ICOT Technical Memorandum: TM-0367

Th-0267

An Algorithm for Partial Evaluation with
Constraints

by
H. Fujita

August, T9ET

1987, 1COT

Mty kokusar Blde 21F (3 456G 3191 -5

|| :D | 4-28 Mita 1-Chome Telex [COT 132064

Minata-ku Tolvo 08 Japan

Institute for New Generation Computer TecHHoIogy

An Algorithmm for Partial Evaluation with Constraints
Hiroshi FUJITA

ICOT Research Center
Institute for New Generation Computer Technology,

1-4-28 Mita, Minato-ku, Tekyo 108, Japan

A pew algorithm for partial evaluation of Prolog programs is presented.
The algorithm is enhanced by considering constraints. It may be a
Mralog connterpart of Futamura's Logie Dependent Parftal Fvaluation
[3] for functional programs, Using the algorithm. mere than linear
improvement [4] of runtime performance for a program can be obtained,
provided with a specific partial input that has potential for certain

optimization.

1. Introduction

It has been recognized that partial evaluation has a limit to its capacity to obtain
real improvement of performance for a program. Propagation of constants and unfolding
calls by their definitions, which are performed by usual partial evaluators, only reduce
certain intervals of computation in the whole computation sequence. However, they
never make a shortcut in the computation sequence nor do they change the program
countrol to eliminate redundant computations. Rescarchers in the area have set out to

enhance the power of partial evaluation 5] to obtain this kind of optimization.

There are three major problems in partial evaluation that have been researched

so far: automating partial evaluation, obtaining a self applicable partial evaluator, and

making partial evaluation more practical. The first two have been solved with real
implementations [1],[2], albeit unsatisfactorily. However, the last problem still remains
untouched and therefore unsolved. To obtain a more powerful partial evaluator and to

make it more practical, partial evaluation shounld be enhanced by additional capabilities.

This report presents a new algorithin of partial evaluation. It not only specializes a
program with respect to a given partial input, but also performs some shorteutting as an
optimization on the residual program using constraints, if possible. The idea originates
in Futamura’s Logic Dependent Partial Evaluation (or General Partial Eveluation) (3],

with reformulation to adapt it to Prolog programs instead of functional programs.
2. Outline of the Algorithm

The partial evalnation algorithm comprises two stages: specialization and short-

cutting, The algorithm is informally stated in Fig.1 and Fig.2.

When the top-level Spee in Fig.l terminates, the resultant specialized program
clauses are given in §'. A query to the program is to be given by G instead of G. The idea
of the specialization is that for every distinct call pattern (up to variable renaming) of a
goal in the original program, Sy, and its descendants generated by unfolding, specialized
clauses for the call are created by first copying matching clauses from Sy, then changing
the predicale nane of the call and of the heads of the copied clauses, so that every goal
in Sp calls ouly its own clauses not shared by other goals of the same predicate. Case
(3) of Spec is a kind of folding operation, but differs slightly from the usual definition

of a folding rule as a general method in program trausformation techniques.

Now, observing the resultant specialized clauses, it is often noticed that there are a
number of redundancies in them. Among others, there is often a predicate introduced in

the process for case (4) of Spec, such that it has only a single clause in §’. This predicate

Sy = a set of original program clanses,
De: a set of folding predicate definitions := ¢,
S" & set of specialized programn clauses = ¢,
Spec: input a goal G, output a specialized goal G,

If G iz of a primitive predicate,
then if G is evaluable, co (1)
then evaluate G, and
G’ := true/fail according to the evaluation,
else G7 = G,
else if G is a conjunction, (A,B), L 2)
then recursively compute Spec(A) and Spec{B),
gotting A7 and I respectivelv, and
G = and{ A" B"),
else if there exists (H :— B) in De such that e (3)
B 1s a variant of G with the renaming, o,
then G' := He,
else if there exists non-null set {H, :- B,} in Sy such that e (1)
H; is unifiable with G with the mgu, #,.
then ereate a new goal G, with a new predicate symbol and
all distinet variables oceurring in G as its arguments, and
G = Gy, and
for each 1,
compute Spec(B;#,) getting B, and
if B, #fail,
then add (G.#, — B,") to §',
else G = fail.

Figure 1 [STAGE 1] Specialization

15 the most trivial one which should be eliminated, since it only adds an overhead of
call-exit handling that produces the opposite result to the principle of partial evaluation.
Looking more closely into program 5', another redundancy may be found. For instance,
there may be a clause in 5" that cannot be called by any goal 1n 8. This fact can be
revealed by considering some residual goals in the specialized clauses as constraints for
other goals, and by checking the consistency of the constraints during expansion of the

gﬂa.ls by their dﬂﬁning clauses. STAGE 2 in Fig.2 deals with a post process for the

partial evaluation algorithn.

