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Abstract

The introduction of new axioms can invalidate old thearems obtained by “non-monolonic”
reasoning [Bl. We can also consider induction and analegy, not only common sense
reasoning, to be non-monotonic reasoning in that such reasoning processes have non-
monotenicity in themselves

Here, a !ugicﬂl [ramework is p!upl:,:z—."l,:d Lhal driews h_','wt]ww:;a from which plvps;rtil,:xi ol
unknown facts are deduced by relativizing and generahizing already acquired knowledge. It
is called ascription. Ascription is an approach to the uniforming formalization of such
conjectural reasoning. The basic idea is this: when all the demonsiruled posilive inslances
of a eertain property K are also shown to have a property W, and similarly all Lhe
demonstrated negative instances of K are shown not to have the property W, the property
K may be equivalenl w W IL is realized in this logical framework using predicate
substitution. The preservation of consistency by aseription is also discussed. This result can

be applied to similar logical frame work such as circumseription[6,7].
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LIntroduetion

Computer systems with capabilities of deductive inference will release man from the
lroublesvme tusks of procedural programming and be able to solve problems which are
given only declaratively. But deductive inference is deduction of propertics of individuals
from given general knowledge, so0 it cannot provide effective consequences about 1acts that
are unexpected and not included in general knowledge., This means that deductive inference
ecannot make a significant contribution to solving our software erisis. We should remember
unexpeeted foets alwoys exist and deduetive inference is helpless with respeet Lo them, One
promising approsch s reasoning by relalivizing and  generalizing already  aequired
knowledge so Lhat il can be applied to unexpeeled cireomstanees

Work related to this kind of reasoning was done by John MeCaorthy el al. Circumscription
[6,7) iz a form of such conjectural reasoning as is done by humans and based on the closed-
world assumption. This work is importunt and inleresting, but it seems that it can explain
only a small part of human flexible reasoning and thal there still remain some very
important aspects which we should not ignore. These are analogy, induction and other
reasoning processes which strongly relativize and generalize knowledge. Such reasoning is
closely related to human learning capabilities. We have studied reasoning from this point of
view and propoze o logical framework, ecalled ascription, which is a form of such conjectural
reasoning. Inluilively, aseriplion represents the flexihle notion that the interpretation of a
certain property K lies belween two extremes; one, similar to predicate eircumseription,
that the only demonstruted pusitive inslances of K are all instances satisfying K; and the

other, that all but the demonstrated negative instances satisfy K. More precisely we will

show this as follows.



Ascription is based on the following notion: if all the entities that can be shown to have a
praperty K by reasoning from already sequired fenowledge 17 can alsn be shown to have o
property W, and all the entities that can be shown not to have the property K can aisa he
shown not to have the property W, the property K may be equivalent to %, Namely when all
the demonstrated positive instances of K are positive instances of ¥, and similarly all the
demonstrated negative instances of K are negative instances of W, we can assume the

cquivalenee of K and W,

2. Ascription schema

In this paper we write t instead of a tuple of finite terms for hrevity. For example, a
formula Alx} stands for Alx),x) and the quantifier Vx. stands for ¥xy.--¥x. And by a
linite set of formulas { Fy, Fg, |, Fp, |, we mean a formula FAFeA-AF,, where Fp
{i=1,-,m) is a closed formula obtained from F; by prefixing ¥ with respect to all of the
free variables in F,.

By n-ary predicatc we mean an expression Ax(A(x)), where x is a tuple of n variables
and Alx} is a formula in which x sceurs free and no other variables occur free. That is, a
predicate is oblained from a formuola by MV-abstracting all of the free variables in il

Let K be a tuple of distinct predicate symbols, K1, Kn, and W u tuple of predicates,
Wi, Wn, where Ki and Wi have the same arity [W/K] means a substitution, representing
[PI/KL,- ¥o/Kn] and usually abbreviated [W] We wrile A(x)YWK] for the result of
replacing simultanenusly each occurrence Ki in Alx) by Wi, And similarly, [Ax(¥{(x))]
stands for [hap (W (00, Ao (Whlxg))], and ¥a( Kix) = Wix) )} stands for Vx;.[ Kix;) =
Wylmg) WA--AVx L Kpixg) = Wiz ) (where Vxl Kilx;) = Wilx;) } means Ve ( Ki(x;) O
Wit bA Vg Kileg) © Wilg) )1

