ICOT Tech_nir::al Memorandum: TM-0276

T™-0276

Load Balancing
mn
Very Large Scale Multi-Processor Systems
by
T. Chikayama

February, 1987

©1987, 1COT

Mita Kokussn Bldg. 21F {13) 456-3191—~5

|GGT 1-78 Mita 1-Chome Telex ICOT ]32964

Minato-ku Tokyoe 108 Japan

Institute for New Generatioﬁ Computer Technology



Load Balancing
in
Very Large Scale Multi-Processor Systems

Takashi Chikayama
1ICOT Research Center



Abstract

An idea for load balancing in very large scale multi-processor systems is pre-
sented. The basic idea of the melthod is to consider the multi-processor system
to be an n dimensional hyper cube in which processing power is uniformly dis-
tributed. The application programmers should only be aware of this hyper cube
rather than individual processars, and load balancing in this model is to distribute
required computation in the hyper cube as uniformly as possible. Load balancing
in alower level can alse be done antomatically by changing mapping of processors
to this hyper cube.



1 Introduction

When cousidering a very large scale multi-processor system, the ratio of the physical size of
the system and the physical size of one processor becomes so large that it cannot be ignored in
the system design. When processors should be packed in a J-dimensional space {which is the
only realistic method in this cosmos where we live), the most distant two processors cannot be
nearer than +/3d{ &m — 1), where d is the distance between two adjacent processors and n is
the number of the component processors. This becomes more than 100d for a system with one
million processors.

In such systems. an architecture which neglects physical distances hetween element processors
cannot be a gnod architecture. To make all pairs of two processors equally distant, for example,
all such pairs must be made as distant as the physically most distant processors. A n-dimensional
hyper enbe connection with n greater than 3 cannot fit in 3-dimensional physical space. Tree-like
structures should not assume all adjacent nodes to have the same distance; adjacent nodes in
upper levels of the tree structure cannol but be more distant than those in lower levels to fit i
4-dimensional physical space. If some processors are nearer than vther processors, the software
might utilize the locality of computation,

This requirement of utilizing the locality coustrains feasibility of load balancing methods
considerably. If the locality assumed by the software should not be kept by the load balancing
procedure, then it is quite likely that the increase of communication overhead cancels all the
merits of balancing. Thus, lead halancing methods for such systems must not destroy the locality
of eomputation.

2 Model of the Processing Hardware

It might be quite difficult to develop complicated software for very large scale multi-processor
systems considering the physical structure of the system direcily. A higher level model for
processor svstems may help software construction very much. The following characteristics are
desirable in such a model.

{1) The same model should apply regardless of the number of the processors in the system.

{2) The same application software should be efficient regardless of the number of the processors
in the svstem.

Above items are quite difficult to be realistic without the following asswmption.

(3) The software (the programmer and/or the language processor) should be aware of the
locality of the computation.

The physical structure of the multi processor system cannot but have some inter-processor
boundary, but, it is not desirable that the software should be aware of snch discrete bound-
aries [according o the principle 2 above). The locality of the computation, however, must he
expressed somehow in the model (principle 3). Thus, the model should have some notion of
contiguous distance,

This notion of distance must have some correspondence with the physical distance in the
hardware system. This leads to a quite naive model which almost directly corresponds to the
physical structure of the system — to consider the system to be a hyper-cube in an n-dimensional
Euclid space in which computing power is uniformly distributed. To be realistic with our cosmos,



this n must be at most 3. For convenience of explanation, we will assume in what follows that
n is 2, and call this 2-dimensional cube (or plane) to be the Processing Power Plane, or P3, in
short.

Any computation is located at some point in P?. The distance of two computations is
modeled by the distance of two such points. This also is a not-so-bad approximation of the
physical communication overhead.

3 Keeping Locality

To keep the locality of communication, the software must be aware of the distance between two
computations. This might be realized by the following way.

e Programs should be organized so that processes requiring more communication fork later.
That is, in the process tree structure, processes with more communication have their
common ancestor process in lower levels,

¢ The initial process is given the whole P? for its use.

¢ Bach process is given with some sub-rectangle of the rectangle given to its parent.

Using the above allocation mechanism, two processes are always be allocated inside the rectangle
area allolled to thelr latest common ancestors, whick gives a certain lower Lound of locality.

Another probably feasible method of keeping locality is wo allocate processes Lo where the
data required by them are located. When, for example, the generator consists of many processes
scattered all around P?, and each such leaf process generates some substructure of the generated
data, then the generated data (probably with some tree-like structure, corresponding to the
generator processes tree structure) will also be scattered all around P, In such cases, the
consumer processes should be allocated using the same strategy as the generator processes, so
that they are allocated atl the same point on P¥ with the dala generated by the corresponding
generator process. Of course it might be possible to make one complete process tree of generator-
consumer processes in the first place. llowever, sometimes it would be more convenient to
separate them into two-pass style for keeping modularity and/or readability of the program.