While there exists (H ;= B) in De such that
one of the following transformations are possible,

do the transformation:

(1} elimineting a trimel predicate
if there exists only a single clause (B = C) in 5" for B,
then remove (B :— C) from 57, and
for each (H; :- B;) in § such that
B; is unifiable with B with mgu, =,
do remove (H, ;= B;) from 57, and
add (H; - C)r to §', and
remove (H -~ B) from De, and

add (H :- C) to De,

(2} reduction based on constraint

if there exists eommon constraint C for every call of B,
then for each (B, ¢ Dy) in 87 such that

B; is unifiable with B with mgu, p,

do check whether p and D;p is consistent with
the constraint C, and
if 1t is not consistent,
then remove (I; :— ;) from 57,

where
constraint: For a goal B, in a clause
H = B].!l S | Ei—l: Bh HI:+]1 b | -P"‘ﬂ-'&
(By, ... Biov, Big1, ..., Bo) is called its constraint.

consistent:
A unifier p is said to be consistent with a constraint C,
if Cp is satisfiable under the program S’
(and under the evaluation system of primitive predicates).
A goal G is said to be consistent with a constraint C,
if the conjunction, (C,G), is satisfiable under the program 5’
(and under the evaluation system of primitive predicates).

Fignre 2 [STAGE 2| Shortcutiing

In fart, the second rule is the heart of the algorithm, although it is simplified as far
as possible. For the algorithm to be more concrete, it must be further elaborated. The
more sophisticated the definition of constraint and consistency checking provided, the

more powerful the partial evaluation that can be obtained. A simpler implementation of

the rule may be given by restricting the general definitions of constraint and consistency.

In the sequel, constraints are restricted to equalities or non-equalities, The consis-

tency check is applied only to egualitics or non-equalities. For example,

p(X,Y) X\=a, qlX,¥Y).
qla,Y) - r(Y).

qlXx,¥) h=b, s(¥).
qlXx,¥) ¥h=a, t{¥Y).

The constraint for a goal. g(X,Y), in the first clause is X\=a. The mgu, {a/X}, unifying
q(X,Y) with q(a,¥). the head of the first clanuse for g, is inconsistent with the constraint,
¥\=a. Henee, the clause is never used for solving p(X,Y). The goal. X\=b, in the body
of the second clause for q, after unifving g(X,¥) with its head. is consistent with the
constraint, X\=a. The goal, X\=a, in the body of the third clausc for q is identical to
(and. of course, consistent with) the constraint, X\=a, hence, it can be eliminated from

the body as far as the clanse is used for selving p(X,Y).

3. An Example
Consider the example program for string matching below.
match{P,T} :=- matchl(P,T,P,T).
match1([A|Ps],[AlTs],P,T) :- matchl(Ps,Ts,P,T).
matchi([A|Ps],[BITs],P,[_IT]) :- A\==B, matchl(P,T,P,T).

match1([],_,_,_J.

The first argument of match, P, is a pattern string which is matched against the
second argument, T, a target string. This is a Prolog version of the example quoted

from [1]. The procedure, matchi, checks matching of pattern P with target T at the top

cn
|

clement from each of them, & and B. If they are identical, the process moves to the next
element along both the pattern and the target. Continuing the successful matching, it
eventually reaches a point where all elements in the pattern have been checked. when
the whole match has succeeded. Otherwise, maiching fails at some point going down
to the pattern and the target, then the top element of the target is discarded and the
whole matching is restarted from the beginning of the pattern and the tail of the target.
Hence, even if partial match has succeeded to some depth into the pattern and the
target, the fact is discarded and never utilized as useful information for later processes

of matching,.

Now, suppose that the pattern is fixed to the list [a,a, a,bl. Then, the algorithm

outputs the following trace listing.
[STAGE 1] Specialization
| 7- stagel(match([a,a,a,b]l,T),A).

Def g1(A) :- match([a,a,a,b],A).

