defined as described above always inherits class esp__macro__expander
(the class for standard macro expansion). That is, the definition is made by altering a standard macro.
Therefore, il you want to suppress all standard maecros except for user-defined maeros, add the

following at the end of the maero definition:
X = }_:-!;fail,'

Generally, if you write a cut and “fail” in the body part like below:
obiect patlern = = _:vr,fail;

Also, specification of "nature” allows inheritance of other maero banks. By default, whether “nature”
is specified or not, the standard macro esp_macro__expander is inherited.

- T4 =

“with <a series of added predicates>" adds the specified clauses to the local definition. This may be
usual where a condition 15 an interative pattern, as shown in the following example:

same(X in List, Condition, Taill) = =
dummylList, X, Tail)

withidummy([X | T], X, T) :- Condition, !;
dummy([| R}, X, T) :- dummy(R, X, T)):

“in” ean be used as an operator through the operator declaration (deseribed later), IF you muke &
definition as above, expansion is performed as follows:

P{List} :-
same(X in List, (integer(X), X=10), Tail),
alx, Tail):

i
PiList) :- dummyiList, X, Tail}, a{X, Tail);
dummy{[X | T], ¥, T) - integer(X}, X>10, !;
dummy{[| R], X, T) - dummy(R, X, T);

In this example, because you have named the condition testing predicate “dummy” in advance, it may
be inconvenient if you want to use another condition sinee the predicate names may contend with
each other, In this case, if you use standard macro unique atomilogical variable}, you can cause the

predicate name to be determined dynamically. You may alter the above macro definition statement
as follows:

some(X in List, Condition, Tail) ==
{unique atem({Dummy]}, List, ¥, Tail}
with{ {Dummy, [X | T], X, T) - Condition, |;

"

{Dummy, [_| RY, X, T) :- {DummyR, X, T};

An undefined variable specified by keyword “by" is unified with the instance ebject of the macro bank
in current macro expansion. This makes it pessible to access the slot defined in the zlot definition
part.

macre _bank m1 has
attribute unique number = 0
unigue number => Num by Macro
- Num = Macralunigue _nurnber,
Macrolunigue '__r:umber iz Num +1

end.

_ 75 =

(Z)

With this macro definition, the macros

p{unique number); pl{unique _number);

r[uni-:que___numher} :

are expanded to

p(0) : pll}
r(2) ;

Class-definition-level macro expansion

An ESP program itself consists of ene large term. Class- definition-level maero expansion
disassembles the whole term of a given definition inte ESP clauses in the top-down approach and
expands each pattern. Therefore, because the whole term is regarded as an expansion object at the
first stage, you may use a macro function to write an application program for preprocessing that
converts to an ESP program. A class- definition-level macro is defined as follows:

<ohject pattern> ==> < expanded pattern
[with < aseries of added predicates® |
[by < instance object>]
[:- < gxpansion condition> |

The functions of these keywords are the same as those of a elause-level maera. Different from a
clause-level macro, <expanded pattern> may be omitted, If omitted, no expanded pattern appears.

- (Addition of the other patterns and execution of the body part are performed.)

(Functor =- List) = = > Expanded
- convert(List, Functar, Expanded);
convert [One], F, {F, One}) :- !,
convert([One | Rest], F, ({F, One}; Tail)):-
convert(Rest, F, Tail);

“«z." can be used as an operator through operator declaration expansion performed as follows:

author <- [kondoh, hagio, ishibasi, chikayamal

i
author{kondoh) ; author{hagio};

author({ishibashi) ; autheor{chikayama)

-6 -

(3) Insertion of a clause

You can define a clause insertion statement az well 25 a maero definition statement in the maero
definition part. A clause insertion statement unconditionally inserts a specified clause into a specified
part in the elass definition (class, instance or local). A elause insertion sttement adds an entily at a
specific place, while the inheritance shares entities sueh 2 methods with the parent class. Another
difference from the inheritance is that a clause inserlion statement can be applicd to a local predicate.

A clause inseriion statement is defined as follows:

- inserta(Type, Clauses) ;
= insertz{Type, Clauses) ;

The statement “inserta” adds clauses at the beginning, while the statement “insertz” adds clauss at
the end. A= deseribed later, a macro bank has an inheritanee funetion, and an insertion statement is
applied according to the inheritance rules of ESP. “Tyvpe” designates the tvpe of elauses. The type may
be specified by a letter “¢”, “i" or “1", which corresponds to the class method, instance method or local

predicate respectively, “Clause™ is one or more clauses (each delimited by a semicolon if more than

one).

macro _bank m1 has
= insertall, (p(0); p{1));
- insertz(l, (p(4));

end.

If you make a definition as above, expansion is performed as:

class ¢1 with macro mi has

Pl X)) - plX)
local
pl2);
3

end.

class ¢1 has
el X} o- plX)
local

PO} ;

pl1};

pl2);

P{3);

pl4);
end,

- TT =

If the name of a macro bank as defined abave is specified in front of “has” in a class definition, macro
expansion in that ¢lass is performed using the specified macro bank.

class class-name with macro macro-bank-name has

class definition

end.
macro _ bank macro _example has
avelX, ¥) == 2 when 2 = (X +%¥)/2 :

end.

class ex1 with macro macre example has

pl _ XY, 2) - plavelX,Y), Z) ; e (DD

gl X, Y, ave(X, Y)) - glX, ¥) ;e @
local

plX, Yy = -

qlx, Y} = - -~

end.

ave(X,Y) at (' and & in the example above is macro- expanded as follows:

pl XY, 2) - e (D
add(¥, Y, Aj,
divide(a, 2, B),
p{B, Z) ;

gl X ¥, 2 - NN, - |
q(X, Y),
add(X, ¥, A),
divide{a, 2, 7) ;

= T8 =

A macro bank as specified above is elfeclive in the class where it has been declared. You can specifly
only one macro bank after with__macro. However, use of “natur” allows specification of multiple

macre banks.

macro bank macre set has
nature macrol, macro2, macrod ;

end.

class example with macro macre set has

class definition

end.

Also, upon definition of & macro bank, you may specify another macro bank and use it in that maecro
bank. That is, a function that has been specified by the inheritance iz inheriled, and used when it is
applied to an actual ESP program. On the other hand, a funetion specified after with__maecro is used
for maero expansion when the macro bank itself is stored in the system.

macre bank macro-bank-name with macro

expansion-macro-bank-name has

macro definition

end.

- 79

3.5 Multi-Class Name Space (Package)

A class name is defined by an atom. Therefore, this class name is usually used for inheritance or reference
of & different class. However, when more than one programmer attempts to construct a system, it is likely
that the programmers may use the same class names unintentionally. To avoid contention of class names,
ESP has a mechanism called the package, which multiplies the class name space.

For example, suppose that programmers A and B are intending to make two independent classes with the
same class name “binary _tree”. In this case, if there is only one class name space, specification of class
name “binary tree” to take out the class object is processed regardless of the difference between the two
classes, cunsa;.lentl_\r, only either class can exist. This kind of class name contention cannot be avoided as
long as several programmers use the same processing system. In E&P, as shown below, programmers A
and B may generate their own packages " package a" and “package_ b" and generate the desired
classes within the separate packages.

test @ test b

l #bi.nary_tree 1 #binary tree
binary tree binary tree
package _a package b

In this case, if “#binary tree” appears in the class "test_a" generated in the package “par.kage__a“,
this is interpreted as the class object of class “binary _tree” that was generated by programmer A,
Similarly, if “nature binary _tree;” appears in the class “test_b" generated in package “package b",
class "binary _tree” that was generated by programmer B is inherited. Use of a package allows y;; to
diseriminate those classes that are stored with the same class name in the system.

3.8.1 Class Specification

A package name is specified by an atom. No duplication of package names is allowed. In which package a
class is to be gencrated is determined when the class is stored (in SIMPOS, it is determined usually when
the class is catalogued.) No duplication of class names is allowed within a package.

Reference or inheritance of a class is specified in the following two ways:
(1) elass-name-stom
(2) package-name-atom##class-name-atom

Cenerally, a class within the self package can be referenced or inherited in format (1), and any class in
the system can be referenced or inherited in format (2). A class name may be specified in the following
four places in an ESP program:

(1) Clas=s object

#class-name #package-name##class-name
(2} Inheritance

nature class-name, package name# #elass-name:
(3) Method call with a elass name specified

Package-name# #class-name: method-name(class-object, argument,)
:class- name:method-namelinstance-object,arcument,...)

(4} Macro bank specification
class class-name with macro macro-bank-name has

end,
class class-name with macro pachage-name##macro- bank-name has

end.

Actual linkage between these specifications and the ¢lasses is performed when the classes are stored
(strictly speaking, when the macros are expanded.}

3.8.2 Puckage Environment and Externally Declared Class

As described in the previous section, a class in the self package can be referenced or inherited by
specifying the class name only. If you usc a package environment and external declaration of a class, vou
ean also reference or inherit a elass in a different packge by specifying the class name only.

A package environment speeifies a package to which those classes that can be referenced or inherited by
only the class name belong. Each package can have one package environment at most. A package
environment name is specified by an atom. A package environment can multiple- inherit a package and a
different package environment, The most general use of a package and a package environment is to use
the package environment “with__simpos” that inherits system package “simpos” as as shown below.

- Bl =

Simpos

......-....--.P kage
t Inherited e

Simpos

ﬁ Maintained | |7777T7TT Package environment

user-1

As for the elasses in “user__1", the classes in package “user__1" and those classes that have been declared
as external (public declaration) in package “simpos” ean be referenced or inherited by only the class
name. Now, let's think about reference and inheritance when the following program is made and
registered in package “user__1". Suppose that classes “window" and “list” exist in package “simpos” and
a homonymous class “list” exists in package “user__1".

class ex1 has

nature list; seeeseeee)]

:p(Class) :- create(#window, W), e 2
:create(#simpos# #list, List), U, |

end.

With “list* in @ since class “list” is defined in the self package, class “list” of “user__1" is inherited.
With “window” in @ since class “window” is not defined in the self package, class "window" of package
“simpos” is referenced. With “list” in & zince the package name is specified, class “list” of specified
package “simpos” is referenced.

As above, the classes that can be referenced or inherited only by the class without the package name
specified are: (1) every class in the self packge, and (2) among the classes belonging to the packages
inherited (either directly or indirectly) by the package environment of the self package, only those classes
that have been declared as external. If an inherited package exists, there may be homonymous classes.
In this case, a class that belongs to a package of a higher inheritance order has priority over that of a
lower inheritance order, The inheritance order conforms to the inheritance rules of ESP,

- B2 —

P2

& XS
)

e

env

PO

As shown above, package “"p0” has a package environment. The left package has a higher inheritance
order than the right one. The elass name preceded by an asterisk (*) is a class that has been declared as
external. In this case, if only a class name is specified in package “p0”, this is interpreted as follows:

0 ... class “c0” of package “p0”
¢l .. class “el” of package “p3"
c2 ... class“¢2" of package “p1”
¢3 ... errorsince there is no applicable class

To reference a class other than the above, you must specify the package name like “p2##¢2”. If you
specily a package name, you can also reference or inherit such a class that is not declared as external,

3.8.3 Use of Package in SIMPOS

Generation of a package or a package environment and external declaration of a clasz can be
accomplished by operating the SIMPOS librarian and performing a library method call. For details, see
“SIMPOS OPERATION MANUAL™ and “SIMPOS PROGRAMMING MANUAL®, This section deseribes

general use of a package in SIMPOS.
(1} When using a personal package

If vou want to make your own package to avoid class name contention with other users and vou want
to reference a class of “simpos” enly by the class name, make the following structure:

— 83 —

simpos

eny 1

6

In this case, you can generate a class having the same name as one of “simpos” in package “user__1".

(2) When sharing a utility elass

utility O Simpos

with__utility |

u5£‘f_1 Q user 2

Suppose that packages “user__1" and “user__2" want to specify a common utility by the class name

only, Use the following procedure:
(1) Generate the utility class in package “utility” and declare the interface class as external.
(2) Generate the package environment “with__utility” that inherits packages “utility" and “simpos”.

(3) Generate packages “user__1" and “user__2" and set up the package environment “with__utility".

—- B4 —

(3

When you inherit a package as above, a change in a elass in the upper package greatly affects the
lower package. Therefore, the upper package should be limited to a set of classes thai has been
completed to some extent like a utility program. If vou need to chanpe a packape quite ofien, it is
preferable to specify a class name together with the packuge name {in the form of “package-
names#class- name”) thun to inherit the package and specify a class by only the elass name.

When mare than one user is constructing one system

When more than one user is constructing one system, it may happen that one user releases his classes
to the other users for testing, then he wants to change the classes for improvement, consequently, the
other users cannot use the system for a whiule. To aveid this, you may generate your own package

and store multiple versions in the svatem.

Suppose that user A iz in charge of classes a1, a2 and a3, and user B is in charge of elasses bl, b2 and
b3,

simpos

simpos

A

al', a2, a3

al,a, a3

b1, b2, b3

B1°, B2°, b

Users A and B may temporarily release al, a2, a3, bl, b2 and b3, then change their own classes in
their own package. When user A wants to release the improved class al to user B, he can restore (ie.,

recatalogue) it in package “user__b",

As shown below, you may also have a structure where commaon routines are stored in an inheritanee

package. This may be used when sharing data, dictionary duta for example,

— B5 —

data O SIMpos

/
erv_1 i
N

al, a2, a3 user b

user a al', a2, a¥

b1, b2, b3 b1, b2', b3’

With this structure, however, a class in the upper package cannot reference a class in the lower
package by specifying only the class name. Therefore, the classes you store in the upper package
should be of closed reference and inheritance relationship and should be completed ones that nardly
need to be changed.

3.8.4 Resirictions

As described above, a class name written in a source program is linked to the actual class statically upon
macro expansion. Therefore, the reference and inheritance relationship differs depending on the
situation when macro expansion begins. Think of the following two classes.

class al has class a2 has
pl#az) - :gl#al) -
end. end.

Suppose that the package is as follows when you start storing the class:

pi

eny

6

Suppose that external-declared class al already exists in package pl. In this case, if the above classes al

and a2 are stored in package p0 in that order, they reference classes a2 and al of package p0 respectively.

N S
&

Storing al ﬁ Storing a2 G

PD .

@ @

The state & indicates that only the name of class a2 is automatically stored in package p0 supposing that
class a2 will be generated later,

If classes a2 and al are stored in package p0 in that order different from the previous ease, class a?
references elass al of package pl, and class al references class a2 of package po0.

— 87 -

¥ .

!
A1
T 1

—_—
env

]
L]
]
I
I
i
1
i
i

ﬁ Storing a2 ﬁ Storing al ﬁ}
i !

i

a1t

®
© 2

When class a2 is restored later, classes al and a2 of package p0 reference each other.

1
— []
PR

Restoring

The same problem occurs when a class is deleted.

_ B8 —

- ‘I

f

—
env

Deleting Restoring
i pl##al G al

pﬂ .

@ =

i
—

%

If you delete p0##al in state @, ¢lass a2 has no refercncing class, and exeeution of class a2 may result in
an errar. When you restore class a2 later, class a2 references pl##al.

As above, if you define in the lower package a class of the same name as one in the upper package, various
kinds of problems may occur upon change, storage and deletion of a class to keep the correctness.
Therefore, in principle, you had better not define a class of the same name as one in the upper package.

3.9 ESP Program in PSI

SIMPOS has a function to add or delete the operations when parsing a source program. You can perform
user-defined operator declaration by specifying it in a source program.

To do this, SIMPOS supports the following four statements, and you can write any of them in an ESP
source file. Bach statement must be terminated by a period.

iy

(2)

Class defimition

® Macro bank definition
® Operator dectaration
Macro declaration

® Package declaration

¢ “include” statement

Class definition
This is a usual class definition that starts with “class” and ends with "end.”.
Macro bank deflinition

This is a maero hank definition that starts with “macro__bank” and ends with “end.”. Since macro
expansion is needed at compilation, a macro bank definition needs to be stored before the class to be
used. (If you use the same file, you must write a macro bank definition in front.) Since a macro bank
definition is treated internally as a class, it can also be saved by the librarian. Sinee it can be
sutomatically loaded, once you store it in the library, you can use it without a special procedure.
Because a class generated by & macrv bank definition (that starts with "macru_hanl:":l inherits
SIMPOS class "esp macro expander”, yvou can debup a maere bank or dynamically use it by using
the following method: B

:E:pand'_'clause (Obj, Head0, Body0, "Head, ~Body)
Expands the clause (Head0:-Body0) and unifies the expanded result with (Head:-Body).

:expand goals (Obj, Goaldd, "Goals)
Expands the goals and unifies the expanded result with “Goals”.

When you execute
texpand _clause(Obj,p(Obj,X + 16#°F0),g(X),Head Body)
you have the following results:

Head
Body

{p(Obj,Y))
(a(X),add(X,240,Y))

That is, clause p{Obj,X + I6#F0):-q(X); is converted to

p(Obj, Y):-q(X),add(X,240,Y);

= 80 =

(3}

4

(3

}

However, if you write it as is directly in a program, the macro expansion funelion is evohed when the
program is compiled. Therefore, you need to suppress macro expansion at compilation by using a
double back-gquote (" * '), For goals that have no head part, use expand goals.

Uperatar declaration

This is a user-defined operator declaration. An ESP source program is parsed according to the
operator precedence grammar. You can modify the standard operators. The following shows the

operator types:
Argument Op ¢ Anoperator (atom) or a list whose clemcenls are operatoers
Type Operator type (fx, fy, xfx, yfx, xfy, xf or vf)
Pre . Precedence of operator (specified by an integer number between 0 and 1200)

add__operator(Op,Type.Pre).

Adds an operator {or operators) specified by “0p” to the registered operator group. If the specified
operator has already been registered with a different type, these operators must have the same
precedence. I vou specify 0 for the precedence, remove__operator(Op,Type) is applied.

remove_ operator(Op,Type).
remove__opera tor{Op).