4 Load Balancing on P*

To logically balance the computational load, the programmer andfor the language processing
system are responsible for balancing on P*, To achieve this, the programmer and for the language
processor should have at least vague knowledge about how much computation (relatively) is
needed for a certain process.

One notation proposed for Prolog-like languages is something like:
pi-+—(2xq), —=r

By the above specification, the subplane given Lo the predicate p will be subdivided [or ¢ and
r as shown in Figure 1b. This specifies that the subgoal g shonld be allotted twice as large
subplane as the subgoal 7.

Arrows before the hody goals specify which way the subdivision should be when body goals
are subdivided again by their reduction in turn. By reductions using clauses such as:

g - —(3 x 8), =L



i _ |
1/4 Te
: fu b
tp == | —q —r = ]
a4 |#
le iz
'
zf3 iJi —=
a. Initial state b. After reducing p c. After reducing ¢q and r

Figure 1: Load Balancing by Subdividing p3

a. Initial allocation h. Load distribution c. eallocation

Figure 2: Load Balancing by Reallocation of Processors to P?

and

T o= U, .
rectangles for g and r are subdivided again as shown in Figure lc.

1t would be sometimes impossible to specify such load balancing information statically on
the source code. It might be possible, however, in certain kinds of programs, to guess amount of
computation required at runtime from the given data (sizes of argument structures, for exm ple).
In such cases, the subdivision parameters can be computed depending on such data.

5 Load Balancing on the Physical Level

P? must somehow be covered by the physical processors. When the whole computation starts,
all the processors in the system should be responsible for the same amount of P? as in Figure 2a.
However, as perfect load balancing on P? seems to be impossible for complicated algorithms, it
is quite likely that some area of P? becomes quite dense in computation and some area quite
sparse (Figure 2b).

This could be corrected (at least partially) by changing the size of the region in P? each pro-
cessor is responsible for. Processors responsible for dense area should narrower their territories
and those for sparse areas should widen them (Figure 2c).



Two strategies may be practical in applying the reallocated processor-P? map. One is
to reallocate all the processes (probably in the scheduling queue) according io the modified
allocation map. Another is to allocate only newly forked processes according to the modified
map. The former method is quicker in balancing the load, but requires more inter-processor
commuunication to reallocate goals in the quene. When considering parallel logic programming
language such as GHC, there are basically no permanent processes. (Goals are always reduced
into several descendant goals. Thus, the latter method might be as good.

Assume that a process is allocated quite close to some processor boundary and communi-
cating frequently with another process allocated on the opposite side of the boundary. Though
they are almost adjacent on P?, communication cost with such a process will be much higher
than the cost with other processes, not as close on P? but are allocated on the same processor.
Such processes can be the bottleneck of the whole computation. To avoid such cases, some
randomness might be desired in mapping P? to physical processors.

Locality is required also in the reallocation. If some centralized controller should be required
for such an adjustment, much communication might be required for exchanging load balancing
information. Thus, reallocation should be decided locally. A simplest way is by relocating the
corner point shared by four adjacent processors, depending on the loads of the four processors.
This method requires quite local communication ouly. Computation will be distributed to other
processors in a diffusion manner.

What the word “load” means is not quite clear. The number of ready processes in the
scheduling queue of a processor is one of the most naive estimation. One possible method might

be to add some load estimation value to each process (by the software) and consider the sum
of such values of processes in the scheduling queue to be the load of the processor. Another
method might be to try the reallocation only when some processor becomes idle.

6 Requirements for Algorithm Design

It is widely understood that algorithms good for sequential processors may not be as good for
parallel processors. With the above processor model, what is important is not only the intrinsic
parallelism, but also whether a certain algorithm has good nature in the lollowing view points,

Communication Locality: An algorithm is better when praocesses require less global commu-
nication. Some measurement resembling the notion of working set in sequential program-
ming is required as efficiency criterion. This will be probably more important criterion
than working set.

Feasibility of Load Balancing: An algorithm is better when it is easier to predict required
amount of computation for each subproblem. Some new measurement is required here
again,

The extreme in the above sense are systolic algorithms, where amount of communication and
computation required by subproblems are completely known beforeband. As we are interested
in more complicated problems, some flexible measures are required.

7 Future Research Plans

The following items must be studied before the P? model should be made practical.



Static Locality Analysis: Development of algorithms for automatically extracting locality
information from programs where no explicit information is given. As cache or virtual
memory systems does work with most of the programs which are written withoul even
considering the existence of them, this study might be fruitiul.

Automatic Load Balancing: Development of antomatic balancing algorithms and their eval-
nation. Through this, some knowledge would be gained on what sort and how much of
load unbalance the systems designed on the P* model are hearable.

Parallel Algorithms: Development of parallel algorithms, considering communication locality
and load balancing feasibility. This will probably lead to a set of algorithms quite different
from sequential algorithms widely used currently. They might also be quite different [rom
algorithms for parallel execution with equal-distance assumption.

Acknowledgments

The author wants to thank many researchers in and out of 1CO'1, too numerous to be listed
here. Most of the ideas presented in this paper are developed stimulated by discussions with
L hemn.