Definition [Ascripfion schema ]
Let K be a tuple of distinet predieate symbols. And let ' be a set of formulas of first

order logic containing all predicates in K. The ascription of K to W in I'lK] is the schema
IMiz(Kix)AWix))) A Mix(Kix)V¥x)] 2 Vel Kix) = ¥=) ) - (1)
Here /,% represent respectively A\ or /A in each corresponding predicate. And ¥ is a
tuple of predicates which have the same arity as the corresponding predicates in K. We call

the formula on the left side of this schema the ascribable condition writing As([ K ~W).

I Axi(Ki{xi)\%i(xi}),] expresses the assumption that zll the tuples of entities Lhat can
be shown to have a certain property Ki by reasoning from certain facts I' can also he



chown to have a certain properly Wi Tl AxitKilxinyWiixil) -] is, as far as Ki is
concerned, equivalent to the result of replacing Ki by Axi{ - KilziiA—Wilxi)), Namely
I-- =i (Ki{xipyPilxil, - expresses the assumption that all the tuples of cntities that ean
be shewn not to have a property Ki, can also be shown not to have a cerlain property Wi
When we can assume that both 11 AxiiKilxi)AWiixin, - Jand T Axi(Kil=i)Wi(=i)), -]
are true, (1) lets us conclude the formula on the right side, namely that Ki is equivalent to
Wi

It i= not allowed that, regarding (1) as a second order formula quantified by Y%, we add
it to [, We must use aszcription in Lthe [ellowing way

When the formula p follows from a set of fermulas T' by a complete deduction system of
first order logic, we write ['  p. Let Iy JKh~Wh} be Ty 0 { As(Th Kh~Wh) O W= ( Khix)
= Whix) 1} (h = 1,2, ) and [y be I Let Ty be Ty {Kh~Wh} written [{K1--W1. Kh~Wh}
If & finite number n exists such that [, & p, we write I |~gl_wpi_gr-ys p and vsually

abbreviate this as T |~ p

Example 1 Let T bea set of relations among ‘animate’, ‘mammal’ and ‘human’ and some
instances. Suppose we wanl to know what ‘homoiothermal' is. Ascriplion develops the

candidates Tor a concept equivalent to ‘homolothermal’. I may be

I' = IMHomoicthermal]

= { ¥Yx{Humanl(x) 2 Mammal(x)]
Wx.iMammalix) 2 Animateix)) |
Su.i v Human(x) A Mammal(x)] ,
Jxi - Mammalix] A Animate(x])) ,
Tx A Humanix) A Homoiothermal{x)) |

Ix (Animate(x) A —Homoiothermal(x)) }.

Let uz consider ‘mununal' as a eandidate property equivalent to ‘homoiothermal’. First we
check whether ‘mammal’ can be equivalent to ‘homoiothermal’ or not, namely check the

ascription condition As(I'Homoiothermal~Mammal).

MAx.(Homoiothermal(x) A Mammalix)lj =
I ¥x(Human{x) O Mammal(x)) ,
vy iMammal(x) 2 Animalelx}} |
Ax (- Humanix) A Mammal(x}) ,
Ix (" Mammal(x) N Animate(x])
Ix{Humanix)
A (Homoiothermal(x) A Mammal{x))) ,



Fx. (Animatelx)
Ao Homoiothermal{x) A Mammal(x))) }

IMAx.(Homoiothermal(x) v Mammalix]}] =
{ -, FxiHumanix)
Ao (Homoiothermalix) v Mammal(x))) |,
Jx.[Animatelx)
A iHomeiothermal(x) v Mammalix))) }

Clearly I' - I'[Ax.(Homoiothermal{x)AMammal(x})] A NAx (Ilomoiothermalix)yMammal(x)}],

S0

' U { Asil" Iemoiothermal ~Mammal)
o ¥y (Homeiothermal(x) = Mammalix)) }

= ¥x.(Homoiothermal{x) = Mammal(x).
This shows Lhal ‘homoeiothermal' may be ‘mammal’. Therelore, wo get

I' |- ¥xiHomoiothermal(x) = Mammal{x}}
Aovx  Human(x) = Homolothermal(xh

M Wa i Homeiothermal(x) 2 Animate(x)).