Deletes an operator {or operators) specified by “Op” from the registered operator group. If you do not
specify “Type”, the operators of all types are deleted.

The standard operators of ESP are listed in appendix B, An operator declaration is effective only after
the place where il is declared within that file.

Macro declaration

Usually an RSP source program is expanded by elass "esp macro expander” which is a standard
maerd. However, it can be expanded by a user-defined macro bank. As deseribed in section 3.7.3
“User-Defined Macros”, you can specify a macro bank for expansion of the elass by using keyword
“with__macro”. The macro declaration deseribed below is effective only after the place where the
declaration is speeified within the {ile.

use macrof[package-nume# #Jclass-name).
If a packape name is omitted, the default package of the process being currently executed is assumed.
Package declaration

Tou can specify a package to use. The speeificd package must be a defined package and is effective

only within the source file.

use packagelpackage-name).

- 891 —

{6} *include™ statement
An “include” statement makes the specified file behave as if it exists there.
include(“file-name”).

This is useful when more than one file uses the same operator declaration. In the following example,
add__operator of {ile3 is applied to the shaded parts. The file to be included can contain a class
definition, a maecro bank definition, an operator declaration, and another “include” statement.

filel file2 file3

R ——— R ————— L = e =

include (“file2™). include (“file3™). add opera‘lur

N

\‘¥
N

The following shows an example where a new operator is added.

add__operator(ave, yfx, 500) .

macro bank macral has

“{Z = X ave ¥) == true
when C
- oex(X, Y, Z, C) ;
¥ oave ¥ => 2
when C
- ex(X, ¥, Z, Q) ;
local
ex(X, ¥, Z, C) :-
C=""(2 =X+ Y)/2,;
end.

— g2 —

class ex0 with macro macrol has

ol X, Y, Z) - PG Y), Z o= X oave Y ;o e ®
gl X Y, Z) - P(X ave Y ave Z, Z) ;e @
ol X, Y, X ave Y) - piX, ¥) ; R,
local
P(X, YY) -
end.

In this case, T, & and & are expanded as follows:

D opl X Y, 2) -plX Y
add(x, Y, A},
divide(a, 2, I} @

2 Since “ave” is of the yfx type, (X ave Y ave Z} is interpreted as ((X ave Y) ave Z). Therefore, @ is
expanded as follows:

Al o X Y, 2) - add(X, Y, A,
divide{a, 2, B),
add(B, Z, C),
divide(C, 2, D),
piD, 2) :

@ ol L XY, A) - plX YY),

add(X, Y, B),
divide(B, 2, A) ;

- 893 =

CHAPTER FOUR BUILT-IN PREDICATES

This chapter deseribes the functions of the built-in predicates provided in ESP. The built-in predicates
are explained by functions. They are categorized into the following eight functional groups:

(I} Mata manupulation
(2) Arithmetic operation
(3) Logical operation
{4) Comparison operation
(5) Data type conversion
(6) Execution order control
{7} System control
- Process/processor control
+ Memory management
- IO operation
(8) Built-in predicates for language processing system

The built-in predicates of groups (1) to () may be uscd by an ESP programmer. Group (7) is used only
inside the operating system. Group (8) is used by the language processing system program such as the
compiler und the interpreter when generating an executable object of an ESP program. This chapter
describes only the main built-in predicates among groups (1) to (6) that a general ESP programmer may
use. For details of the particular built- in predicates, see "KLO-BUILT-IN PREDICATE MANUAL"™
First the input/output mode of arguments is explained, then the built-in predicates are explained.
Originally the built- in predicates have been introduced to the system for optimization and they are
prepared in the system to perform a specific processing at high speed. Therefore, they do not necessarily
need {lexibility in the input/output mede for arguments, while flexibility may be required for a general
user-defined predicate. The inputioutput mode of every argument of the ESP built-in predicates has been
fixed: if an argument attempts to be passed in a different mode, it causes an exception at exeeution and
results in an error. For example, if you specify atoms and integer numbers for the arguments of the built-
in predicate for addition “add(X,Y,Z)", it causes an “Illegal Input” error. In the following explanations of
the built-in predicates, the input mode is assumed for every argument unless otherwise specified. That is,
at call time, an argument assumes to have been bound with a value. There are several modes of
arguments. For example, the arguments of such a predicate that performs data generation or arithmetic
operation have the output mode, the reference mode and the unifiable mode as well as the input mode.
These argument modes are explained below and listed in Table 4-1.

_ 04 -

L]

Input mode

An argument that must have been bound with a value before execution of the built-in predicate, In
the manual, arguments of thiz kind are designated with no particular mark added in front.

Example: integer(X)
Output mode (=)

An argument that the value is determined by the execution of the built-in predicate. It must be in the
undefined siate (not bound with a value) before exceution. In the manual, arguments of this kind are
designated with “~" mark added in front. Do not write that mark in an actual program.

Example: new__atom{~X)
Reference mode ()

An argument that can be in the undefined state before execution of the built-in predicate but will not
be bound with any value by execution. In the manual, arguments of this kind are designated with a
question mark (7) added in front. Do nol write that mark in an actual program,

Example: equal{?X.,?Y)
Unifiable mode ()

An argument that either can be in the undefined state or can be bound with a value before execution
of the built-in predicate and that is bound with a value (or is undefined) after exeeution. The
unification rule for an undefined variable is explained in section 44, In this manual, arguments of
this kind are designated with “*" mark added in front. Do not write that mark in an actual program.

Example: add{X,Y, Z)

Table 4.1 Arpument Modes

N:;?_:il:;—;ﬂ] Mode Cuniii;;n at State at output
X Input mode Diefined Defined {Same as at input)
~ X Outpul mode Undefined Defined
X Reference mode Don't eare Don't eare (Same as at input)
X Unifiable made Dan't care Conform W_l]-'l.:l.in ification rule

- 05 =

4.1 Data Manipulation

The built-in predicates for data manipulation perform basic manipulation operations on various kinds of
data handled in an ESP program. Data manipulations are categorized into the following four kinds:

n

(1) Check the data attribute of the value of a variable.
(2) Generate new data

(3) Read or write elements of structure data.

i4) Read or write a substructure of structure data.

Data attribute checking

The built-in predicates for data attribute checking are used to cheek the data type of the value hound
with a variable. Therefore, several built-in predicates have been provided to cope with every data
type. Each built-in predicate succeeds if the type of data given te the argument is the expected one,
otherwise it fails. For structural data, not only the data type but also the size and length of the
structure can be checked, and alse the attribute information can be read out through unification,
Besides these built-in predicates for checking the type of each data, there are some built-in predicates
to classify data according to whether the variable is defined or not and whether the data is of the
structure Eype or not

This chapter does not describe those buili-in predicates that are nol usuwally used by a programmer.
See the "KLO BUILT-IN PREDICATE MANUAL" for these predicates.

atom(?X)

If X is an atom, the predicate succeeds. Otherwise it fails.
integer(?x)

If ¥ iz an integer number, the predicate suecceds. Otherwise it fails.
floating _paint(?X)

If ¥ is a floating-point number, the predicate suceeeds. Otherwise it fails.
atomic(?X)

If X is an atom, an inteper number or a floating-point number, the predicate succeeds. Otherwise
it fails.

number{7X)
If X is an integer number or a floating-point number, the predicate succeeds. Otherwise it fails.
heap wvector(?X,"Length)

If X is a heap vector, the predicate unifies the vector length with "Length”. Otherwise it fails.

_ 8§ —

(2)

stack_ wvector(?X, " Length)
If X is a stack vector, the predicate unifies the vector length with “Length”. Otherwise it fails.
string(7X,"Length, Type)

If X is a string, the predicate unifies the length with “Length”, and the string type (an integer |, 8,
16 or 32) with “Type", Otherwise it fails.

structure(7X)

If X iz structural data (heap vector, stack vector, string or loeation), the predicate succeeds.
{(therwise it fails.

bound({?X)
If ¥ is already bound with a value, the predicate sueeeeds, If X iz 2till undefined, it fails,
unbound(?X)

If X is not bound with a value vet (that is, if X is still undefined), the predicate succeeds. If ¥ is
already bound with a value, it fails,

Mala generation
The built-in predieates for data generation are used to generate a new atom or structural data.
new atom{~Atom)
Generates a new atom and unifies it with “Atom”.
new_ heap vector(~H__V,Length)

Generates a heap veetor of the length specified by “Length” and unifies it with "H V", The arca
of the heap vector generated in the main memory is not released by backtracking. However, the
value of argument H V is released.

new s tar:k_ve ctor(~5_ V. Length)

Generates a stack vector of the length specified by “Length” and unifies it with “S V", The area
of the stack vector generated in the main memory is released by backtracking. The value of

argument SV is also released.
I'IEW_Str'!I'Ig{"S.I.EHgth;SiZE}

Generates a string having the length specified by “Length” and the bit length of each element
specified by “Size” (integer |, 8, 16 or 32), and unifies it with “S". The area of the string generated in
the main memory is not released by backtracking However, the value of argument S is released.

- 07 =

{3} Access to struclure data element

The built-in predicates for access to a structure data element are used to read or write an element or
structure data. The built-in predicates for the reading read out the contents of a structure element
through unification. That is, il you give the output argument with a variable, you can read the
element. If vou give it with a constant, you can compare the content of the element with the constant.

The built-in predicates for writing can be performed on structure data except for a stack vector.
Writing is carried out by overriding & value over the element. You can perform overriding to any

data other than an unbound variable and a stack vector.

vector element(V, Position,” Elament)

Unifies the element at the position specified by “Position™ of vector “V" (stack vector or heap_
vector) with “Element”, For the vector position, specily the first element as the Oth element and

80 0On.
first{V, Element)

Unifies the first element (Le,, the Oth element) of vector “V" (stack vector or heap vector) with

“Element™.
second(V, Element)

Unifies the second element (ie., the Ist element) of vector “V" (stack vector or heap veetor) with
“Elemeant”.

string__element(5,Position, " Element)

Unifies the element at the position specified by “Position” of string “S” with “Element”. For the

string position, specify the first element as the 0th element and so on.
set_ vector element(H_ V,Position,Element)

Overrides the data specified by “Element” to the position specified by “Position” of heap vector
“H__V". The overridden result is not retracted to the original value by backtracking.

set_firstiH_ V.Element)

Overrides the data specified by “Element” to the first element (i.e., the 0th element) of heap vector
“H__ V" The overridden result is not retracted to the original value by backtracking.

set__second(H__ V.Element)

Owverrides the data specified by “Element” to the second element (i.e., the Ist element) of heap
vector “H V", The overridden result is not retracted to the original value by backtracking.

set string element(5Position.Element)

Owverrides the data specified by “Element” to the position specified by “Position™ of string “5".
The overridden result is not retracted to the original value by backtracking,

_ 88 —

(4] Access to substructure

The built-in predicates for access to a

substructure are used fo manipulate a Structure |:| g 0
part of structure data. A substructure (a heap vector consisting of seven elements) L
means a structure that consists of part of 2

the original structure which can be Substructure |:| - ER
specified by the starting element position partial heap veetor consisting of four 4
and the lengih (number of elements). elements) 5
Figure 4-1 shows the relationship [

between a structure {(heap vector) and a)
. Fig. 4-1 Structure and Substructure
substructure (partial heap vector},

subvector{V Position,Length,” SubV)

Unifies the partial vector that starts from the position specified by “Position” of vector *V" (heap
vector or stack vector) and has the number of elements speeified by “Length”, with “SubV™.

vector_ tail(V,Position,” SubV)

Unifies the partial veetor that starts from the position specified by “Position” of vector “V” (heap
vector or stack vector) and ends at the end of thatl vector, with “Subv™,

substring(5,Position,Length, " Subs)

Unifies the partial string that starts from the position specified by “Position” of string “S” and
has the number of elements specified by “Length”, with “Sub5”.

strin g_tail{_S,Pnsitiun, “Subs)

Unifies the partial string that starts from the position specified by “Position” of string “S” and
ends at the end of that string, with “Subs”

set _subvector(H VW, Position,Length,SubV)

Overrides the vector specified by “surbV" to the partial veetor that starts from the position
specified by “Position” of heap veetor "H_V” and has the number of elements specified by

“Length",
set__substring (S, Position, Length, Subs)

Overrides the string specified by “Sub3"” (v the partial string that starts from the position
specified by “Positivn” of string “5” and has the number of elements specified by “Length”.

move__string__elements (S, Position, Length, Shiftcount)

Shifts the partial string that starts from the position specified by “Position” of string “S” and has
the number of elements specified by “Length”, to the left or right by the number of elements
specified by “Shiftcount”. It is shifted to the right if the “Shifteount” value is positive, and to the
left if the value is negative.

_ g9 _

4.2 Arithmetic Operations

The built-in predicates for arithmetic operaqtions are used to perform basic arithmetic operations. These
operations are grouped into the following two kinds:

(1) Integer, floating-point operations
(2) Double-length word integer operations

(1] Integer, floating-poinl opcrations

The built-in predicales for the integer and floating-point operations are used to perform basic
arithmetic operations on integer or a floating-point data. Fach built-in predicate can be applied to an
integer or a floating-point data. However, note that data lype conversion is not automatically
performed. Forexample, vou cannot add an integer number to a floating-point number: you need to
use the data type conversion built-in predicate to convert one of the data types to the other before the

addition.

Some of these built-in predicates may be expressed by using a macro in an ESP program. In the
following explanation, the macro expressions are also shown.

add(NI,N2,"R) Macro expression: “Ris NI+ N2

Adds numbers “N1" and “N2", and unifies the result with “R". The operation differs depending on
the data type of “N1” and “N2". If "N1" and “N2" are both integer, the integer addition is
performed, The sum iz unified with "R" as an integer number. If “N1” and “N2" are both
floating-point, the floating-point addition is performed. The sum is unified with “R” as a floating-
point number.

Subtract{NI, N2, R} Maero expression: “Ris NI-N2

Subtracts number “N2" from number “N1”, and unifies the result with "R". The operation differs
depending on the data type of “N1" and "N2"

If “N1” and “N2" are both integers, integer subtraction is perfurmed. The difference is unified
with "R” as an integer number,

If “NI* and “N2" are both floating point, floating-point subtraction is performed. The difference
is unified with “R” as a floating-point number.

multiply(NI,N2,"R) Macro expression: "Ris NI*N2

Multiplies number “N1” by number “N2", and unifies the result with “R". The operation differs
depending on the data type of “INI” and "N2".

If “NI* and “N2" are both integers, integer mulliplication is performed. The product is unified
with “R" as an integer number,

If “N1" and “N2" arc hoth floating-point, floating-point multiplication is performed. The product
is unified with “R” as a floating-point number.

= 100 -

(2

divide(NI,N2,"R) Maero expression: “Ris NIIN2

Divides number “NI" by number “N2", and unifies the resuit with “R". The operation differs
depending on the data type of “NI" and "N2",

IT“NI" and “N2" are both integers, fixed-point division is performed. Division is performed in the
manner that a quotient is given with the remainder of the same sign as the dividend. The
remainder is ignored. The quotient is unified with “R" as an integer number.

I “NI" and "N2" are both floating-point, lloating-point division is performed. The guotient is
unified with “R” as a floating-peint number.

divide__with_remainder[ll,ll,' Q, Rem)

Divides integer “II" by integer “12", and unifies the quotient with “Q", and the remainder with
“Rem".

incrementil,”R) Macro expression: “RisR+!
Adds | to integer *1", and unifies the result with “R”.

decrement{l, " R) Macro expression: “Ris R-l
Subtracts | from integer “17, and unifies the result wilth "R™,

minus{N," R} Macro expression; "Ris-N
Heverses the sign of the value of N, and unifies the result with “R™,

Double-length word integer operations

The built-in predicates for the double-length word integer operalions are used W perform basic
arithmetic operations on double-length word integer data. In ESP, a double- length word integer
number is expressed in & double length form at of 4 bits by using two words of 32-bit unsipned
integer, Therefore, to perform a double-length word integer operation, you must operate an integer
expressing the upper 32 bits and an integer expressing the lower 32 bils, as sign judgment is made on
your own responsibility,

add extended(X,Y,"R_up,'R_ low)

Adds integers “X" and “Y" regarding them as 32-bil unsigned inlegers, and unifies the lower 32
bits of the result with “R__low", and the carry from the 32nd bit with “R__up”. Note that an
integer number dealt with by this built-in predicate is not a binary eomplement.

- 101 -

subtract _extend ed(X¥,Y,."S,”R)

Subtracts integer “Y™ from integer “X" regarding them as 32-bit unsigned integers, and unifies
the absolute value of the result with “R". Also, the sign of the result is unified with “S": integer 0
iz unified if X=Y; integer | 15 unified if X <Y. Note that an integer number dealt with by this
built-in predicate iz not a binary complement.

multiply extended(X,Y."R__up,"R__low)

Multiplies integers “X" and “Y" regarding them as 32-bit unsigned integers, and unifies the lower
32 bits of the product with “R_low”, and the upper 32 bits with “R__up”. Note that an integer
number deall with by this built-in predicate is not a binary complement,

divide extended(X upX low,Y,”Q,"R)

Divides an unsigned 64-hit integer number (whose upper 32 hits are specified by X up and lower
32 bits are specified by X__low) by 32-bil unsigned integer Y, and unifies the quuf.i;;t with &, and
the remainder with R both as a 32-bit unsigned integer. Mote that an integer number dealt with
by this built-in predicate is not a binary complement.