Def g2(A) :- matchi{[a,a,a,bl,A,[a,a,a,b],4).
Def g3(A) :- matchi([a,a,bl,A,[a,a,a,b],[alA]).
Def g4(A) :- matchi([a,bl,A,[a,a,a,bl,[a,alal).
Def g5(A) :- matchi([bl,A,[a,2,a,b],[a,a,al’]).
Def g6(A) :- matchi([],A,[a,a,a,b]l,[a,a,a,blA]).

g6(A) .
g5([blal)

¥

ge(a).
Def g7(A,B) :- matchi([a,a,a,bl,(a,a,AlB],[a,a,a,b]l,[a,a,A1B]).
Def gB{A.E] = IIiEI.tC]llf[r'.'l.,a.,b] » [a,ﬁIE] 1 [apararb] ¥ [ﬂ,a,AIB]:} =

Def g3(A) :- matchi([a,bl,[alB],[a,a,a,b],[a,a,AIB]).

g9(a,A) :- g5(A).

Def g10(4)
Def gi1(A)

gil(a,h)

Def g12(A)

g12(a,A)
gl2(a,B)
gi1(A,B)
g10(A,R)
g9(A,B)
g8(A,B)
gT(A,B)
g5([AIB])
ga(lalal)
g4 (lA|B])
g3(lalAl)
g3([AlB])
g2(lalal)
g2([AalB])

:- matchi{[a,a,a,b],[a,AlB],[a,a,a,b],[a,AIB]).
e ma‘tthi‘:[i,ﬁ.b] 1 [A!B] 1 [&,&,a,b] ¥ [aJ‘u"lE]) .

g4 (A}

:- matchi([a,a,a,bl,[alB],[a,a,a,b],[A|B]).

E3C(A).
a\==4, g2(B).
a\==A, g12(A,B).
gli(A,B).
a\==A, gl0(A,B).
g9(A,B).
g8(A,B).

:= bh==4, g7(A,B).

t= ESCA).
1= al\==4, gLD{A,E}.

- gAlA) .

:= al\==4, g12(4,B).
- gE{A}.
:- a\==A, g2(B).

gl(A) - g2(A).

STAGE 1 terminates successfully. There are twelve definitions of new goals, g1 to
g12, each of which corresponds to a distinct goal pattern that appears in subsequent
computations under the top level query, match([a,a,a,b],T). The program clauses
are generated for each newly introduced predicate, g;, by unfolding the body of its

definition, then folding by another definition. Observe that each of g1, g6, g7, g8, and

g10 has only a clause that is trivial. Hence, STAGE 2 follows.

[STAGE 2 | Shortcutting

-~ egliminating gi(A)

-- eliminating g6(A)

g5([bIAl).

-- eliminating g7(A,B)

g5([AIB]) :- b\==A, g8(Aa,B).

-- eliminating gS(A,B)

g5([AIB]) :- b\==A, g9(A,B).

~- eliminating g10(A,B)

g4([AIB]) :- a\==A, gl1(A,B).

g2(A,B) :- a\==A, gli1(A,B).

== evaluating constraints for gii(A,B)
gl1(A,B) :- g12(A,B).

-- eliminating g11(A,B)

ga([alB]) :- a\==A, g12(A,B).

g3(A,B) :- a\==A, gl12(A,B).

-- evaluating constraints for gl2(A,B)
g12(A,B) - g2(B).

-- eliminating g12(A,B)

g3([AIB]) :- a\==a, g2(B).

ga([AIB]} :- a\==a, g2(B).

g9(A,B) :- a\==a, g2(B).

The result is:

g2([alAl) :- g3(A).
g2([AIB]) :- a\==Aa, g2(B).

g3(lalal) - g4(a).
g3([AIB]) :- a\==A, g2(B).

g4([alal) :- g5(4).
g4([alB]) :- a\==a, g2(B).

g5([blal).
gs([AlB]) :- b\==4, g9(A,B).

go(a,A) :- g5(a).
g9(A,B) :- a\==A, g2(B).

The trivial clauses for g1, g6, g7, g8, and g10 are eliminated. Then, all the clauses that
call g11 have a\=A as their constraint. a\=A 15 inconsistent with the first clause for
g11, henee, the clause is discarded. The body in the second clause for g1l is reduced
to only a call to g12, becausc the goal, a\=4, is identical to the constraint, and can be
eliminated. Now that the clause for g11 hecomes trivial, it is eliminated. Similarly, the
elauses for g12 are eliminated after constraint evaluation. To run the program, a query

like g2(T) should be given in place of match{la,a,a,b],T).

Actually, the partially evaluated program for match([a,a,a,b],T) corresponds to
the decision tree shown in Fig.3. Each of the numbered nodes corresponds to g; in the
definitions introduced by STAGE 1. In particular, the node marked with an asterisk
corresponds to the predicate that remains in the final residual program clauses. The
number in brackets denotes the call that is never called. The capital, A (B), indicates
that it is known at that point that the element is not a (b). Question marks in or
under strings indicate the position at which matching is checked. The tree is, in fact,

not a tree but a cyclic graph, which reflects the recursive execution for the program.