Of course we can also regard ‘human’ as another candidate. But whal is important here
ie the fact that ressoning by aseription can derive a “medium"” interpretation of K.

Notice that these inferences cannol be derived by circumscription [6] (even formula
circumseription [7]), Because circumscriplion is based on partial models which are only
minimal with respect to some properties.

Now if we add the axiom
3y~ Homoiothermalix) A Mammal(x])
then I'lAx.(Homoiothermal(x) \v Mammal(x))] is inconsistent, so ¥x.(Homoiothermal(x) =

Mammalix)] is nol a theorem of the extended theory I", where I" = T U {

Jx.{ — Homoiothermalix)/AMammalix)) }. This shows that reasoning by aseription is non-

monatonie

3.Model theory of ascription



For the model theory of aseription, we introduee most Welending model.

Definition | W-tending mode! in K|

Let MM and NI be models of the sentence T'. We say M is o more W-fending model
than W in K, writing M Zg.g N, if M and N have the same domain, and il all other
predicate symhbols not in K have the same extensions in M and N, but the extension of
hx (K(x)AWix)) in M includes its extension in N and the extension of Ax.({—-KixpA=W(x))

in M includes its extension inN.

Delinition | srast Wetending model in K |
A model M oof T is called mest Wtending in K il M Zg.p Monly if M =g M

-

(where hy “M'=g.¢gM ” we mean “ M’ Sg.o Mand M" =g p M ")

4.0n consistency of aseription

In thiz szection we propese conditions which are sufficient for ascription to preserve
consistency. That is, these conditions guarantee that a consistent T’ cannot contradict the
result derived hy aseription. Morcover, we can also show that under these conditions any
instance of ascripltion is true in all the mest W-ending models. Before going any furlher,
we have to consider substitution for predicale. We start by introducing the concepl of [ree

substitution.

By a free substitution we mean a substitution which is free in the sense of [2] Namely a
free substitution satisfies the following two conditions. (A1) In replacing predicate symbols
K in a formula F hy some predicate ¥, any variable in each terms u attaching K in F
musl be [ree in W(ul: and (AZ2) any free variable [ not bound by gquantifiers and not A-
abstracted) in W must remain (ree in F[W/K]. But notice in this paper we regard any
predicate as closed A-cxpression, so (A2) iz always satisfied. Moreover, by renaming
adequate variables in Y we can always ensure that (A1) is satisfied. So, in this paper,

substitution represented by a pair of brackels [-] is always free.

Theorem 1 Let T be a set of formulas of first order logic and p be a formula of first
order logic. If T is eonsistent and some free substitulion © exists such that ' re A p@,
then T U i{p} iz consistent

Proof Let © be o free substitution such that I' = 'é A pA. Now we assume that T' U
{p} - [ (representing ‘fulse’). Namely T+ —p. Using Kleene's theorem on substitution for

predicate letters ([2], we refer to this theorem us Kleene's theorem below), '8 = —pH



follows. ere ' = T8, so I’ = =pH. This result contradicts the assumption that [+
P

Il S is a set of substitutions, 5* denotes the set of all the substitutions which are

represented by finite sequence of elements of 5

Definition [ well-representative form |
Wis a well-representative form of K if for some finite sequence of free substitutions g €

[ TAm (Kl Wixh], e (Kig)V Wil 3* exists such that ' = ¥x({ Kix) = W=z} 18.

By well-representative condition we meuan that W is a well-representative form of K.
Now we introduce some characteristic types of well-representative form.
Prop. 1 [tvpe 11
If T = el Wix) = (PixlAxKix) A Pe)] ) A Vel Pix) = (Pi)Ax(Kix)V (=) )
then W is a well-representative form of K
Proof " Yl Kix) = Wix) [ (K{x) W0 ] [ A (Kix) W)
The condition of Lype 1 means that W is not affected by change of interpretation of K.

Prop. 1.1
P vel WMx) = (W) Ae (Kix) W] ) oA Vel Wixr = (a0 Ax Kl Wi} 3 if W

can be transformed into an expression of the form Ax{K{z)N\G(x)vHix)), where G, I are
tuples of predicates in which no predicate symbols in K occur.