= 102 —

4.3 Logical Operations

The built-in predicates for logical operations are used to perform a logical operation on integer numbers
or strings. These operations are grouped into the following two kinds;

(Il Logical operations for integer data
{2) Logical operations for strings

i1t Logical operations for integer data

For logical operations for integer data, six built-in predicates have been provided: logical multiply
(AND], logical add (OR), exclusive OR (XOR), one's complement (COMPLEMENT), left shift (SHIFT-
LEFT), and right shift (SHIFT-RIGHT). These built-in predicates may be expressed by using a maero
expression in an ESP program,

and(li,12,”R) Macro expression: “Rislifuz

Performs a logical add (OR) operation on integers 11 and 12 on a bit basis, and unifies the result
with R,

xor(l,12,"R)

Performs an exclusive OR (XOKR) operation on integers Il and 12 on a bit basis, and unifies the
result with K.

complement(l,” R} Macro expression: “Ris\(l)
Obtains a one’s complement of the value of integer 1 on a bit basis, and unifies the result with R
shift__left{l.Count,"R) Macro expression: "Ris | << Count

Shifts the value of integer | to the left on a bit basis by the number of bits specified by Count, and
unifies the result with R. The bit positions at the right side where the original bits have been
shifted are padded by zeros.

shift__right(i,Count,"R) Macro expression: "Ris| > > Count

Shifts the value of integer I to the right on a bit basis by the number of bits specified by Count,
and unifies the result with R, The bit positions at the left side where the original bits have been
shifled are padded by zeros,

- 103 —

{2} Logical operations for strings

For logical operations for strings, four built-in predicates have been provided: logical multiply (AND-
STRING), logical add (OR-string), exclusive OR (XOR- STRING), and ¢ne's complement
(COMPLEMENT-STRING). These logical operations are performed to the part of a string whose
starting position and length ar specified by arguments, with a masking string specified by an
argument. The operation result is overridden at the position of the partial string in the original
string. If the masking string is shorter than the partial string, the operation is performed with as
many zeros as necessary added at the end of the masking string. If the masking string is longer than

the partial string, the operation is performed with the surplus part of the masking string eut off.
and string(5Position,Length,Masks)

Perfaorms an AND operation between the partial string that starts from the position specified by
Fosition {on the zere origin basis) in siring 5 and has the number of elements specified by length,
and masking string MaskS. The result is overridden to the partial string in string 5. The
overridden value is not retracted to the original value by the backtracking. If MaskS is shorter
than Length, the operation is performed with as many zeros as necessary added at the end of
Mask5. If Mask5 is longer than Length, the operation is performed with the surplus part cut off,

or__string(S,Position,Length,Mask5)

Performs an OR operation between the partial string that starts from the position specified by
Position (on the zero origin basis) in string 5 and has the number of elements specified by Length,
and masking string Masks. The result is overridden to the partial string in string $. The
overridden value is not retracted to the original value by backtracking. If Masks is shorter than
Length, the operation is performed with as many zeros as necessary added at the end of MaskS. If
Masks is longer than Length, the operation is performed with the surplus parl cut off,

xor__string(S,Position,Length,Masks)

Performs an XOR operation hetween the partial string that starts from the posilion specified by
Position (on the zero origin basis) in string § and has the number of elements specified by Length,
and masking string MaskS. The result is overridden to the partial string in string 5. The
overridden value is not retracted to the original value by backtracking. If MaskS is shorter than
Length, the operation iz performed with as many zeros as necessary added at the end of MaskSs, If
Masks is longer than Length, the operation is performed with the surplus part eut off,

complement string(5,Position,Length)
Obtains the complement of the partial string that starts from the position specified by Position in

string § and has the number of elements specified by Length. The result is overridden to the
partial string. The overridden value is not retracted to the original value by backtracking.

- 104 -

4.4 Comparison operations

The built-in predicates for comparison operations are used to compare data in terms of eguality or the
less-greater relation or to search for a string element. Comparison operations are grouped into the

follawing four kinds:

(1) Unification

{2) Eguality and identity comparison
{3) Less-greater comparison

(4) String element search

(' Unification

Unification 15 usually performed at a predicate call between an argument of the calling side and an
argument of the called side. Built-in predicate “unify(X,Y)" performs completely the same function
as ordinary unification between two arguments X and Y. The sume unification rules as those used at
@ user-defined predicate call apply as shown in Table 4-2. You can use this built-in predicate to check

the value of a variable or to substitute a value with & variable,
unify{"X,"¥) Maero expression: =Y
Unifies X with Y. The following unification rules apply:

{1} If both arguments are undefined
Unification always succeeds, Both arguments become logically identical.

(ii) If pre argument is undefined and the other is defined
Unification always succeeds, The undefined argument (the undefined variable) has the
value of the other arpument and becomes the defined variable.

(iii) Ifboth arguments are defined
The data type and the value of both arguments are compared, If the arguments are

identical, unification succeeds. In other words,
a. Unification {ails if they are of different data types.

b, Unification sueceeds if they are of the same data type and are equal to each other, (See Table
4-3 for the equality conditions by data types.)

- 105 -

Table 4=2 Unification Rules

Atomic Structure with
Data Type Atom side-eflect
Undefined Integer Heap vector Staek vector
number String
Data Type Floating-point
number
Undefined O O O o
Atomic Equal: O
Atom
o Not ® *
Integer number cqual © X
Floating-point number
Structure with side-efTect Equal: O
Heap vector O * ®
String Nos
equal @ X
Equal: O
Stack vector o x x
Not
equal © X
O : Unification succeeds,
* : Unification fails.

Equal: Bothdata type and value are identical.

{2) Equality and identity comparison

Six built-in predicates have been provided to check the equality or the identity between two data
given as the arguments. Equality means that the two data represent the same logical value. Identity
means that the two data are identical to cach other in terms of memory image. Some built-in
predicates are provided specially for strings to check whether or not two unequal strings are logically
identical to each other.

Table 4-3 shows the conditions by the data types in which equality or identity holds.

- 108 —

Table 4 ~3 Conditions for Equality and Identity

Data Tvpe

Equality

ldentity

Atnrnie
- Atom
- Integer number
+ Floating-point number

Data type and value are the same.

Heap vector
Structure

The logical address of the first element and the number of elements

are the same.

with e
side-effect | String

The logical address of the first element and its position in the word,
the element length and the number of elements are the same.

Stack vector

The elements are the same and
each corresponding element is

The logical address of the first
element and the number of

equal. elements are the same.

Undefined

The logical address of the undefined variable cell is the same.

equal(?7X,7Y) Macro expression: X == 7Y

Checks whether X is logically equal to Y. No unifieation is performed when this predicate isg
executed: the values of the arguments remain unchanged,

not equal(?X,7Y) Macro expression; iz = 7Y

checks whether X is logically unequal to ¥. No unification is performed when this predicate is
executed: the values of the arguments remain unchanged.

equal__string(5l,52)

Checks whether the contents of strings S| and $2 are the same. Equality holds if the type and
length of the two strings are the same and the correspending elements of the strings are the same
lincluding the case the lengths of the two strings are both zero).

not__equal _string(51,52)

Check whether the contents of strings Sl and 52 are the same. Equality holds if the type and
length of the two strings are the same and the corresponding elements of the strings are the same
(including the case the lengths of the two strings are both zero).

identical{?X,7Y) M= 7Y

Macro expression:

Checks whether X is identica! to Y. No unification is performed when this predicate is executed:
the values of the arguments remain unchanged.

= 107 -

(3

not identical(7X,7Y) Macro expression: M o=i= 1Y

Checks whether X is identical to ¥, No unification is performed when this predicate is executed:
the values of the arpuments remain unchanged.

Less-greater comparison

Two built-in predicates have been provided to perform a less-greater comparison between two data.
This comparison can be applied not only to numerical values but to all data types including undefined
variables. For the less- greater comparison methods, see Table 4-4. A less-greater comparison
between different data types is performed with respect to the tag that indicates a data type. Since the
less-greater relationship between different data types does not have any general meaning, you should
try not to use this comparison.

fess than(?X,7Y) Macro expression: WY
=

If X is less than ¥, the predicate succeeds. Execution of the predicate causes no change in the
values of the arguments.

not less than{?X,7Y) Maero expression: X =>=7Y
W= <X

If ¥ iz not less than Y, the predicate succeeds. Execution of the predicate causes no change in the
values of the arguments.

= 108 -

Table £ =4 Less-Greater Comparison Methods by Data Types

Datz Type

Less-greater comparison method

Atom

Atom numbers are compared regarding them as a 32- bit positive integer

Integer number

. .
The numerical values are compared.

Flaating-point

The numerical values are compared.

number
Heap vector Comparison is made using the following procedure:
(1} Comparison iz performed with respect to the number of elements
(positive integer),
(2) If the nuomber of elements is the same, then comparisoen is performed
with respect to the logical address of the first element.
String Comparison is made using the following procedure:

(1) Comparison is performed with respeet to the clement size
1-bit < 8-bit < 16-bit < 32-bit
(2} Ifthe element sizes are the same, then the contents af both strings are
cornpared starting from the first element (treatad as a positive integer).
(3} During the comparison of (2), if the comparison has reached the end of
one string, the string having more elements is judged as being greater
than the other string.

Stack veetor

Comparison is made using the following procedure:
(1) A comparison is performed with respect to the number of elements.
(2) If the number of elements is the same, then both stack veclors are
compared starting from the first element. The definition described in
thi= section is applied to the eomparison of the ¢lements,

Undelined variable

Comparison is performed with respect to the logical address (32-bit integer) of
the variable cell.

{4) String element search

Four built-in predicates have been provided to search for a string element.

predicates exeept for "search_ string_ difference” are only for 16-bit element strings,

search__ character(S,5tart,End,Charactercode, "Position)

Searches for the same character as specified by “Charactereode” within the area whose starting
and ending positions are specified respectively by “Start” and “End” in string “S". If the same
character is found, the element posilion of the first occurrence is unified with “Position”. The
searching direction is determined by the relationship between “Start” and “End™ forward

divection if "Start” “=" “End™, backward direction il *Start" > “End”,

= 1089 —

All these built-in

search chara r.ter__hacl: ward{5,5tart, Tablel, Table2," Position)

First (1) read out one element (16-bit element) at the position specified by “Start” in string “8",
Then (2) regarding the value (0 to 2 16-1) of that element as an element number, read out the
element corresponding to that element number from the string in “Tablel” (B-bit element). Again
(3) regarding the value (0 to 2 8-1) of that 8-bit element as an element number, read out the
element corresponding to that element number from the string in “Table2” (l-bit elements). If
that I-bit element has value "I", then unify the position of the element currently concerned in
string “S" with “Pasition”. If not “1", repeat above operations (1) to (3) for the next younger
element of string “5". This set of operations may be repeated up to the Oth element of string “S”.

search_ character_forward(S,5tart, Tablel, Table2,"Pasition)

First (1) read out one element (16-bit element) at the position specified by “Start” in string “S".
Then (2} regarding the value (0 to 2 16-1) of that clement s an element number, read out the
element corresponding to that element number from the string in “Tablel” (8-bit element). Again
(3) regarding the value (0 to 2 8-1) of that 8 bit element as an element number, read out the
element corresponding to that clement number from the string in “Table2” (1-bit elements). If
that 1-bit element has value “I", then unify the position of the element currently eoncerned in
string "S" with “Position”. 1f not *1", repeat above operations (1) to (3) for the next younger
element of string "8". This set of operations may be repeated down to the last element of string
*5".

search__string ditference(Sl,52, Position)

Strings “S|" and “S2" are compared starting from their first elements. If the corresponding
elements are different, the element number of the different element at the first securrence is
unified with “Position",

4.5 Data Type Conversion

The built-in predicates for data type conversion are used to change the data type from the integer type to
the floating-point Lype, or vice versa. The built-in predicates for arithmetic operations can be applied to
either the integer type or the floating-point type, but not to both of them mixed. Therefore, you must
convert the data types to either of them before the operation.

integer_to_ floating point(l,"F)

Converts integer number | to a floating-point number, and unifies it with F. If integer number [is a
hexadecimal number of more than 6 digits, the upper 6 digits become the mantissa of the floating-
point number, and the lower two digits are rounded off. The converted floating-point number is

normalized,
floati ng_paint_tn__integ er(E,"1}

Converts floating-point number F to an integer number, and unifies it with |

- 110 -

4.6 Execution Order Control

The built-in predicates for execution order control are used to control program execution by foreing a
clause to succeed or fail or by cutting the alternatives of a clause.

true

This predicate always succeeds.

fail
This predicate always fuils. That is, when “fail” is executed, backtracking oeeurs and the most recent
alternative is executed.
i
When this predicate is executed, the alternative of the clause to which ! belongs is cut. If ! is used in
an OR clause, the alternative of the OR clause is cut. Note that this predicate handles the alternative
of an OR elause differently from ! of Prolog.
Fxample]
Po-Q,LR; L. @
P:-5; e &
When !in clause (U is executed, the alternative of P, namely clause &, is cut.
Example 2
Pr-{Q,LR:5); e
(—
iy @
P:-T; ... &
When !in goal (' is executed, the alternative of this OR clause, namely goal @, is cut. The
alternative of clause &, namely clause @, is not eut. In Prolog, ! cuts also clause &,
cut and fail

The predicates fails after ! is executed,
relative_ cut{Level)

When this predicate is executed, all alternatives below the level specified by argument “Level” (the
depth of levels backward from the current level) are cut. You may use this predicate to realize the cut
in OR in a clause of Prolog. Note that this predicate is effective only for a compiled program: if the
interpretive code is executed, it funetions the same as 1.

- 111 -

Example |

B -(Q, re]atiue_cutt_‘l], R; 5): ... O
P-T: @

When relative__cut{l} in clause I is executed, the adlternative of the clause in this OR, namely goal
S, is cut and also the alternative & of P is cut.

Example 2
Po-(0, L (R, refative__cut(2), 5; : D
P.-U; v

When relative__cut(2) in clause @ is executed, the alternative of the clause in this OR, namely goal

T, is cut and also the alternative @ of P is cut.
relative eut and fail(Level)

This predicate fails after execuling relative__cut(Level). This predicate is effective only for a
compiled program.

absolute__cut{Level)

All alternatives below the level specified by “Level” (including this Level) are eut. This predicate is
effective only for a compiled program.

abmlute_cut_a nd_fail[LeveI}

This predicate fails after executing absolute cut{level). This predicate is effective only for a
compiled program,

level(Level)

Unifies the depth of the eurrent predicate call with Level as integer. This predicate is effective
only for a compiled program.

succead({Level)

Assumes thal all those elauses that have the level value specified by “Level” have succeeded and cuts
all of their alternatives. This predicate is effective only for a compiled program.

- 112 —

CHAPTER FIVE PROGRAMMING TECHNIQUE

This chapter describes some of the programming techniques that help you write an FESP program. Stress
15 put upon how to write in ESP a procedural program that may otherwise be written in a conventional
language, because you often have Lo write procedural expressions when you write a large program in
ESP.

Techniques for efficient memory use and for high speed execution are also explained.

The explanaticns are made with many program examples. However, they are mainly written in local
predicates for ease of understanding. In some examples, goals of ESP are designated by upperease letters
P and Q, simplifying the pair of predicate name and arguments. For instance, {Example 1] may be
described as [Example 2).

[Example 1] reverse (X, Y) -revi(X, [],¥) :
rev ([}, L, L} - 1
rev ([HIT), L, R} : -rev(T, [HIL], R} ;

[Example2] P -0 ;
o 1
Qz A
5.1 Writing a clause

Most of an ESP program is clause descriptions. This section explains the standard clause form at and
some technigues to write an efficient program.

(I} Standard elause format

A clause has generally the fellowing standard format.:

P o= Q1,02 ... Cm, L], G1,G2 ...Gn ;
L1 L)]
Head Conditional goals Execulion goals
[~] 1
Selection part Execution part

A clause consists of a selection part and an execution part, and the selection part consists of a head
and conditional goals (a conditional goal may be null.} In the selection part, you write conditions for
judging whether or not to execute the execution part. If the selection part succeeds, that is, if the
unification of the head sueceeds or if each goal of the conditional goals succeeds, then control goes to
the execution of the goals in the execution part. If the selection can be deterministic, that is, if
predicate P has the alternative and if the alternative can be cut, insert ! (cut) after the selection part.

- 113 -

You may write a clause in a format other than the standard format. However, the standard format is,
s0 to speak, a formula. Writing clauses in the standard format makes the program efficient and

readable.

A clause that contains two or more cuts can be easily realized by a combination of standard clauses as

follows:

P C1, C2,1, D1, D2, !, E1, EZ ;
l

P, C2 1,0

Q :- D1, D2, !, E1, E2 ;

If you want to use OR (;) in a clause, you may have to use more than one cut in one clause. This format
may be regarded as an abbreviated form of a combination of standard formats and may rather often

result in a readable program.

P :-0Q C3 1, G4 :
Q= C1, 1, GY o
Q:- €2, I, G2 :
Q- GI :

l

P {C1, 1, G1; C2, 1, G2 ; G3), C3, !, G4 ;

However, when you want to use OR in a clause, take the following points into consideration:

& [fvou need Lo nest several OHs, use of OR in a clause makes the program very unreadable. In this

case, write it in separate clauses.
Fxample:

P :- {C1, 1, (D1, 1, (E1, ! : E2):D32);C32), €3 ;
L

P - (C1, !, Q: C2), C3

Q- (D1, I, R ; D2) ;

P

R o:- (E1, ! E2) ;

— 114 -

® If you want to select one type of processing from among several types of processing according to
the value of the variable passed through unification of the head, use head unification for condition
judgment instead of using OR in a clause. This impraves the processing speed because a compiler
technique called clause indexing (explained laler} is applied.

Example: Make a predicate p(X) that executes processing a, b or ¢ if the value passed Lo the
argument 15 0, | or 2 respectively.