The difference between the behavior of the original program and that of the partially
evaluated program is illustrated in Fig.4. The partially evaluated program realizes the

same shorteutting as the KMP algorithm does.

In general, if the pattern has u repeated prefix as in a™b, and the target has a™e
as a prefix, then the original program repeats check a = a, N — 1 times, which has been
already satisfled before unmatch b # ¢, shifting elements in the target one by one in
each step. The partially evaluated program skips immediately to the element just after
¢ in the target. Thus, if it takes time 7 to match an element, time N is saved in the

partially evaluated program. This might support the claim that the partially evaluated

1 azab

* 2 aaab
.
! i
* 3 aaab amab __ aaab
;oar.. A. AT
/ b, Y
* 4 aaab aaab ____ aaab 2
! aa’ al ak
£ Ay T i
* 5 aaab aaab _______ aaab Y
/ aaa? aal aalk b
/! h 7 %
& anab | aaab | A
| aaah [azaB e e
| | ! | / |
BUCCESE T aaab | 10 aaab | 12 aaab
| aaal. | |aaas | / aaah. ..
| 7 | I = | «3> 7 %
| | | | 2
8 aaab | 11 aaab i
laaal. | / aaah.. |
[| <a» A W
| |
3 aaah |
/ aaaB. I
! TN/
5

Figure 3 Decision tree for match([a,a,a,b],T)

program has obtained more than linear improvernent in runtime performance, although

it depends on the partial input of very specific patterns.

4. Discussion

It is stated in [3] that the prover for proving an implication of a computational
information from another is of any kind: propositional, pedicate ealeulus, or whatever,
Similar arguments are possible in our algorithm, that constraints can be of any kind,

and consistency checking can be done to any degree of accuracy. The stronger the prover

10

1) aaahb 2Y)aaab Ilaaab
= = X
aacaaaktb aacaaah aacaaah
4 aaab E) aaatb
= X
aacaaahb aacaaakb
&) aaah
X
aacaaakhb
T aaakhb 8 aaab 9] aaah 10) aaahb
= = =]
aacaaahb aacaaahb aacaaakb aacaaahb

(a) by the original program

1 =>2-»3->4-5h=>r8=>7=28=>08 -> 10
(B) By the partially evaluated program

1 =3 3 =3 § ======c e >T =8 ->9 -» 10

Figure 4 Example execution of mateh{[a,a,a,b],[a,a,c,a,a,a,b])

with which the partial evaluator is equipped. the more opportunities of optimization
there are. However, the total cost of partial evaluation will also increase. The optimal
compromisc of the power of the prover cannot be predicted, because it depends solely

on the input data partially given.

The proof of the termination of the algorithm has not been established yet. For
now, the brief outline of the proof is as follows. In STAGE 1, the recursive procedure,
Spec, may go infinitely deep as it expands the subgoals of recursive predicates. However,
the termination should be guaranteed if certain well founded ordering is found between
the recursive calls in the course of the expansions. In STAGE 2, both rules decrease the
number of clauses in 5’ when applied, hence, the termination should be obvious, More

rigorous treatment should be developed after the algorithm i1s elaborated and set.

5. Conclusion

— 11 —

A new algorithm for partial evaluation of Prolog programs has been presented.
The algorithm first specializes the original program with respect to the specialized
query, then performs reductions for the specialized program ou the basis of constraint
evaluation. The improvement in performance of the resultant program exceed that given
by a simple partial evaluator (in the sense that it does not only reduce some parameter
passings, but also makes some shortcuts), because of the specificity of the partial input
and its full utilization by constraint evaluation mncchanism in the algorithm. As an
exumple, the same result has been shown to be obtainable for the Prolog version of the
string matching program as the results described in [3]. More work must be done to

sophisticate and formalize the constraint handling part of the algorithm.
References

1] Fujita, H. and Furukawa, K., On Auntomation of Partial Evaluation of Prolog

Programs, [COT TM-250, 1987, (in Japanese)

[2] Fujita, H. and Furukawa, K.. A Self Applicable Partial Evaluator and Its Use in
Incremental Compilation, ICOT TR-258, 1987

[3] Futamura, Y., Logic Dependent Partial Computation, The Third Meeting on
Program Transformation and Synthesis, Japan Society for Software Scienee and

Technology, 1987, {in Japanese)
(4] Jones, Neil D., Challenging Problems, private communication, 1987

[5] Takeuchi, A. and Fujita, H., Competitive Partial Evaluation — Some Remaining

Problems of Partial Evaluation -, {o appear

— 12 —