Proof By predicate caleulus.
Motice that each of the forms, (=), Ax{Kizh/d1(x)) and Lz {K({x)"Gix)), are special cases.

of this.

Prop. 2. [type 2]
Y js g well-representative form of K if T F ¥xi{ Wix) = (Wia)Az(K(x)2Wix)] ) v

Wl Wix = (Vi) Ax(Kix)V %= ) and K and W are tuples of n sub-tuples of
predicates, K=K, K, and W=, W,, where Kk, W} are tuples of the same number of
predicates and no predicate symbols in Ky, Ky occur in Wy

Proof. Aszsume that ' — ¥x( Wz = (Wx)[Ax(K(x)2¥(x))] ). Then
D iKix) " WHix) Az (KizlWxn] = [W]). Any predicate in K does not occur in W{W|n, so
W[W]n+1 =W Wie Therefore, I' - Vx.(Kix) = ¥ix) {[hx(K(x)7 W(x))]-[ A= (K{z}A W) ]n+1

Later, in example 5, we will find an example of type 2.

Theorem 2. If W is n well-representative form of K, then
1) any instance of ascription of K to W preserves consistency and



2} any instance of aseriplion is true in all the most Ptending models in K.

I'roof.  From the assumption of this theorem we can assume the existence of a free
substitution ®y such that T F V= Kix) = Yx) Wy Let W satisfy the ascribable
econdition, that is, HID) T + IMAz(Kiz)SPEDTD A TTAx K Pixh], then, using H1) and
Kleene's theorem repeatedly ' = 'S, So by theorem 1 ' U {¥xi Kix) = Wix} )} is
econsistent, which proves 11 Now by completensss of the deduction system we can guarantee
the existence of some model M of I' such that M E ¥x( Kix) = Wix) ). It is clear that M
in the verv most W-tending model in K from its definition, and any model N of I" gsuch that

N E —vei Kixl = Wxl ) is not more ¥-tending than M. 50 2) 15 proved.

By Theorems 1, when the well-representative condition is satisfied, if the antecedent of
ascription schema is satisfied, then we are assured of the existence of most W-tending
models of K. Note that the result of theorem 1 can be applied to circumscription, and we
can similarly think of the well-representaive form in eircumseription. Lifschitz showed that
circumseriplion preserves consistency when T is a set of almost wniversal formulas [4],
which is a generalized class of seporeble formulas he proposed himself [3] and universel
formulas proposed by Etherington[1]. Note that this condition governs [', while the well
represenlative condition governs the predicates which aseription relativizes. Bul the couples
of predicates intended in [3] te be relativized by circumseription under the separability
condition salisfv ils well-representative condition. Because the separability condition reguire
any predicate i YW not to contain any predicate in K, which satisfies the condition of Lype
1. From thiz standpoint, the well-representative eondition is a weaker condition than the
geparability condition. When the well-representative condition is satisfied, if the antecedent
of circumseription schema is salisfied, even with no minimal model, a most W-tending

model exists and circumseription preserves consistency

5.What reasoning can ascription formalize?

In thiz section we will deseribe the tvpes of reasoning that can be formalized by
ascription. As mentioned at the beginning of this paper, ascription represents the flexible
notion that the interpretation of a certain property K will lie between the extremes of the
two, First we give these extremes. They will be useful in understanding the flexibility of
the properties of ascription. Then we describe two types of reasoning, analogy and
induction. Ascription iz a form of some kinds of analogy and induction. Ascription seems to
he especially characterized in formalizing these types of reasoning based on generalization
from knowledge on individual instances, These are important because they are closely

related to human learning abilities. Finally, we show that ascription is also a form of

cOmmon sense reasoning.



5.1 Reasoning in the extremes, circumseription and inseription

Our notion of ascription invelves that of predicate (parallell circumscription proposed by
John MceCarthy [6] Indeed, under some conditions, any theorems of a theory with predicale
vircumseription are also theorems of our theory with some ascription. Now, we do not know
of the essential condition for ascription to invelve circumseription in the above sense. But
we do have a sufficient condilion.