[When OR is used in a clause]

piX) ={X==0, !, a
X==1,1, b
.'l;==2r 'l ':.'J:

[When head enification is used. |

pl0y :- !, a;
pl1} == 1, b
pl2) - ¢

Solution 2 is better in both program readability and execution spead,
{2) Determinate termination of predicate

The [ollowing explains a technique to determinately terminate a predicate, which is very important
on writing an efficient program,

If a predicate is terminated without the alternative remaining, the predicate is said to be
determinately terminated. One of the ESP features is the nondeterminacy function by backtracking.
In fact, many parts of a large program do not need to use this function. If is not better in program
execution speed and the efficient memory use that a predicate terminates with the alternative
remaining if the predicate could be determinately terminated. To wrile an efficient program, you
should take into cosideration the states when predicates terminate,

In order words, determinate termination of a predicate means when the execution of a clause of a
predicate has completed, no alternatives remain for every goal in the body part of the elavse and for
the predicate. It aceurs when either of the following two conditions 1) and ii) holds:

i} when the last clause of a predicate has been executed,

Pl o = v v

P2 - - - -

P3 - - - -

P4 - - - + & Whenthisclause has been executed,
Q - - - -

- 115 —

At this time, the goals called in the body part of clause P4 must not have any alternatives.

ii) When & clause other than the last clause has been executed, if the subsequent clauses do not
remain as the alternatives due to the cut.

Pl - e
P2 - -« «, 1« « « - « Whenthisclause has been executed.

P2 - =+ -
Pa -y
Q = -
At this time, the goals after | in P2 must not have any alternatives.
Determinate termination of a predicate has the following advantages:

& Fxecution speed is improved.

If unnecessary alternatives remain, it takes unnecessary time Lo search for the alternatives,
reducing the execution speed.

® Memory capacity can be saved,

If unnecessary alternatives remain, the system needs to maintain the information about them in
memory, reduecing greately memory use efficiency,

® Debugging can be easilv done.

If unnecessary alternatives remain, an unexpected alternative might be exeeuted during program
debugging, making debugging difficult.

As deseribed above, it is important to write predicates in the determinate manner for the program
part that does not need nondeterminate processing. The following shows an example of a determinate
predicate expression,

Example: Make a predicate loop(N,X) that repeats do{X) specified N number of times,

[Bad example]

loop(0,) : weess (a)
loop(N, X) :- do(x}, {b)
loopi{N-1, X} ;

In this program, it is not specified that clause (b} is not executed if the value of N is 0,
Therefore, clause (b) remains as the alternative. Consequently, even when do(X) has been
executed N times, the program does not stop, falling in an infinit loop.

- 116 -

| Good example |

loop(0,)} == 1 R (4]
loop(M, X} :- dofX), e {d)
loap(N-1, X} ;

With this program, when (¢} is executed, (d) is not the alternative any longer due to the cut (1),
and the program stops after execuling do(X) N times.

In ESP, writing a predicate in the nondeterminale manncr allows that predicate to be used
bidirectionally. Towever, this has a disadvantage as regards efficiency. Because of this, it would be
better if you prepare both a determinately deseribed predicate and nondeterminately described

predicate and use either of them case by case.

Example: Make a predicate “member(X,List)” that judges whether X is an element of the list List
and also unify the elements of the list with X one by one by backtracking.

member(X, [Xt _}).
member(X, [_ IL]) :- member(X, L} ;

This program is adequate for reading the list elements one by one by backtracking. For use for
Judgment, since unnecessary alternatives remain, the program is not easy to use and is
inefficient, Therefore, it would be better bo prepare Lwo scparate programs: for element reading

and for element judgment.

[For element reading)

Dne_cf (X, [XI _])
one”nf (%, [W]) one of(X L);

[For element judgment]

member(X, {XI] }-
member(X, [_ IL] } :- member(X, L} ;

- 117 -

(3} Recursive call

In ESP, a predicate can call itself from the body part of a clause in that predicate. This is called &
recursive call, If the goal that calls its own predicate is the last goal of the body part, it is specially
galled a tail recursion. Upon teil recursion, only if the predicate is determinately terminated,
memory use optimization is accomplished by firmware. This optimization method is called TRO (Tail
Recursion Optimization), which is very efficient in Lerms of memaory capacity and speed.

Example I: When TRO is not appiied.

P : [{a}
PR S P s (b)

In clavse (b), P is ealled tail recursion. In this case, if R or 5 has the alternative, TRO is not
applied. The following simplified figures show the states of the stack in memory when P is

executed.
P {0} P P Q) PO
P{1) Pi1) P(1)
- - Pi2) > P(2)
P(3)

PN} designates that predicate I i= called recursively at the N'th time.

Example 2. When TRO is applied.

P : [E—— {-ﬂ]
= R' 5. L P ;oomeeeeres {b}

In elause (b}, P is called as tail recursion. In this case, because the alternatives are cut, TRO is
applied and the stack does not grow. The following simplified figures show the states of the stack

in memory when P is exceuted.

P (0} F{1) P2} P{3)

- 118 -

5.2 Controlling Program Execution

ESP does not have execution control commands such as GO TO, CALL, IF THEN ELSE, DO, and WHILE.
However, these execution control funclions can be realized by combining some ESP functions such as

backtrack, cut and recursive call as follows:

E x- ;.c-utiurn ;_-lclm trol funetion Realization in ESP
Unconditional branch (GO TO} none
Subroutine call (CALL) Eguivalent to goal call.
Conditional branch (IF) Cz;n be realized by using backtrack and cut.
Multi '-':'-ﬂ-]-'_i'.lrallch [CASE) Can be realized by using backtrack, cut and
recursive call.

In ESP, you cannot write a statement eguivalent to 8 GO TO statement. Since the structure
programming regards a GO TO statement as an undesirable function, no function corresponding Lo & GO
TO statement has been provided. In fact, you can make a program without a GO TO {unction. Because no
GO TO statement is available in E5P, you can naturally write a program matching the structured

programming concept.

A subroutine call (CALL statement) can be realized by a goal call of the body part of a clause. P:-Q,R
means P:- call{Q),call{R) that is, e call function is implicitly used. However, the goal call is different from
a CALL statement of a procedural language in the following points: the body part of the called clause is
executed only il unification of the head part succeeds, and if it fails backtracking is applied.

The conditional branch, the multi-way branch and the iteration functions can be realized as follows:

- 119 -

{l} Conditional branch function can be realized by using the cut function and the backtracking function
as shown in the following example. Note that in ESP, you have to define a separate predicate that
acomplishes a conditional branch and call it from the body part desiring it.

Example:
Procedural language ESs P
R:= =, Q -
(1) if P then §1 -
else 82 Q:=-F 1, 51 ;
Q:-% ;
{(2) if P1 then 51
else if P2 then 52 = Q:-P1, 1, 51
else if PT then 53 Q:= P2, 1, 52 ;
else 54 Q:-P3, !, 53 ;
Q:-58
(3) if P1 then
if P11 then 511 — Q:=-P , 1, Q1 ;
else 512 Q:-F2 ,1, Q2 ;
else if P2 then Q :-53
if P21 then 521 Qr :-P11 , 511 ;
else 522 Q1 =512 ;

else 53
g2 = P21, , 521 ;
Q2 - 522 ;

- 120 —

{2} Multi-way branch (CASE statement)

The multi-way branch can be realized by using a combination of conditional branches (IF). However,
it can be realized more concisely by wsing the unification function of the head part.

Example: Procedural language ES P
case X is Q- = P AX =), =
when C1 —51
when C2 —52 P{C, =) :=1, %1 ;
when C3 —53 P{C 2, —-):=-1, 582 ;
when others —54 P{C3 ~):=1,583;
P{ .) =54 ;

*where Cl, C2 and C3 are constants,

If vou write & muiti-way branch in this form of ESF, it can be executed at high speed through the
optimization function called the clause indexing (explained later).

13) lteration

There are twa typical cases of iteration: one is equivalent to a DO loop of FORTRAN that repeats an
execution for the specified number of times, and the other repeats an execution until & certain end
condition is detected like a record read/write operation during a file handling operation,

The following shows some cxemples of ileration in ESP:

(I} Using a tail recursion to realize a DO loop

Pracedural language ES P
oo 1= 1, N =, do{t,N+1), -~
CALL p(1)
END do(N,N) :-1;
dofl,N} -pll),
dofl + 1,N) ;

With this technique, if P(I} does not have any alternative, TRO is applied improving the efficiency
greately, It has alternatives, however, the stack grows, therefore this technigue is not adequate

for a large loop.

- 121 —

(2) Using alternatives and failing to realize a DO loop

Procedural language ESP
DO I=1, N e, do(1,N), -
caLL pll) dof{l1,N) - forll1, 1, N},
END pll), fail ;
dol _. _)i
for(N, N, N} :-1;
for(l, |, N) ;
for(l0, I, N} :-

for(l0+ 1,1, N):

Compared with the technigue (1) above, this technigue has the advantage that the stack does not
grow although it has the disadvantage that the speed is reduced. Also, p{X) can use this
technigue only for a processing that has side effects. Take these advantages and disadvantages
into consideration when deciding which technique (1) or (2} to use. In principle, use the technigue
(2) for a large loop to perform a processing with side effects, and the technique (1) for other loop.

The following shows two examples of an ESP program to realize a loop that terminates only when an
end condition 15 detected.

{3) Using tail recursion to realize a loop that terminates only when an end condition is detected

Procedural language ESP
while not eof(file) do Imp{end_of_file}:d;
read{ch) loop{ _):-
end read(Ch),
loop (Ch) :

(4) Using repeat to realize a loop that terminates only when an end condition iz detected

FProcedural language E s p
while not eof({file) do loop:-repeat,
read{h} read(Ch},
end Ch == end _uf__fiie, 1
or
loop:-repeat,

read(end_of _file),!;

= 122 -

5.3 Data Manipulation

In ESF, the data inputfoutput operations te the outside of the system, like READ and WRITE statements of
& conventiongl language or the Prolog built-in predicates get(X) and put(X), are all accomplished with
methods provided by a class of SIMPOS.

For example, reading a line of characters entered the keybeard through a window is accomplished by
issuing the following method cull to the object of the window.

getl (Window, String)
A similar method call can also be used to read a line of characters from a file or other I/D device.
:getl (File, String}

For details of a method eall for input/output with the outside of the system, see the explanations of
window and file in chapter six. This section explains data used in an ESP program,

"Data” generally means information that ean be referenced or manipulated by a program. Data is
classified into the following types according to the meaning and the operation unit:

® Atom, integer, floating-point
These types of data cannot be divided into smaller entities any further.
® Structure

This is structure data that has several data items as the elements. A vector, string, list, and
compound term are of this type of data. To handle more complex structure data, SIMPOS has a group
of classes called the pool subsystem. An object of each class provided by the pool subsystem can handle
data further extended from a structure data.

The following shows program examples in which data of each data type are used.

— 123 -

(1) Atom data

Within a program, atom data can be handled as internal data that has a printable name.

Example: Make a window, and make a predicate “query” that displays in the window an English
month name corresponding to a number (JIS 16-bit code) entered from the keyboard.

query - :create{#essential_winduw, [size(300, 100}, position(10, 10)], W),
activate{W),
loop(W) ;

loop(W) :- repeat,
:gete(W, Month),
month (Month, Atom),
putt(W, Atom), new line (W),

fail ;
month(#"1" january) - | month{#°7%, july):- ! ;
month{#"2", february):- | ; month({#“8", august}:- 1 ;
month(#”3%, march):- | ; month{#”9", september):- ! ;
month(#°4%, april):- [; month(#“A", october):- | :
month(#75%, may) == 1 ; month(#"B", november):- | ;
month(#°6", june):- 1 ; month(#"C", december):. 1:

month{ , ‘% %-Error-%%") ;

(2) Integer data

Integer data is used to give a constant value used within a program. In a program, integer data can
be used as an integer number for four basic arithmetie operations (addition, subtraction,
multiplication and division). Single-precision integer numbers range from -2147483648 to 2147483647
(one sign bit + 3] data bits),

Example: Make a predicate “square__root(N Result)" that calculates the square root of a positive
integer number specified by variable N rounding off the fractions at the first place of
decimals, and unifies the approximated value with Result. The predicate must fail if N is
negative,

Let X be an approximated integer value of V-N. First, give & value to initial value X0,
then calculate Xn+1=(Xn+N/Xe)2 for each X incremented until Xrn £ Xo+1 holds.
Then, choose a result nearer to the real number of V-N ag X,

- 124 -

square_ root(N,R):-N< 0.L.fail; % If negative, cut the aiternative and fail.
square_ root(0,0):- 1; % If zero, return “0".
square__root{N,R):- initial _ value(N,Xo),
square_root{N,){u,Xo + 1,V),
round{N-V*W (W + 1)*(V + 1)-N,V,R);
square__mm{m,xn,m,xo;:'xn ==Xn, L Jugement of interation end
gquare_rcrct{hl.x-:r,_,‘-.-‘]:-{)(D + Ni¥o)-2 = Xn, % Approximate calculation of square root
5quare_rnm{N,xn,xm,v}: 4% Termination recursive call
initiai_ualuetN,N]:*N-: 100, 1; % predicate 1o set the initial value
initial__value(N,N/10):-N< 10000, !;
initial_'.raluel:N,N."‘IG'[I-:l:-N-l:: 1000000,
initial_valunl!N,Na"lDDU]:-N-.‘.1GDUDGDB!}. I
initial _value(N,N/1 0o000);
round (XY, W VW)-X<Y, 1
round(__, VWV +1)

{3) Floating-point data

Floating-point data is used to give a constant value used within a program. In a program, floating-
point data can be used as a floating-point number for four basic arithmetic operations (addition,

sublraction, multiplication and division),

A floting-point number is a normalized hexadecimal number consisting of one sign bit, 7 expornent
bits and 24 mantissa bits. A significant figure is a 6-digit decimal number. The effective range of real
numbers is from 10-7T8 to 10-75.

Example: Make a predicate "exponent(X Result)” that caleulates an exponential value (ex) of a real
number specified by variable X by using the following equation and unifies it with Result.

ex = T+x+xZ20+x331 ., =xA/nl+ ...

expnonent(0,0,1,0):-!;
exponent!1,0,2.71818):-1;

axponent(¥, R):-exp(X,2.0,X,1.0+ X,R}; % Initial value setting
Exp[_J _,T,R,RJ:-T«:"‘. 1.07-5,1; % Jugment of iteration end
exp(X N, T.Ro RL-T*X/N=Tn, % Approximate calculation by recurrence
formula
exp(X¥ N+ 1.0,Tn,Ro + Tn,R); % Tail recursion

The following recurrence formula is used:

¥nfnl=(xn=1 f{n=1)1)+ (x/n)

- 125 —

(4) Structure data

ESP supports a vector and a string as structure data. Since e list and a compound term can be
expressed by using vectors, you can virtually use the following five kinds of structure data in ESP: a)
stack vector, b) heap vector, ¢} compound term, d) list, and e} string. Also, use of a class provided by
the SIMPOS pool subsystem allows you to use structure date such as array and keyed list array, as
an object.

a) Stack vector

A stack vector is structure data of one-dimensional array, which is generated in the memory area
{global stack) temporarily upon program execution. The memory area is released when
backtracking is performed. A list and a compound term, later explained, are kinds of stack
vectors. A stack vector can be either written in a source program or generated by a built-in
predicate at run time. Note that a stack vector is made in a temporary memory area and cannot
be saved in a slot. Consequently, a compound term and a list cannot be saved in a slot as well.
Also, unifieation is performed for every element of a vector. Use examples of a stack vector are
described below,

Example I: Writing a stack veetor in u program

Make a predicate “refer{ Author, Title Month,Year)” to search for a reference decument of an
ESP manual.

refer({ ‘Colmerauer’, "Prolog Without Magic”, "Jan’, 83});
refer { { "Clockin’, “Programming in Prolog”, "Jun’,81}};
refer ({ ‘Kowalski’, “Logic as a Computer Language”, 'Feb’, 80});
refer { { ‘Pereira’, "Pure LISP in Pure Prolog”, ‘Jul’, 82});

As shown in this exemple, you can wrile a stack vector in a souree program by enclosing it in

braces and . In this case, the stack vector has the following internal strueture:

stack vector - ‘Colmerauer’ {alom)
string —_— "Prolog Without Magic”
‘tan’ {:9 wm}
83 (inleger number)

A stack veetor can be unified with another stack vector. For example, you can use the

predicate “refer” with an author name specified to find the document name as follows:

7. refer ({ 'Kowalski’, Title, , }}.

Title= "Logic as a Computer Language”

- 128 -

b)

A stack veetor is also used internally when a list or & compound term is written in a program.

This will be discussed later,
Example 2: Using a built-in predicate to generate a stack vector

Make a predicate that iz equivalent te the Prolog built-in predicate “funector (Term,
Name,Arity)". For simplicily, let “Term” be always a variable and suppose that “Name” and
“Arity"” have already been unified. In ESP, a compound term must be expressed by a stack

vector, whose first elemeént is a functor.

functor{Term, Mame, Arity) :-
new_stack __vector (Term, Arity + 1),

first {Term, Name) ;

In thig program, new stack wvector(Term,Arity) is a built- in predicate that generates a
stack vector having th:numl:::r of elements specified by Arity. Also, first{Term MName) iz a
built-in predicate that unifies data specified by Name with the Oth element of the stack vector
specified by Term.

You can use this predicate “functor” to generate a new compound term,

?- functor (Term, foo, 3)
Term = foo(X,Y, 2]

Where, X, ¥ and Z are logical variables,
[feap vector

A heap vector, similar to a stack vector, is structure data of a one-dimensional array, however,
which i= generated in the heap srea at run time, and the area is not released by backtracking,
You cannot write a heap vector in a source program: you need to use a built-in predicate to
generate it A generated heap vector can be saved in a slot. Nole that unification is not
performed for every element of a heap vector, that is, whether or not the veetors are completely
identical to each other is only judged. Use examples of a heap vector are deseribed below.

Example: Make predicate "create (Dictionary)” that mekes a table of irregular verb forms of
English, using a heap vector. Alse make predicate “get (Dictionary,Present, Past,
Past__participle)” that finds the past form and the past participle form from the
present form of a given verb through the irregular verb forms table. For simplicity,
let the table have the following structure:

- 127 -

Structure of dictionary

Heap vector 1 =| Heapvector2 — arise

Heap vector 3 arose

Heap vector 4 arisen

buy

bought
bought

choose

chose

choasen

Program example of predicate “create (Dictionary)”

create (H V) :-
new heap wvector(H WV, 3),
set _ element(H _ V, 0, {arise, arose, arisen}),
set __element(H _V, 1, {buy, bought, bought}),

tet element (H V.2, {¢choose, chose, chosen}) ;

set __e[ement (H v Fosition, {Present, Past, Past _Paticiple}}l -
new heap vector (Element, 3},
set vector element(H _ V, Position, Element)
set _ vector element (Element, 0, Present),
set vector element (Element, 1, Past),

et _vectur_elern ent (Element, 2, Past participle } ;

Use example

?- create (Dictionary}.

Dictionary = heap wvector:{ - - - .}

- 198 —

Program example of predicate "ge‘t{Dictinnar;.r,Pre-sen‘t,Past,Past_partitiple:l”

gat (H __'u’, Present, Past, Past _participle}l -
heap_ _vector (H v, Length),
search (H_ W, 0, Length, Present, Past, Past__participle) ;

EEHFLH{H_.U. Last, Last, o _,:l = 1, fail;
search (H__V, Position, Length, Present, Past, Past _ participle) :-
uector_element (H _"u', Pasitian, Elament})
(vector _ element (Element, 0, Present), !,
veclor _element (Eiement, 1, Past),
vector __element (Eiement, 2, Past_!:lar‘t'rciplei :

searchiH V,Position + 1, Length, Present, Past, Past _ participle]) ;

Use example

?- get(Dictionary, buy, Past, Past__participle).

Past = bought,

Past__parﬂci;:lle = pought

¢} Compound term

In ESF, a compound term is expressed internally by a stack vector whose Oth element represents

the functor.

For example, a2 compound term f{X,Y, 2} can be unified with a stack vecior {{,X,Y Z}.

FIX,Y,2) = {f.%X,Y.2}
fix) = {P,Q} = [Qw]*

*This is explained in the following section “List”

- 128 -

dl List

In P3L, a list is expressed internally by a series of 2-element stack vectors. For example, a list
[1,2,3,4] can be unified with the following stack vectors:

[1.2,3,4] = {{{{ll, 4}, 3}, 2}, 1}

Similarly, lists [a,bIX] and [XIY] can alse be unified with the following stack vectors respectively:
[a, b]X] = {{X b). a}

[x]y1] = {v.x}

Fay attention to the last example. Sinee [X!Y] is unified with f{Z), you must not use [XIY] to judge
whether a data item is a list,

[%]Y] = {Y.X} = 1(2)

For comparison, let's see the internal expression of a list in Prolog. In Prolog, usually a list is expressed

internally by a compound term whose functor is designated by *.". Therefore, a list of Prolog can be unified
with the following compound term:

[1,2,3,4] = "7 (0,77 @273 4 11D
[X[y]} = "."(XY)

- 130 -

el

As deseribed above, a list iin ESP and a list in Prolog are different in their internal expression,
and you must pay attention to this difference when handling a list.

String

A string is a structure data to represent a string of characters or bits. There are four kinds of
strings by the bit width of an clement:

& 1-hit string
& B-bit string
® 1G-bit string
® 32.bit string

Example: Make a predicate “getl{Window String)” that stores characters {(JIS 16-bit eodes)
entered from the keyboard through the window “Window™, to a 16-bit siring. In this
cese, judge the end of entry by & carriage return (key#er).

get {Window, String) :-read _ line (Window, [], Reverse list),
reverse (Reverse _list, [], List),
list_to_ string {List, String) ;
read_iine (Window, Old __Iis‘l, List) :- :getc (Window, Char),
{ Char = = key#cr, !, List = Qid _list;
read_line (Window, [Char [Old _ list], List));
reverse ([], L, L) :-1;
reverse ([H | T], L, B} :-reverse (T, [H | L], R} :

list_to_string (List, String) :- length (List, 0, Length,
ey _itri ng (String, Length),16,
set element (List, 0, String) ;
length {[], Length, Length) :- 1 ;
length ([H | T], Counter, Length) :-
length (T, Counter + 1, Length) ;
et _E}emen't ([1, . _} a1
set element([H | T, Position, String) :-
set string_ element (5tring, Pasition, H) ,

set _element (T, Position + 1, 5tring) ;

- 131 -

fi Pool subsystem

The ponl subsystem consists of & group of classes that provide various kinds of structure data
manipulation functions. The pool subsystem makes up for the description function of ESP and
may be virtually regarded as an extended function of the ESP language.

The pool subsystem provides structure data such as array, list, stack and set, as an object. Ina
conventional procedural language, structure data provides a data area only. An object of the pool,
however, provides not only the function to read or write data at a specified location but also the
functions o read specified data, to inguire the information of stored data, and to write or read
data at high speed by a hashing algorithm. These high-speed structure data manipulation
functions greatly improve the productivity of programs. Furthermore, use of the inheritance
function of ESP allows you to modify or add a new function to those objects provided as standard
by the pool subsystem to make optimized structure data objects. The pool subsystem is realized
internally by using all data types provided in ESP. Therefore, compared with when using ESP
built-in predicates as are, use of the pool subsystem generally reduces the execution speed if
applied to data of a simple data structure. Take this point inte consideration when using the poal

subsystem.

For details and usage of the pool subsystem, see section 6.1 “Pool”,

- 132 -

5.4 Slot

There are two kinds of slots: attribute and component. For definition of slats to a class, it is recommended
thal a slot used for Inheritance should be an attribute slot and a slot used only within the class should be a

compoenent slot.

For a component slot, vou can read the value of a slot using the following format even if the slot belongs to

a different class,
Ohbj! slot name

However, this usage is not recomendable since it is against the information hiding principle of object. To
read the value of a slot, you should prepare a slot value reading method in the class to be referenced and
always call this method.

Bad example:
® Definition of class a

class a has
attribute wvalue;
end.

* Reading the slot value
- ¥ s Falvalue.

Good example;
® Delinition of class a

class a has

atinbute value;

get value {Class, Classivalue) ;
@nd._

® HReading the slot value
- :get_value {#a, Value}

The following discusses data that can be substituted for a slot. Different from a logical variable of ESP, a
slot is a variable that is not undefined by backtracking and is realized by using side effects. Therefore,
note that vou cannot substitute a variable or a stack vector (as well as a compound term or a stack vector)
for a slot. The following lists data that can be substituted for a slot:

Data that can be substituted for a slot

atom, integer number, floating-point number, string,

heap vector, object
|

- 133 —

5.5 Clause Indexing

Clause indexing is a techngiue to improve the execution speed which is often used in a Prolog processing
system. The clause indexing algorithm is as follows: locking at the arguments of a predicate, a hash
table is made for the contents of each argument. Use of this hash table allows high-speed head
unification at a predicate call.

Let's take the following example. If you want to write g program for a data base containing pairs of
personal names and telephone numbers using predicate “tel__number{Name {Area__code Number}), you
may have the following program:

tel number (yoko, {456, 3194} }:
tel__number (kaoru, {418, 3088})
tel _number (mimi, {563, 2904});

With thizs program, when calling goal tel__number{hanake, X}, if every clause iz to be checked serially
from the beginning and there are n number of clauses, these clauses need to be checked on average n/2
times, Therefore, the more clauses that exist, the more execution time it takes. The clause indexing
technique is used to improve the clause scarch speed, in which the ESP compiler internally ereates a hash
table as looking at the argument values in the program. This allows retrieval of the desired clause within
an almost constant time regardless of the number of clauses existing,

tel number {(Name, X)

|

Hash table

— tel__number (yoko, {456,3194}};

— tel__number (kaoru, {418, 3088});

— tel__number (mimi, {563,2904});

In ESP, optimization by clause indexing is performed if the following conditions hold:

® For local predcicates, the first argument is to be indexed, and for method calls, the second
argument i5 to be indexed.

® There are some consecutive clauses which have a constant value at the argument position

speeificd above, and the argument may have two or more differcnt values.

* Ifthe argument to be indexed is a stack veelor®, ils first element s (o be indexed.

- 134 -

Upon programming, yvou need to place the argument that you want to index at the first argument for local
predicates, and at the second argument for method calls. Note that if a clause that has a variable as the
agument is encountered, clause indexing is terminated at that position sinee unification for a variable

always succeeds.

The high speed efect by elause indexing is great if many clavses exist. Therefore, you should use it in

cases where it is applicable,

* Since a compound term is internally a stack vector, it can be indexed. Therefore, with the following

program, the data item such as yoko, yuko, hiromi and linda can be indexed.

tel_humber {yoko (22), {456, 3194})
tel__number (yuko (18), {483, 8173})
tel _number (hiromi{(25), {456, 3196})
tel _number (linda (13), {456, 1999})

- 135 -

APPENDIX A GRAMMAR OF ESP

D Notational Rules

e “X" designates terminating symbol X. To specify a double quote as is, give two successive
double quates (™).

¢ {¥X}indicates that you ean repeat X zero or more times.

[X]indicates that one X exists or nothing exists being omitted. That is, it indicates an arbitrary
selection.

- 136 -

< lowercase character>> 1=
<kanji> | <hiragana> ! <katakana> | <Russian> | <Greek >

Io"a™ 1 "b" | “¢" 1 "d" | “e" 1 " 1 “g"

I lih!!] lli” I ﬂj'll I Id'khl i ilth I uml! I in.nn
r o u!l I uplr I l'uqll | nr" I usn I utsu I ::ulu
I H!‘.H I ilw?l I il'xl.l I “}I’" I “?.H

< uppercase character> 1. =
uAn | HHI! I ucu I uD" ' uEn I “F” I “G’,I
R & R R L 1 nJh] le I uLn [*M™ | N
I “D” | Ph] “Q" [™ R " us-r [“T" | “UH
J lu-vhl I -uwhl F Hxn I 7 \Ihl I uzll-
{dig’it} Ce= -u.uu- I ulpl 2" | 3" 1 4" | uﬁpr I --Eb I u-r:r [“8v] =g~
<special character> ;=

|..@n- I H#Ir I ||$H | A= ar I II.&II E id e Fi I u_l_" I w__m | u__ar
| W__m | % B I ..?1, | “llr“ | |.u|'.'n I “-n- | u = L I - = 7] | u__ L

< formatting character> :: = *"! <new-line > | <tab code >

SMRUEE

<delimiting charaeter> ;=" { “|*) """

ll!!"lnlﬂ]urh]uin
<lexical element> ;: = <atom> | <number> | <character string > |

<wvariable > | <delimiter =

<atom=> @ =
< lowercase character> {<subsequent charcter>}
| < special character = {=<special character =1
| <quoted atom >

<subsequent charaeter > :: = <lowercase character > | <uppercase character > | <digit> 1% _"
<quoted atom > :: = """ {<character for atom=}"""

<character for atom > :: = <any character except for single quote > | = *"
<number> :: = <integer number > | <floating-point number >

<integer number > 1 = [* = "] <digit string >

<floating-point number> :: = [" "] <digit string> " " <digitstring> [< exponent part>|

<digit string> : : = <number > {<numhber >}

- 137 -

<exponent part > ;o= T[4 2 "] <digit string >

< character string> :: = """"{<Icharacter for string >} """

< character for string > :: = <any character except for double quote> | ™"
< variable > : .= <first character of variable > {<subsequent character >}
< first eharacter of varieble > ;. = <uppercase character> |*_ "
<delimiter> :: = <delimiting character >

<term=> :: = <variable> | <atomic literal > | <compound literal >

=< compound literal > :: = <vector> | <string > | < compound term > |

< operator-applied term > | <list>

< atomic literal> :: = <symbol> | <number=>

<symbol> ;. = <atom>
<wector > :: = <null vector > | <non-null vector >
< null vector = :: = “{}"

< non-null vector > :: = “{" <term list> *}"
<termlist>:: = <term> {*," <term >}
<string> :: = <character string >

<compound term> :: = <functor > “{" <argument list>)"

<[unclor> ;: = <gymbol =

<argument list> :: = <argument> {*," <argument >}
<argument> :: = <lerm>

<operator-applied term > :: = < prefix operator-applied term > |

< postfix operator-applied term> |
<infix operator-applied term >

< prefix operator-applied term > :: = <prefix operator> <term>
< postfix operator-applied term > :: = <term> <postfix operator>
<infix operator-applied term> :: = <term> <infix operator> <term>

<list> :: = <null list> | <non-null list>

- 138 -

<null list>:: = “[]"
<non-rall list = 00 = “[" <lerm list = [*" <term®=]"]"

< ¢lass deflinition> ;=
“rlags” <class name >
[« macro bank declaration =]
“has”
[<inheritance declaration = *."
{ = class slot definition = “}"}
{<class clause definition > *")
[“instance”
{<instance slot definition > “;"}
{ < instance clause definition > “"}

["].f:lf_'ﬂ.]h
{<local clause definition> *;"}]

“ond” * "
<eclassname> ' = <alom>
<package name> ;= <atom>
<class identifier > : : = <class name > | < package name> “##" <class name >
<macro bank identifier> ;. = <macro bank name > | < package name > “##"

< macro bank name >

<macro bank declaration : : = “with__macro” < maecro bank identifier >
< macro bank name> :: = <atom >

<inheritance declaration> @ 1=
“nature”
<inheritance class name > {*," <inheritance class name >}

<inheritance class name> 1 = <class identifier = | “*

<class clause definition™> ;; = < method clause definition >

<instance clause definition> ;; = < method clause definition >

<local clanse definition = :; = < clausze definition >

<method clause definition > :: = [<demon type > *;" <clause definition >

<clause definition> ;. = <head> [*-" <body =]

< demon type> :: = “before” | “after”

- 139 —

<head> :: = <<term>

<body>:: = <goallist>

<goal list> :: = <goallist> {"," < goal list =}
L0 < goal list > {";" < goal list=}*)"
I <goal>

<goal> - = <method call> | <predicate call >

< predicate eall = 10 = </term >

<method call> - - =
< usual method call >
| < class method call =
| <instance method call>

<ugsyal method call = - =" <term >

<¢lass method call > : : = <class identifier> *:" <term>

<instance method call = = ** <¢lass identifier > " <term>
<plass slot definition > - = <slot definition>
<instance slot delinition > - - = <slot definition>

< glot definition > @@ =
<slot type> <slot definition item >
{*." < slot definition item =}

<slot type > ! = “attribute” | "component”

< glot definition item™> :: =
< slot name > [<slot initialization>]
%" «Islot name>= “ =" <term>
“. " < elot inttialization code =)"

<slotname= ;= <atom>

< slot initialization> ;1 =
=" perm > | Yis" < class name =

<slot initialization code > :; = <goal list>

- 140 —

< macro bank definition > - :

="macro__bank"” < macro bank name >
[<macro bank declaration =]

“has"
[<inheritance declaration> “;"}
{ =siot definition > *"}
{ = macro definition > *;"}

["local”
{<loeal elause definition =>";"} |

HE ndu -u_ L

<macro definition= :: =

< ohject pattern > “= ="
< expanded patiern> | <clause expansion execution condition > |
“1=" =expansion condition> |

<ohject pattern > = = =
[“expunded pattern > | | <execution condition >
Yi=" < expansion condilion > |

<elavse inserl slatement =

<object pattern> ;= <{erm>
<gxpanded patlern> - = <term >

< clause expansion execution condition> : =
["when < generating goal list =]
[“where” < testing goal list> |
[< execution condition >]

<execution condition > 0 =
["with" {<<lecal clause definition = “.*}]
[“by" <wvariable =]

< generating goal list > :: = <goal list>
<testing goal list> - = <pgoal list>
<expansion condition> :: = <hody>

<clause insert statement> ;. = <insert type > “(” <predicate type. * "
{<clause definition > *;"})"
<insert type> ;. = “inserta" | “inseriz"

< predicate type=> ;: = “¢" | *{" | “]"

- 141 -

APPENDIX B

class
has
instance
local

Il

with macro
befare

after

nature
component

attribute

spy
espy
nospy
\ o+

fx
xfx
fa, nfx
fx, xfx
xfx, xf
xfx

wix

fu, xfx

xfx
xfx
xfx, xf
yfx
yix
fx, yix
fx, yix

fx

fx
wfy
aty
fx

fu

ty
wfx

1180
1160
1155
1154
1150
1150
1140
1140
1140
1120
1120
1120
1100
1100
1100
1099
1099
1098
1048
1098
1098
1080
1080
1040
1000

9993

900

200

900

ano

J00

- 142 -

+

£
W

Xor

< <
> >
div

tried

fu, yhx
fx, yix
yix
yix
yfx
yx
yix
yix
yix

xfx
xfy
yix
iy xfx
fy,xfx

ufx

TABLE OF STANDARD OPERATORS

700
700
700
700
700
700
700
700
700
700
700
700
700
700
700
500
500
500
500
500
400
400
400
400
400
4a00
200
200
100

a0

50

APPENDIX C LIST OF STANDARD MACROS

{1) Notation of constant value

radix#“character string”

#character”
control#“character”

meta#“character”

control meta#“character”

key#name
meta#name
pf#number
keypad#“character”

mouse#click

ascii#“character string”

string#“character string”

lis#“character string”

words#“character string”

double bytes#{vector}
bytes#{vector}
bits# {vector}

(2} Arithmetic operations

iy

Xy
HdivY
X mod Y
- X

Radix-of-2 to - 36 notation
Character code
Control-keved character code
Meta-keved character code
Control-meta-keved character code
Special key

Meta-keved apecial key
Function key

Keypad key

Mouse entry

ASCII code string

J15 16-bit code string

JI5 16-bit code string

J2-bit string

16-hit string

B-bit string

1-bit string

Unify

Unify

Equal

Not equal
Tdentical

Not identical
Comparison
Comparison
Comparison
Comparison
Addition
Subtraetion
Multiplication
Division
Division {for integer only)
Module residue

Reverse sign

— 143 —

XY Bitwise logical product (AND)

Xy Bitwise logical sum (OR})
X xorY Bitwise exclusive OR
X>>Y Right shift

X<y Left shift

VIX) Bit complement

(3) Executionof ESP

#class-name Class object.
‘method-name{arguments) Method call
class-name:method-name{arguments) Class method call with a class specified

: class-name:method-namelarguments) Instance method call with a class specified

X = Obj15lot _name Blot access
X = = Obj!Slot _name Slot access
Obj! SIDt_name =X Slot access
Obj I 5lot_name = = X Slot access
Obj ! Slot__name Slot access
Obj !5lot _name:= X Slot assipnment

(4} Others

unigue _atomflogical-veriable) Unique atom

standard#input Standard input port
standard #output Slandard output port
standard #message Standard message output port

(5) Macro expansion suppression

* (term) All suppressed

" (term) {One level suppressed

— 144 -

APPENDIX D LIST OF BUILT-IN PREDICATES

absnlule_cut [Level)

absolute cut _'__am:l _lail {Level}
add (N1, N2, " R}

add _ extended (11,12, "R _up, 'R __low)
and (1,12, " R)

and _ string (5, Position, Length, Masks)
apply (Predicate, S _‘u’ _Argl

atom (7X)

atomic (7X)

bind_huck (7X, Goals)

bound (2X)

code (?X, 7 Length)

complement (i, " R)
complement__string (S, Position, Length)
|

cut and _fail

decrerment (I, ~ R)

divide (N1, N2, "R}

divide extended (11 _up, 11 low, 12, " Q, " Rem)
divide_with_ remainder (11,12, °Q, ~ Rem)
equal (?x, Ehd]

equal __slring (51, 52)

exception hook (Exception, Predicate)
fail

first (W, * Elemaent)

first _“Incaticn {H_"u’, " Loc)
floating__point (?X)

ficating _point _to_integer (F, " 1)
hash (?X, " Hash)

heap_vectar (?¥, " Length)

identical (7%, 7Y}

increment {I, ~ R)

integer (7X)

integer _to_ floating_ point(l, * F)

— 145 —

less__than (?X, XY)

level { " Level)

location (7X)

location element{Loc, * Element)

melhud_carl (Object, Methad, ~Argl,..., " Argn)
minus (N, ~ R}

mcve_string__elem ent (5, Position, Length, Shiftcount)
multiply (N1, N2, "R}

multiply _extended (11,12, "R _up,.., "R _low)

few _a‘toml‘. ~Atom)

new _heap__uecmr[~H _V Length)

new protected object{ ~P, Key, Value)

new stack _'hff'i;tﬂrf ~5 W, Length)

new _string (~5, Length, 5_ size)

rot _equa[{7, ?Y)

not equal string {51,52)

not identical (72X, ?7Y)

ot _Lless_thanrl?x,)

mumber (¥x)

on__backtrack (Goals)

or (11,12, *R)

or_string (5, Position, Length, Masks)

overridden method _call (Table, Method, ~ Argl, ..., ~ Argn)
predicate _l:all {Predicate, " Argl,... ~Argn}

protected _ type (?X)

protected value (P, Key, " Value)

raise (Exception,5 V. _ 8)

relative cut (Level)

relative__cut _and _fai! (Level)

search__character (5, Start, End, Charactercode, * Position)
search__charactersbackwa rd {5, Start, Tablel, Table2, " Position)
5.aarch__characiers_fnrwartl {5, Start, Tablel, Table2, " Position)
search__ 5tring_di[lerence (51,52, ° Position)

second [V, ° Element)

5e-ccrnd_lol:ariﬂn tH_"u'ﬂ * Loc)

set _ first(H _ V. Element)

set _location__element (Loc, Element)

set protected _\ralue{P‘, Key, Value)

— 146 -

sel _second (H_V, Element)

set slot {Object, Slot, Value)

ot _stri ng_elernent (S, Position, Element)

sel _ substring (5, Position, Length, SubS)

set _ subvector (H __V. Position, Length, SubV)
set vectar _element (H __V, Position, Element)
shift _left{l, Count, " R)

shift right {1, Count, " R)

st (Object, Slot, ™~ Value)

stack __vector (?X, ~ Length)

string (?X, © Length, "5 type)

string_element (S, Position, * Element)
string_tail{‘i. Position, " Element)

structure (7x)

substring (S, Position, Length, " Sub$)
suhtract_extended {11,12, °S, "R}

subvector (V, Position, Length, " SubV)

succeed (Level)

true

type(?X, " Tag)

unbaund [2X)

unify{ "X, “Y)

value (72X, " Value)

vector element [V, Position, " Element)
vector _element location (H_V,Position, " Loc)
'uectcnr_:ail (V, Position, " SubV)

xarfl1,12, “R)

xor _string (5, Position, length, Masks)

- 147 ~

T W@ - @& o N oo

BT = T = N« T

w

APPENDIXE KEYBOARDCODE ENTRY TABLE

JIS kanji
2361
2362
2363
2364
2365
2366
2367
2368
2369
2364
2368
236C
236D
236E
236F
2370
23N
2372
2373
2374
2375
2376
2377
2378
2379
2374

2177
214E
214F
2140
2130
2132

control

ASCIl contral meta meta

61
b2
63
&4
65
66
&7
68
69
728
6B
6C
&0
&E
6F
70
n
72
73
74
75
76
77
78
79
7A

40
SB
5D
aC
SE
5F

1

m o om O N W PF oW om o~ o ow B oW R

_h—i‘-l—h—l.—l-‘—
P w @ Ao o B oW R - O

1B
1D
i
1E
1F

E1
E2
E3
E4
ES
E6
E7
E8
E9
EA
£B
EC
ED
EE
EF
FO
F1
F2
F3
F4
FS5
F6
F7
F8
F9
FA

o
De
oD
DC
DE
DF

81
B2
83
84
8s
86
a7
88
as
8a

I v M m g N ® B

-

BB
ac
8D
BE
8F
a0
91
92
93
a4
a5
96
97
98
93
aa

M < X g < c 4w @2 05 % 0 =z g™ &

80
aB
aD
ac
9E
9F

— 148 —

JIS kanji
2341
2342
2343
2344
2345
2346
2347
2348
2349
2344
2348
234C
234D
234E
234F
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
235A

control

ASCIT econtrol meta meta

41
42
43
44
45
a6
47
48
49
yy
4B
4ac
ap
4E
4F
50
51
52
53
54
55
56
57
58
59
SA

—

M om DN ®m P w1 B Wk

_L-ﬂddaﬂ_l_-_l-.-._.
Pow @ o<W o o b W R o O

1
c2
c3
c4
cs
6
c7
.
o
CA
CB
cC
cD
CE
CF
al4]
D1
D2
D3
D4
D3
D6
D7
08
09
DA,

81
82
83
84
85
B6
87
g8
89
8A
88
BC
8D
8E
8F
80
91
92
93
94
a5
96
97
98
99
94

wom o~ dn W B R

JIS kanji
2330
23231
2332
2333
2334
2335
2336
2337
2338
2339

ASCIl meta
30 B0
31 81
32 B2
33 B3
34 Bd
35 BS
i6 Bb
37 E7
] BB
39 B9

— 149 -

N

-

et T ey

JIS kanji
2124
2149
2174
2170
2173
2175
2147
2144
214B
2176
215C
2124
2150
2125
213F
2127
2128
2163
2161
2164
2129
2146
2150
2143
2151
2141

ASCII
21
22
23
24
25
26
27
28
23
24
28
2C
20
2E
2F
34
3B
3cC
3D
3E
IF
&0
7B
c
7D
7E

meta
Al
A2
A3
Ad
A5
Ab
AT
A8
a9
Ak,
AB
AC
AD
AE
AF
BA,
BE
BC
BD
BE
BF
EO
FB
FC
FD
FE

pf#0
pf#1
pf#2
pf#3
pf#d
pf#5
pf#6
pf#7
pf#8
pf#9
pf#10
pf#11
pf#12
pf#13
pf#14
pf#15
pf#16
pf#17
pf# 18

mouse #|
mouse #]

mousef#m

80
81
a2
a3

a5
86
a7
BB
a9
8a
88
T
8D
8E
aF
a0
91
92

keypad#”0”
keypad#"1”
keypad#“2”
keypad#“3"
keypad#~4"
keypad#"5°
keypad# "6~
keypad#"7"
keypad#“8”~
keypad# 9"
keypad#","
keypad#*-*
keypad# ™"

‘moused#’
‘mouse#|l’

‘mouse#m’

mouse#mm ‘mouse#Fmm’

maouse #r

maouse#rr

‘mouseFr’

‘mouse #rr'

- 160 —

key#bell
key#bs
key#tab
key#If
key#cr
key#esc
key#dal
key#help
key#abort
key#up
key#down
key#left
key#right
key#enter

meta

a7

89

8D
QB
FF

89
BF
80
9
92
FF

(i@ F »

J1S8Sa3—F&

APPENDIX F

36 3T 38 39 34 38 3C 30 3E IF 4@ 41 42 43 44 45 46 47 48 49 44 48 4C 4D 4E 4F 58

1

+ & ¥ 3

1 J KL HNOF

a = 94 T 0+ ¥ U EBH e od
EARCI S = s
E e r n & i o e

&
¥ o
a A

Ll + W& 5% DA

T

A B CDETFTGH
L
L A

o
'

2 4 F O -
E 3 & 2 € 2 un
¥ LE+ Ff ¢ & F

5 7T 8 9

¥

ERasEEDS =TI D
EETENL = ETy
EHOGE ST aw
SHEEEITAEZL ¥
CrEsHdHTEE
L bRl =R B
EES-S-F B & B AV
(L Ny
B i oD
ErrEvaIrEEan
FowmaORE e S a
TEREFZEIN0S
ExrFrEYICeEN
FEEPOm D E R+
BHEHFE NN
FRAFEE RO aw
EEEEL Y XS eE
WL EIRESS
-3Chk 3 F-5 4 F-5-§-
EFLEEEEDHE S
EE-ERadrp e
SdmEE=SESIolE
FEERZEEEAE
FEMSO DE¥HN
Fr¥remys2sS3x
2 313 SRR
EEFREAERNEH

—_—
RS FA I R T EAE R T
EFLCS MR R P EENGFaEUINE L EERE STy
sHESt UM PR Gl RSN Lt E I ANy
a2 rEa33BTENRERARE RN el sy
LCHEFEEFEER S AT e RN E R A NS | LS
LE L -3 3 4 4 0 BB R L Lof b B-0-F 0 N4 A F4
12 =2 L2 4 E R 2R LIRSS 0-FA 3R T T
CEACE-RRE B-F - RN - R 24 F L B-E & 58 S-FF ¥ ¥
ZEpErsd PR Y NY N RSt e T I Py
EEHIE ST FYRECETNMETIYECognsgy
RS N T IR YO S S NUE S EL P T
ICE-N R BB AR g R Ny AR NS L
EsErFERA e OO REDAES @A rSERMECARPPS
FHE I TR F S SR T E ST NI SN TP S
HEWM LN AN Y E SR SN T TR
HEN -tV ENEY E R NS T NS N E S BT
A T E - FHNEN T NS FLITEINR AT ES TS O
A LA A L F E R4 R E R
EAMNE YGRS U T S s E MW EHESESUFF S
L ER T E STV ERE NNt EES e E TS Y
R - - - R A -y Ao NN
RN NN ER JEEN R E IS~ EN SR ERT
HEd LN ETENET DD SR NN ESERERED S
W e r I N T s FE SIS S Iy
FERCERBEE RN YNENE SN S EE R RV VPR
R R -5 § F-F a0 RN R Ry YRy FoE o R
FerntE T IO RSN IS TR MO ERrEER

— -]

1B IC ID 1E LF 20 2] 22 23 24 25 26 27 28 29 24 28 2C 20 2E 2F 39 31 32 33 M 35

- i
==
]

Z 3 4 5

Mo
=]
=2
=X]
m=x
-
X =
<=

1
it

0
&
T b o % ¥ p ¥ ¥ ¥ a3 d 2

o X

= ow oo Do
- - 4=

[=1 LRl

.M rmE
S TdAL
+ B v 2
0 &£ rzm
* a4 koo

HENEESE &R
ERFIEEeEDI T
BYEINFNSEANSE
e ERCHEE
LEE 4 X B-8-5-F 3]
4 A X -2 3 kK
L E F X B 3 L N
1 4-F F R N4
[F RN X FE_ET B
EEIESENTR S
EEEEOAFYee
EHENENENN
wEEEE=am
AR ER-dENY
FprdESETNTIER
LECE S & B4 -k 3
ErRESLSASS
EEEREEE ST
—ESIERE" AaRS
24 £ 5 4 % %
HEETESEERED

FECESEANESEPRNEPCE ENREF SRS I REDRNEY
I I F I LI PR EE TR AN N
SASNEERer TR E o rE e EE 2N TPy
FRrEETENF T M T RSSO R RO S
EAEBFPHEERSRELSIVINEY DR B FReBY
BN ER SN TS VE P TR
(22 1L EY AR RN EEESEFILERNES N-F B8 F
L - X3 N4 E X A4 34 FR 2N ERAN Y ERERS-
LEE X ¥4 N4 E 8L FNEEENEEES -0 F]
SEEMEEN Y ErEf IR SR ERNE RS YN
EECSFerese 1 ER2RndEFEYN"LEET Y NY O
SIS RSB L N E S SN E RN TS TN
rEE I ESE el 2 g i ER s MEFo Ry ETYIER
I F YT LS E YR LIS NS A N BN Xy
PEREPAia S EREYESNYR S EX Sl TR EEaY R
NP EENFS N EEE T OSSR R U E EE TR
EPFESFYY I ENFAVEZIAXYkRYZIET NGNS AEE 3
SEREEEOERIESESE DR RS eI CREN
TR EE R TrERN TS E AP EE N EAYAEE
ThEiESBriErEd o e ininereifRlE
oI re Yy IR YOS dn SO mreaELEIE

SREARNARANERR AR N SRARARARAS

- 151 -

Q

T Y F & E XL 8 kT 800

GCBOBEGF TOTL T2 73 747576 77 TR 79 TA 7B 7C 7D JE TF 80 81 22 43 84 85 85

o ¥ W M ¥ I

L
L

N

L
wq s

Ll -]

L]

BEE

EEa

EEZ

TEZl
EBRCE
iEgE
E3_&E
agCE
WODNE
azl@
2Bl =
L - |
®E B
®E B
*RE0O
a2ER
IEE
eEEB
esiEE

DI
ACERSmnEs0R
TrREETESrES ek
XS B2 B BT
FlERENEY SR
EEgEseIZ=ET
ErxmaE=mpEq=E
L =54 LR-N §_K_% |
FERNNYoEPED
ENBECTHBIEN
¥Ipsosmrens
ExmOEINagmES
FEISTSTRENFKEE
LA A R B g
BALsT R EREME
e ENVIS TR
FESONMHE DD
FEFEFR2OdseEBEEE
I "= 0wda

EEHESENIFCENE<HEEENTTS
' FAETERETEEE S E4 43 2 R4 R 4
SdrvErsSEERNF oA EICEd DN
TR SR A IR SRR
SHELE" Y- TN
EE AL TSR L ENEREREECME
=N IR EN S TR TS DRETE
EIE A =EgYEr SN T O TN
Yy -T LY RS EEL SR BN N}
FEHLEpYem TSP IS WENER
LS LT 0 NS 5 3-A 0040 B4 & |
FrmExXrMEwmdoam I I NS E
SERERALNEREIETEOWE® g ED
CaFeET MY SEAEFERERELRD
EEERE"Ee W R a LT SeREAdE
EL=Fu 2 NYEEESERNEA~0 AN
EEEEHNTENew AT EEFORELE B
:::zr!mﬂtnuﬁliﬂf!ﬁ!!n

*

P X o+ = @ o€ 3> 5 2 ow o)

4

r

}

i b

51 52 53 54 55 56 57 58 59 5a 50 5C 50 5€ 5F 6@ 61 62 63 64 65 66 67 64 69 €A 6B

- af W
F
L_BE B]
-%n

L |

RN
- =
=5
& =
-
o
L
- %
MY Y
=YY
Al
R
= T
R
%"
L1 1)
- -
aw s

PCOT ¥ & 2 4 Y @ ol

¢t & 3 8 AR &k M W W oD

P2t ¢ # X dowm

a=E=0
ewdb
aE+~n
L =]
B 0=
I=E0
| el]
Emzw
S=2a
¥F=ILR
E=A@
|-
=g
Ewmil
a~I
e B
TTa
L X
E
-
&=
Hida B
TLEY
L LR Y
TaF
-
1=

lil‘ﬂ&ﬂ:ﬁl
I F 3 33 ba-N5 8]
ENEECHANEX
SEEETEE YT
HMExTERS e
EFEEFEEEER W
HENFFIE o NT
YR *rEE
LA F-E 8RR L
AWEEE S UM
EEEEERE S
WEFSECERS T
A § R N-3.B RE-
TERFEASEESE
I L 2 - T E 49 B8 1
EFEFEHMNEERY
KESEEFHNENS
EERESZETSX
Crrad=ame
EFdrECcCABEE
KaE g
FECEE S NE S
EEESERVECT R
EFEERREYCHDE
TExwExIEREEE
EEYanwesEN
T

EEFSENEE
FECETE D
EErmREHEN
EEpEEEN
EErFEwAE
SETEELR
EEFOREL
FETFNHN
EEFEd LA
EEFFUHER
REFPHEII
EEFFHEDR
EEFFrig
EETYEES
[24 9§]
EEERANT
CETE=ND
EEFFRONE
EFEYRBby

SEsYSAREYSWMISSeaEpRiED

AT YN Er e FE N e ENE
T EERNOQEREVERI R R EUTSEN
rErSkmrEeEHTE S S e e O
ECEEI 4N EANMEETEERRFE ST
Bt wWEw TSNS Ry
EHhEHEET AR RS EHESSEED
FESSL IEEL.E S ER Y F 088 Bed ¥
FE W I YT SIS EVEREE TR
rxyRIfaMENERIFRAES AEgHNRE
S I ETTF YT I 03N § 3 F
EeEmosfyuessgrEssmERass
- S LA L LS T EES LES 4]
cdEEIE SN YR LR T WEAM
AL iMSE2* X EEME I RN
deigegsrrtfieTctESHER
EAEFETAR TN T EACE s
SarfrMEAFEaNaTinsEREES
FEEwysNELEA = ol mET =0
TEESUS Tl ELIEONI AN
AT EE S SN IR FNEN N TR RS
ERENTEFESEEaTSCERAM T EYm
ANEErEESA T nddr e AN EEDRS
2 S RN ST R ENEEREERES-0N-1 F
DpeESNyaTfEYRREY~EDAD R

ETmFEANE
EETYeER
EEFEr+«mE
SEYyEumEe
eSS kn®
eErrEeND
EXFYwpy
FrifraEe
ERFFzEw
EEaEFRIEW
[Bl N ¥ N
ENTHEELN
EVT FW i E
EEC-FhEN
EEEFEE
SCEFYSE
ERTNNE R
EsoNwN>¥
FAMEOE W
EExTDED
EEeE =S
BEDEFHR
aTRNENEY
EWNEFESSY

HE T RN TR YOS WN SRS I FFRE
MY IR EFAN R EACS N S e P NEIE - P DAY
FHe g EHEASIEM NS AWM NESHEMETERT

[11]
1E
IF

AZNARRGARKRELASRAIRERER

L L
L

SIVSAER3383

- 162 -

36 37 38 39 34 3B 3C 30 3E 3F 4@ 40 42 23 44 45 26 AT 48 45 AA 40 AT 40 AP OF 5@

4 a4

o bl W oW
= Hoowmor R R W

L]
wn -
L -

1]

WwEAE W I 5 orU R

i

[}
1§

w

LI 1
I

m e

L]
]
L
1
K

Ll
] |
n

A

in

W

(- I
* Fl
m T e

4
]
!]
H

[}

W
L
1L
1

L

[]

oo
Moo
oY

i
il
II
i
i1 3 W %W

i
i3
ii
]

Ll]

i
]
]

at

[E |
(L
.
i
-]
L
d @

L]

+*

LN
"o

(L]
* at

L
A

L

]

F-]

n
»

[

iF Fa

=
A

T A1

A

i 2 3
L W,

(L]

L

"W MW

i
i

(LI T T)

a4 U =
R ™

H

|]

LF]

F
R M O 2 ¥ u W M

IE I in

LF]

(LI

I
AW @
LU LI I I A

il
LH
[Pl

¥ A ki # ¥ M U b @
(LR BV T
LU -]

i

I3

oy

LI] it

i B
8O UE

it

T]

"

LI B

[CO O I T | O F
WM X LB H AR WM H

n

& &

4]

o

It

0]
u
i

1]

s &
BN MM E N

1]
WO W o8 AN OEr o r bOA

e W M W I B W e
n e BNy EREB

1

(L " L E

L]

1 1
L L
¥ ¥ A

T/ LI T A L - T
L] LU L

L
(3381
L1
LA

[P [

L]
M H om0 H XM 3TN

B ks

-
&
&

0o

o ® R

2

"

L]

¥

[

I.
(1
s

i

)

L]
E
]
r
L]

L]

L .
W dh
i
2
A
]

|
L]
L1
i
I
&
T
It

=

- =

=
[}
N ¥ ¥

1F

ESNeEdE
BERs=oR

L
It
I H B

b

FOLEIN
===

1N b
W wnn W

Em AR K
W HRE WY

TIETE
=2y
LB
X
=
=3
=&

i

=
dweE
=]
L -
T E

=
L
=]
-]

c]

= =23
2z
B
ES

L

i
"
i

[H]
[+
H

(LA O LU T]

B

i

L
L
=
=

L
a u
i in

it
[

—n

18 1C 1D ME IF 2@ 2] 22 23 24 25 26 27 28 29 2k 20 2C 70 PE 2F 78 31 32 33 34 35

L O

It

L]

oA

- 3
L]
e
nwe=

LH]

Fu=ES5a=
dEesENTRE
LR 3 38R
FOoREEND
FEEITE TN
R R L R 3
EREECTNa X

L |
o

1L

=
=
=

(13

e B B & W 3 v

mn &

17

EwEUFuagin

iom M

= w5
LB

-3]

RORHENICEFES
EEMMEYAEINS
= ETEIEMEEZISS
ETWEFEmz Y Lr"Dx32xA
FELUMTIMEREY ISR SO
FRAFrSrISoFSI=ASS
TEIoROaOT ST YIFamw

L]

EETWEDTEIETIE RIS

EZZEdEIn=xae
rigacemamT
Ev ey

E NN E- b R R R

I

=
=

]

-
=

It =

2 o NIDESSTalcl

EFENFE

& W

=
|}
2

GRS ThHES D
EEETET O8N g
FEANIEETRLM D
SETEFE TN ans
LA S-N-B L3 § B3
EEErrUONY TS
FEIATEELYDE
EwaREpg eIl

L]

LE N5 B 5 4 8

FIMEBT RENI®IOX
LR B - i -
HIN®EfERITNIZINEE
kERSymSteEr TN
ENe@maeTpasEEL
SHLEkTEeREAIHEY T
FUFoZFEeTENFEFIGSTES
MATEYMEMANSPITEETIT
AMEzmERpYTEIIEFIETNI S
FEIZTHRATOIAOASZZIST
TZWMIOpPEIETTRAION
HI3ZERSTREmM2 X308

[£

ir

¥ NN N dH

E

LN L

I & &

L]

N PRt e e b E L

EEEEAPLEA I AN ETEN T mEZmizaass
R L R N - EEvIzored
EES S SRR E T N EHNEFFFEEEFEES-FE§ X
ErEN SR NN R R EF R R O EAENTERANE
ErfprscasnEIysoNdsAipT e oS ISy
L N4 BB B B3 N-SUE-F B4 N B8 -4 FS 088 8 |
S RS ELEFE FEEERFETA EEEFEFEEEFT-FEE]
A -3 P REERE SN LTI FYNENF S EEFEFE-E)
4 2 8 5 E S8 FA R F RN B-F N N NNY RN RS FE]
L R R EEFEE-EREE RN IEEE N R
- A E S RS0 02 3 -Fa-2 N B EREFEESES S
SRR AR E-E N RN RS- N
ENEF OUEEIEMIE N ET L E R Fe e gaS SO0
[sE S B-F- 8 R-B -4 FE S SN NN XN N-F- R A RO E N 1
ANAEEI AT U Y E LI ORI R ARV RSN
-5 3 33 R AR B 4 B EREENY EREEE RN NI E
B E-B-R A8 R LR NN AN YL E SN
EEFEFERNGastEd DuNLANEFREABYYIMESS
B R Rl - - R RN R NN

Sl 52 53 54 55 56 57 58 59 54 53 5C 5D 5E 5F €0 61 62 63 64 65 66 67 6E 69 64 €0 ECEDEEGF T@TL 72737475 76 77 T8 79 T TR TC 7D T §F B@ 11 BF B1 B4 85 86

TEM T I AT N E TR S TSI LTSN
CTENHAY YRy TSNS AN T S e
P R R N N T R T L A L]

s RN I Fuegide s mremE s=saen

TR AR Tk R RN TN TR LE S PSS N
S R RS 4R N ER- TN A T
I E LT S E R NEN ST REER RS- CIEE|
e ExSgsiygra i s S sses
EEE W TN YR FFw U S TN E PO RS e s HESTE
FE S me st g s s s S s e Esme
A S A RS 1) - L LS RSN NENSER T
EFseYEIrd s oNd Al o R o E NI RS
LA RS A EET AT IR FE R RS LR R
R ENE L AN 2-3-F R RS- EEE TR RS YT EL
HENn M E W R R e pN T E N YU SRS W E D
AR R AN E e AN T MEFE A S Y ST
A L A R RS L EE TR EN-EEN-EEN XL T F
LS B S RIS S LN AR BN SN TNy
ﬂ‘l'#fﬂ*ﬂiﬁlﬁﬂh=t=2£521=ﬁiﬂlﬂ
S EE L RN TSR ENE RN FN RSN
i R S-E-E A NN AR ENY J-ERE 1
TR ESPES S P MRSy A MENNEE S
RSN R AN PSS U NS I DL N
Mgy Y ENA SN T S s TN
LN E VRN Sy YK T AN NN SN
LR L LR O N L T W)
!E=u::tun:wsu==zuw=u=rl§&n=l:

R EEREE e R PR L T

— 154 —

APPENDIX G PRECAUTIONS FOR CONVERSION FROM
PROLOG TO ESP

Appendix G discusses the differences in language specifications and implementation method
between Prolog and ESP, which should be taken into consideration when converting a Prolog
program to an ESP program. The following discussions concern the maost eommon various Prolog
processors since much of the language specfications and implementation method depend on a
particular language processor. Therefore, all of the following discussions may not apply to the

Frolog language processor you are particularly thinking of. The diseussions include the following

items:
1. Data Lype 5. Meta logic
2. Arithmetic operations 6. Program operation
d. Data comparison 7. Internal data base

4. Excecution sequenee control
1. Data tvpe

Prolog docs not have the string and stack vector data types of ESP. Also, a list and & compound
term are different in internal data form at between Prolog and ESP. This section deseribes the
precautions related to the data type difference between Prolog and ESP that vou need to know
when reforming a Prolog program to an ESP program.

(1} Stack vector and compound term

In ESP, a compound term is expressed internally by a stack vector. A compound term of
Prolog ean be regarded as a special form of ESP stack vector. However, there is one big
difference: the functor of a stack vector can be a variable, A stack vector has the following
standard form at:

{R0, X1, %2, .., ¥n}

With this form at, if X0 i an atom, f for example, this stack vector is equal to the data of the
following form at, which cen be written in a program.

X1, X2, ..., Xn)

Therefore, you ean use a Prolog compound term as is in ESP without paying any attention
except that f{X) can be unified with {A, B}

- 155 -

{2) List

In Prolog, a list is expressed internally a2 a two-element compound term that has an atom *.'
as the operator. Therefore, the following goal calls always succeed:

(1,23] = "7 (07" @ "0 (3 03)))
[X[Y] = "X

functor{ [X{Y 1, .. 2}

arg{l, [X|Y].x)

arg(2, [X|y].Y)

In ESP, a list is expressed internally as a two-element stack vector. Therefore, the

following goal calls always succeed:

[1.2,3] = {({{ []1.3}.2}.1}
[X]¥] = (Y. %)

stack_ vector ([X|Y].2)
vector element([X|Y] ,0,¥)
vector _element{ [X|Y] ,1,X)

The difference in the internal expression between the Prolog and the ESP lists usually
gives no problem upon manipulation of lists in an ordinary application program. However,
note that a list whose CDR part (the rest of the list excluding the first element) is a variable
is unified with a one-element compound term, For example, -

[X]|¥] = {(2)

it succeeds, and X and Y are unified with Z and [respectively (e, X=2and Y=1.
Therefore, predicate “is__list(X)" that judges whether or not given data X is a list may be
written as follows in Prolog and ESF:

L is_li:tl: X) written in Prolog

is list(X) :- var(X), !, fail.
is _Iist[l __] _]).
is list(1171.

Note that in this case, is__list{"."(X,¥)) succeeds.

- 156 —

. is__list{)(} written in ESP

is _ list(X) :- stack wector (X, 2), !,
first (¥, Cdr},
{unbound (Cdry, !;
is lest (Cere)) ;

it list(]);

Note that in this case, is__list({X,Y}) succeeds.

(31 String

Prolog does not have the data type of string. However, writing “ABC" is internally
expressed as an ASCII code list [65,66,67]. ESP has the data type of siring, which is
completely different from an ASCII code list in Prolog.

The usage of a character string enclosed in double quotes (referred Lo as a string hereinafter
for both Prolog and ESP) differs between Prolog and ESP when strings are unified. In
Prolog, since a string is a list of ASCII codes, unification between strings is performed
according to the rules for unification between lists, and unification is performed for every
element. For example, the following unifications succeed:

"ABC*
[%, v, 2]

" ABC”
"ABCT

The following unifications fail;

"ACE"
(65, 67, 65]

J.-ABC-
"ABE-

In ESF, since a string is data that has side effects, unification between strings is performed
according to the rules shown in table 4-2, and unification is not performed for every
element. Therefore, the following unifieations all fail:

“ABC* = “ABC"

YABCY = [X,Y,Z]
"ABCT = "ACHE"
"ABC" = [b5, 67, b6)

If youwant to check the equality of all elements between strings in ESP, you can use the
following built-in predicate:

equal___string ("ABC", "ABC™)

- 157 —

(4) Atom

In Pralog, an atom is deeply related to its print name: the print name of an atom can be
obtained by a built-in predicate. For example, to obtain the print name of an atom called
“atom"”, you use the built-in predicate:

namelatom,Nama)
This predicate unifies the ASCII code Hst [97,116,11,109] of the atom “atom” with Name.

In ESF, atoms are associated with their print names by using the function of SIMPOS basic
class “symbolizer”. For example, to obtain the print name of an atom, you use the following:

get atom_ token{#symbolizer,atom, Name)

This unifies the JIS 16-bit eode string of atom “atom" with Name. Note that eomparison
between atoms is not accomplizhed by their literal names. (See table £-4).

2. Arithmetic operations
(1) Execution by macroe expansion and interpreter

One of the main differences in arithmetic operations between Proleg and ESP is that an
arithmetic operation is executed after being macro-expanded or is executed directly by the
interpreter. With a Prolog interpreter, an arithmetic expression is exeeuted directly by the
interpreter, while in ESP, an arithmetic expreszion is macro-expanded to a sequence of
built-in predicates, then executed.

Note that even in Proleg, if an arithmetic expression is compiled, it is expanded similar to
ESP. However, in Prolag, the execution by the interpreter is not compatible with the
execution by the compiler as shown in the following program example:

[Frogram] XYY s X+ 1

[Exccution example 1] T-pl(3,2).
ln both ESI and Proleg, Z is unified with 4.

[Execution example 2] 7-p(3 +2,Z).
In ESP and in Prolog interpreter, Z is unified with 6. However,
the execution process differs greatly between them as deseribed
below,

In ESP, when the goal p(3+ 2,Z) is entered, it is macroexpanded to the following, then

executed:

add(3,2,X), p(X,Z)

- 158 —

(21

Therefore, when goal pis called, the first argument of pis already 5. In the Prolog
interpreter, however, the first argument of p is unified with 3+ 2, namely, with a two-
element compound term with operator “+ 7, and operation 3+ 2 +1 is executed in built-in
predicate “is". In Prolog, a call sueh as p(3 + 2,X), if it is issued after the program has been
compiled, results in an error

Word length

In ESP, an integer number s expressed as a 32-bit signed or unsigned integer number, and
an overflow is notified to the user by exception handling. In I'rolog, handling an integer
number depends on the machine and the language processor. Therefore, vou cannot make a

general discussion. The following is an example of a language processor.

In Prolog, an integer number is expressed in 18 bits, and no overflow check is performed. 1n the
course of an nepration, however, a 36-bit integer 15 allowed. to compensate for this

disadvantage, Prolog has two-argument operator xwd, allowing 36-bit operations. For
example, compound term xwd(1,5) can be used in an arithmetic operation as integer 262,149 (1
is shifted to the left by 18 bits and the resut is added with 5).

(33

Arithmetic operators

Some arithmetic operators are supported in both ESP and Prog, and some are supported in

only one of them.

® Arithmetic operators supported in ESP and Prolog

LA Add X and Y.

K Subtract ¥ from X,

Xy Multiply X and Y,

Xy Divide X by Y.

¥XmodY Obtain the remainder of the division of X by Y.
-X Reverse the sign of X,

XY Obtain the logical product of X and Y.
b ATA S Obtain the logical sumof X and Y,

W Obtain the bit complement of 3.
X<y Shift X to the left by Y bits,

K=Y Shift X to the right by Y bitks.

® Arithmetic operators supported anly in ESP
Xdivy Divide X by ¥ and convert the result to integer.

Note: With a Prolog language processor that can handle only integers, X div Y is virtually
equal to XY,

— 159 -

® Arithmetic operators supported only in Prolog {of a particular processor)

Hx) Remainder of the division of X by 218 if 0 = X = 218-1 holds
(%) Remainder of the division of X by 218if-217 £ X £ 218.] holds
wwd(X,Y) Shift X to Lhe left by 18 bits, and add Y to it.

X1 Integer value of X
(4) Floating-point number
ESF ean handle floating-point numbers while many Prolog language processors cannot,
(5) Double-word operation

ESP can perform double-word (64 bits) operations while many Prolog language processors

cannot.

Data comparison
{1} Equality and identity comparison

Prolog and ESP support the fellowing four predicates for equality and identity comparison:

==Y Succeed i X is equalto Y.
Wio==Y Succeed if X is not equal ta Y.
X=:=Y Suceeed i X is identical to Y.
X=\v=Y¥ Suceeed if X is not identieal to Y.

Sinee identity comparison differs depending on a particular language processor, it is
recommended to use it only for ecomparisen of atom and integer data,

Although these four predicates are common between Prolog and ESP, attention needs to be
paid to the equality comparison of strings: in Prolog, since the data type of string is not
supported, the equality comparison between strings means the equality comparison
between lists, In ESP, the data type of string is supported, and “= =" or "\= =" does not
performm equality comparison of every element. To perform the equality comparison of
every element between strings in ESP, use built-in predicate “equal__string” or
“not__equal__string”.

{2) Less-greater comparison
Prolog has two kinds of built-in predicates for less-greater comparison.

® Less-greater comparison between inleger numbers: <, =<,>=,>
® Less-greater comparison between terms: @=.@==<,@>=,@>

- 160 —

In ESP, the built-in predicates for less-greater comparison <, =<, > =, and > can be
applied Lo both integer numbers and lerms. When using these built-in predicates, note that
the less-greater comparison of atoms is completely different between Prolog and ESP, In
Prolog, the less-greater comparison of atoms is performed with respeet to the alphabelical
order of the atom name. In ESP, since atoms are associated with their names in the
software leve] (by the symbolizer of SIMPOS), the atom names are unknown when the
built-in predicate is exccuted. Therefore, the less-greater comparison of atoms is performed
with respect to the atom number. The atom number has nothing to do with the atom name:

itis a number given to an atom in the order of the appearanec of atoms.

4. Execution sequence control

Among the built-in predicates for program execution eontrol, the following are completely the

same between Prolog and E5P:

FO If the execution of goal P suceeeds, execute goal @,
O ITthe exeeulion of goal P fails, execute goal §.
true Alwavs succeeds.

fail Always fails.

X=Y Unifies X with Y,

repeat Has infinite number of alternatives

For *;", since the priorities of functors *:-" and *," are different between ESP and Prolog, these

functors must be written differently between ESP and Prolog.

Example: InProlog

R:-R0 or R :-{P:Q).
In ESP
R - (P;Q);

Built-in predicate *!" is supported both in Proleg and ESP. However, note that when it is used
in an OR clavse, the range of the cut differs between Prolog and ESP. (For details, zee section
4.6.)

Example: InProlog

Po-Q (RS e @
P -7 e i)

Vol elavse (@ also cuts clause @ which is the alternative of P,

- 161 —

Example: InESP

P - Qr {R' 1 ; 5]_ - @
P ' T_ SRR {2‘:

tof clause @ culs goal 5 which is the alternative in the OR clause, but does not cut clause 2

which 15 the alternative of P.

In ESP, il you want to use the same function as the cut in OR clause of Prolog, you may use
built-in predicate “relative__cut" in the following way. However, this is effective only after

compilation.

Example: To realize the cut in OR elause of Prolog in ESP

F -0, (R, rela‘tive_cut{‘l} ;S ;
P :-T;

The built-in predicate specifying negation is different in the name between Prolog and ESP, but
the sume in Lhe function.

® InESF... nat(P)
® InProlog ...]
Meta logic

(1} Data type checking

The fallowing are the built-in predicates to check the data type, which are the same in
funetion and name belween Prolog and ESP.

atom{¥} Succeeds if X iz bound currently with an atom,

integer{X) Succeeds if X is bound eurrently with an integer number.

atomic(¥) Sueeceeds if ¥ iz bound currently with either an atom or an integer number. In

ESP, however, it suceeeds even if X is bound with a floating-point number.

The following are the built-in predieates which are the same in the function but different in
the name between Prolog and ESP.

inESP ... Unbound(X)}, bound(X)
InPralog ... var(X}, nonvar{x)

(2) Manipulation of structures

Prolog has three built-in predicates to manipulate structures: “functor”, “arg”and “=..". In
ESP there are no corresponding built-in predicates. However, the equivalent functions can
be easily realized in ESP as follows:

- 162 -

Realization of luncter {T,F, N} in ESP
¢ WhenT is unified with a strueture

functor (T, F, W) :-
structure (T}, !,
first(T, F),
s.tack_rvectﬂr (T,N1),
N=HM1-1;

¢ When T iz unified with an atom

functor (T, F, W) -

atom (T}, !,
F=T,
N=0D;

& When Tisa variable and F is unified with an atom, and N is unified with a positive
integer number or zero.

functor (T, F, N} :-

unbound (T},

Ni=N+1,
{

Nas=0, !,
T=

new _ stack _ vector (T, N1},
first{T, F}
b

- 183 —

Realization of arg(l,T,X) in ESP
The following gives almost the same function in ESP:

arg(l, T, X) - integer (I},
stack_ vector (T, A},
>0,
< A,
s I-1

vector _e1ement (T,11, X);

Realization of X =_.¥ in ESP
® When X iz unified with an atom

f=, L X, Y) - bound (X)),
atomic (X}, 1,
¥ = [X] :

® When X is unified with a structure

=l (KLY - bound (X)),
stack _ vector [¥, N), Y,
make__list(N, 0, X, Y);

make _list (0, _, . [1) - 1

make _list (N, K, X [H[T]) : -
vector_element (X, K, H),
make_fist (N-1, K+ 1,X,T);

& When Y is unified with a list

= T e
{
T= =[], atomic(H), !,
¥=H
make structure([H | T],0,X)
Yol

- 164 —

(3) Meta call

While Prolog has the built-in predicate for a meta call “eall(P)", ESP has no corresponding
predicate. However, the same function of the meta call can be realized in ESP by using
method “refute” (every class implicitly inherits class “class” in which "refute” has bheen

defined.)

The following shows an example of & meta call for goal “p(1,2,X1" or “:p(Object, 1,2, X",
Example: InProlog

?- call (p(1, 2, X))
Example: InESP

7. :refute (Object, P, {1,2, X} .

Program operation

Frolog has two built-in predicates, *assert” and “retract”, to store or delete predicates into or
fram the program data base, but ESP has no corresponding built-in predicates. Prolog can
store or delete predicates only in the interpretive codes. Also, how the program is executed
when clauses are stored or deleted during program execution depends on a particular Prolog
language processor. If you want to have the functions equivalent to “assert” and “retract” in
ESP, you need to realize by yourself such program data base managing functions in ESP. In
many Prolog language processors, the Prolog interpreter is written in Prolog itsell In ESP,
these functions ean easily be realized by using the pool functions of SIMPOS and built-in

predicates,

Internal database

Prolog has five built-in predicates to utilize the internal data base: “recorded”, “recorda®,
“recordz”,erae” and “instance”, while ESP has no corresponding built in predicates. Hewever,
use of the pool funetions of SIMPOS allows you to have more versatile data base managing
functions than the Prolog built-in predicates.

- 185 —

APPENDIXH WHATIS"OBJECT-ORIENTED”

This appendix deseribes object-oriented programming, which is a very important concept for
understanding ESP language specifications.

Object-oriented programming is a programming technigue extended from the conventional
structured programming technigue, which aims at concise expression and description of problems
and solutions. The term “object” means an “entity” or “subject that takes an action™. A program
can be regarded as a deseription of a real world including a product of human thought (such as an
algorithm} in the form of an image mapped into the computer. With an object-oriented language,
you disassemble an image to be mapped into the components, define these components as self
organizing objects, and write a program in the format that these objects communicate with each
other by passing messages. In the ohject-oriented languege, data and a procedure are dealt with as
one entity (which are separate entities in a conventional procedural language) and a standard

external interface (called message passing) is set up.

Data Data
P
Procedure Procedure

/s

/o \

Diata Data Data - Data I
- — e 1
I < |
Procedure Provedure Procedure | fo Procedure
: Message passing
{i} Conventional procedural language (11} Objeet-oriented language

Fig. H-1 Difference in Inter-module Interface between Conventional Language and Object-
oriented Language

For example, a window to be displayed on a bit-mapped display is realized as an object. According
to instructions from the program or the window manipulator, the window can display characters or
graphics and change their position, size or display state. With the conventional programming
technigue, generally a window is expressed as o sel of data, and the window is manipulated by
changing thiz data through an external precedure. On the other hand, in the object-oriented
language, a window cna be realized as one entity consisting of the data and the procedure for
manipulating the window., When you give the window an instruction (namely, a message) to
“display a character” or to "“move to a specified position”, the window executes the requested

instruction by evoking a procedure corresponding to that message provided in the window itself.

— 166 —

As deseribed above, an “object” can be regarded as a kind of personification: vou describe in &
program a lifeless object that originally cannot understand meanings as an active subject that can
understand a language and move the body. Simialr to the technigue used in animation where you
can personify any ohjects, this technique can be applied to any objects in a program. Let’s take an
example of a door. A door can be opened, closed or locked. To realize a door as an object, you may
build the procedures for these actions intn the ohject called “door”™ so that the object can respond to 2
message given from the outside such as "open”, “cose™ or “lock™,

In human society, objects called human beings use spoken or written language us a communication
means to exchange thoughts and requests between them, by which an organization such as a
government, sociely, or a social club can be managed in an orderly manner. Object-oriented
programming corresponds to the composition of an organization in human society. First, you
analyze the tosks needed to realize the desired function, establish an office organization, and
asseciate with each other the individual positions set up according to the office erganization to
build 2 unified organization. People are assigned to the respective positions, then the organization
begins its service. Suppose the organization is a TV factory. When a request "Produce 1000 TV
sets” iz given from the putside, the individuals of the organization execute their own roles sclf-
organically such as exchanging messages {instructions) between each other, so as to finally produce
1000 TV sels.

As deseribed above, since ohject-oriented programming allows exact deseription of objects, you may
have various kinds of advantages from it. These advanteges are as follows:

(1) High deseripliveness

A real world ean be deseribed direetly and definitely in a program; you can easily write a
program and the program is readable,

(2} High maintainabilitv and reutilization of a program by information hiding

An ohject is a packape containing the data and procedure of a program and il can be handled
like a black box. This allows localization of program medification. Since the access interface to
an object is made standard, the modularity (independency) of an objeet ean be made high,

allowing the program tp be easily uscd for other applications.
[3) High programming efficiency by the inheritance function

Packaging data and procedures inte an object allows uze of the efficient programming funetion
ealled inheritanee, Only by modifving or adding new funetions to an existing program through
the inheritance function, can you make a new program. You can ase combine existing
programs in to a new program through the inheritance function

The fallowing explains the way to write a pragram in the ohiect-oriented programming.

- 1687 -

As described above, since a program is constructed as a set of objects, yo may only describe
individual objects. However, you may often need several objects of the same attribute. For
example, supposing you make a program to simulate the TV factory organization, you usually need
multiple production line workers who do the same job at the same section. As for a window on a bit
mapped display, you may want to have a theoretically infinite number of windows having the same
attribute. In these caes, il is & waste of time to write a similar program many times in every object.
To cope with this problem, vou can desecribe all those objects that have the same attribute and
behavior as a single entity called & class. A class defines the type (template) of objects that belong
to that clase, which iz treated as a programming unit. In other words, a program is described as a

seb of classes.

Execution of a program begins with generating the necessary number (one or more) of objects
(called instance ohjects) from each class. (You do not need to prepare all of these objects before
program execulion. They only have to be generated when they become necessary.) After this,
program execution proceeds further as the generated objects are exchanging messages with each
other. (See Figure H-2). If you define a class itsell as an object, this gives various kinds of
advantages. A class regarded as an object is called a class object. Receiving a message asking

generation of an instance, a class object generates an instance object,

Program /’,—/ T

Class = 1 J(/-\ll /C> J‘VQ S
A
<=
Class =mn Y .
Generation of instance k

(i} Bouree program (it) Program execution

|

Class - 2

Fig. H-2 Source program and Program Execution in Object-oriented Language

The relationship between a class (class object) and an instance (instance object) may be explained
with the following examples: a class i1s the negative of a film while an instance is one of the
positives that can be produced from the negative; or a class is a mold while an instance is a molding
produced with the mold; or a class is the mask pattern of an integrated circuit while an instance iz a
particular IC made with the mask pattern,

When a program is compared o a device consisting of logical circuits, a class may be regarded as
the IC mask pattern and an instance is an IC, You may generate the necessary number of ICs from
each mask pattern and combine these 1Cs into one device, Electric signals passing between the 1Cs
may be regarded as messages. This analogy is summarized as follows:

— 168 —

((ject-oriented program) (Logical circuit device)

Class objects Mazk patterns
Instance ohjects ICs

Messages Electric signals
Pragram Device

One of the features that an object-oricnted program has is that the program has a dynamic leature;
the time a class generates instance objects is when the program is actually executed. This seems
intricate apparently. However, this mechanism makes it possible to give the program the powerful

deseriptiveness.

The following explains the inheritanee function. The mechanism to generate multiple objects from
one clazs eliminates the waste of time to write all of those objects that have the same atiribute. The
inheritance function is a mechanism io more simplify the deseriptivn of o cluss definition itself,
That iz, for definition of differnt ¢lasses, the commen part of these different classes is extracted as
one independent class. Thiz may be explained by an analogy with the following example of
algebra: ab+ar may be expressed as a (b+¢) by factoring out common factor a. This seems like a
subroutine in a procedural language, but is differnt in essence. A subroutine is prepared as a
physically independent program and called at run time, On the other hand, the inheritance is a
function to incorporate a defined class into the self calss, thus it becomes one entity even in terms of
the physical aspect. {Upon inheritance, the class is not merely copied but is incorporated in such a
way that the functions are synthesized or replaced according to the preseribed rules.)

Let's take an example of deseribing animals for further explanation.

Suppose you make a program where you define a canary, a penguin and a German shepherd as
separate classes. One way of deseribing is to describe their atributes in the respective classes.
However, i vou factor out the common atiribute, you can reduce the deseribing task. With this
example, since a canary and a penguin are both birds, yo define the common attributes among birds
as a separate class "bird". When vou make a class definition for & canary, vou can use the definition
of clags “bird"” and add to it only the attributes particular to a eanary (such as “yellow” and "sings
beautifully”). When expanding this concept to a German shepherd, a German shepherd is a
mammal. Sincew a bird and a mammal are both animals, you defline the attributes common to
animals as a separate elass "unimal”. Then, for definition of class “bird” and class “mammal”, you
can use the definition of class “animal” and you only have to add the particular attributes nther
than the attributes of an animal. You can also modify the attributes already defined. For example,
a bird ean fly but a penguin cannot. Therefore, when you describe the attributes of a penguin, you
may change the atrribute “ean fly” among those attributes inherited from class 'bird” to attribute
“cannot fl¥”. (How to represent the knowledge “a bird can {ly but a penguin cannot” was one of the
important themes in the artificial intelligence field. However, il can be represented by using the
inheritance funetion. Historically, the idea of inheritance was developed as a means for knowledge
representation and is realized in an object-criented languape in the format as seen today.) As
described above, the function by which you can reutilize the contents of an existing defined class is
called the inheritance funelion.

There are twe usages of inheritanee:

— 189 —

a_njmal " " 5
t indicates the inheritance relation.

PN

bird mammal
. German
canary penguin shepherd

Fig H-3 Class Definition by Inheritance (Single Inheritance}

{i} Single inheritance
{(ii} Multiple inheritance

Single inheritance means to inherit only one defined class during a class definition. The above
example is an example of single inheritance. As seen in this example, single inheritance is a
technigue suitable when you define a complex class from a simple (multi-purpose) class. On the
other hand, multiple inheritance means to inherit multiple defined classes druing a class
definition. This technigue is used in a case where you define several atiribute clases and asemble
them into one product.

As described above, single inheritance and multiple inheritance are different beyond the difference
in the number of classes to be inherited. You may use either of them case by case. Use of the
inheritanee function allows concise and simple description of complicated logic. In a procedural
language such as Pascal or C, you can use a data inheritance function for definition of a data
structure. For example, when you have defined the data type A havnig a complex structure, you
pan reuse it az a partial structure of the data type B which has more complex data structure.
However, you cannot reuse the procedure that manipulates the data type. In an object-oriented
language, data and procedures are packaged into one entity, and it is this mechanism that makes it
possible to realize the inheritance function.

- 190 =

(SUPPLEMENT) Difference between an object and a subroutine in terms of programming

An object is similar to a subroutine of a procedural language. This seetion deseribes the difference
between themn from the viewpoint of programming to help you further undersrtand an object.

In a procedurz] language, it is possible to program an object-like subroutine to some extent. For
example, when vou use function subroutines of FORTRAN, vou can reecive the results of the
calculation for & given input value by writing the subroutine program in a special format. You can
modily the internal data structure and the use algorithm of the function subroutine unless you

change the external interface.
However, an object and a subroutine have the following definite differences:

{1) A subroutine is often realized in such a formal that it does not maintain the internal state (i.e.,
the side effecls are not left in the subroutine,) For this, calling a subroutine with the same
inpul parameters always causes the same value to be returned. The funetion subroutines of
FORTRAN are typical example. On the other hand, usually an object is used in such a format
that the internal state is maintained in it. The internal state is maintained by a slot. (For
example, when class "window” generates multiple instanee objects, each instance object
maintains its window size, posilion in the screen and window name in the slot provided in the
object.) Since the internal state is maintained, sending the same messapge to the same object
usually eauses a value different from the previous time to be returned. However, it is possible
to make a subroutine that maintains the internal state or an object that does not maintain the
internal state, and in fact such a subroutine or an object iz often used. That is, there is an
essential difference in usage between a subroutine and dan object. (See Figure H-4). A
subroutine is basically shared as one physical entity, which saves memory capacity. Objects
are usually gencraled as many times as necessary and assipned one by one. Thiz mechanizm
uses more memory capacity, though, since you do not share an object, vou can make it maintain
the internal state, greatly improving the flexibility of programming.

Program
1 \

Frogram . Sub-
2 routing

x

Pragram

(1) Use format of subroutine

- 171 —

(2)

(3}

(4)

(3}

Program Instance -
1 object ...
e \." .
Program Instance | ___ e Class
' - -
2 object e object
-
- ¢ - i
o Generation
Fragram Instance |
3 object

(i} Use format of object

Fig. H-4 Difference in Usage between Subroutine and Object

A subroutine call in a procedurai language is accomplished based on static linkage. that is, the
name of a subroutine is explicitly epecified in the source program and the linkage to the
subroutine is solved by te linkage editor beflore program execution. On the other hand, an
object call is accomplished based on a dynamie linkage. Which object is called is generally
determined at run Lime and thus linkage is alzo performed dynamieally.

Generally an object has more than one function {method) and which function is used is specified
by the argument (method name). On the other hand, which subroutine to be used usually
determines which funetion to be used. (However, it is possible to make an objeect-like
subroutine, But the specifications of the language do not originally provide that function and
such & subroutine is made on the programmer's responsibility.)

Related to (3), though, the format of a method call in an object has been standardized by the
languape specifications. No other format for information passing exists (you cannot use
common variables for example.) Becuase of this, an object can be treated as a black box. On the
other hand, a subroutine of & procedural language could be treated as a black box. However,
yvou must make a subroutine in that way on your own responsibility,

You can dynamically generate as many objects as necessary based on the class definition. With

a subroutine, you cannot generally do it.

- 172 -