We ecan derive two significant products from ascription. Une product iz predicate
circumscription, which formalizes conjectural reasoning based on the closed-world
assumption. lts model, called most Ky, tending model, eorresponds to the minimal model.
The other is called inseription in this paper (indeed, both circumscription and inseription
are included in formula eircumseription, but we feel it is unsuitable to use the same term
for them becausze of their gquite different natures), which {ormalizes conjectural reasoning

which generalizes some concepts. But inscription seems to generalize too strongly.

let Qp, = 1 W | T ¥l Wix) 2 Kix) } A AsiCK~W) } and K,,j, be the econjunction of

all elements of Dy, i.e.
Ko =AW (W € Q)

Now for anv couple of clements of Qg,, ¥, Wo, il T = T W) 2 MTAx(W(x)\Faixl)]
then ascription involves circuamseription. The reason is as follows. T Vx.( ¥Wy(x) O Kix) )
A Y Walx) D Kix) ) A AstTK~Wq) A As(TK~Wq), so T' = TTWq 1 A I'W3] ( Notice that
YxlKixIAW(x) = Wiix)) Ve(Kizh/Yix) = Kix)), so I' &= %] Similarly for %3 L
Assume that ' = T HWel O TAx(W(x)AWeix}}], then I' = TTA=(W,;(=) Wizl
Therefore, T+ As(I,K~Ax. (W (x)AWq(x))), that is, if 7, W€ Qg, then Ax (W (x)AWaix))€
Ok, Finally, K;, € g, is proved. Then we ascribe K to K, and obtain Vz( Kix) =
K in(2) ). Thus, from T{K <K}

Ve Wz} O Kix)) A TIW] 2 V. (Kix) 2 W=y, - (2)
This is the same schema that MeCarthy proposed as predicate circumseription.
And similarly, let Q- = { W | T+ ¥x( K(x) 2 Wix) } A Astl K~¥) } and Kygy be the

digjunction of all elements of Qg.. Fur any couple of elements of (., Wy, Wy, assume that

I' = T [Wa]l O Mid= (¥l Fe(x)], then

Y (Kix) 2 Wix)) A W] 2 Ve(Wix) O Kix)). SR = 1



(3) is called the inscription schema. Notice we can use either (2) or (3) on some K by
replacing W wilh any predicate which satisfies the above conditions. We can think of the
predicate form which satisfies these conditions. For example, if W iz the predicate which
can be transformed into on expression of the form, A= (KixlAGix)yH(x)), where G, H are
tuples of predicates in which no predicate symbols in K oceur, then ['F Vx.(Wix} O Kixl}
A e (Woix) O Kixd) A TIH W] D A= (AW ()] and ' = v=e(Kixl 2 Wizl A
Ve (Kix) O Walw)} A T[WWal 2 TlAx (¥ (x)Waixh]. This predicate form is important

because it is also a well-representative form of K as mentioned in Prop. 1.1.

Example 2. Various exumples of circumseription are given in [6). One interesting
example of inscription can be found in the field of machine learning. Michalski proposed
selective generalization rules |51, which consist of ten rules; the dropping condition rule, the
adding alternatives rules, ete. If we ean properly change these rules into the closed
formulas of first order logie, they will be theorems of theory with inseription schema. This
is partially explained bellow,

Most seleclive generalization rules are essentially described as follows.

From Y. thix) = Kix) b} A YVl @ix) D Wix) b,
infer ¥x.( Wix) 2 Kix) .

Now let T be | ¥xi ®ix) O Kix) ), ¥=( ®ix) 2 Wix) ) }, then TIK] = ¥xi{ Kix) 2
Kix)yWix) IANALIKIEhPie)]. Therefore,

vzl Pix) O Kix) ), Val $ix) o Wi )}
|- vx.( Wizl O Kix) )
5.2. Analogical inference

Azeription is 4 form of & certain class ol analogy. According to the notion of ascription,
analopy is considered as [ullows. When a resembles b, where a and b are tuples of entities,
we consider a and b to have some eommon property ¥. And now lel a  have some
property K relevant to % in that K and W satisfy the aseribable condition. Then we can
infer that b also has the property K. Here, to satisfy the ascribable condition means at
lcast that we do not know the fuct that b does not have the property K.

In most cases of formalization of analogy, the treatment of resemblance is unsatisfying.
Resemblance is regarded as un alomic relation which eannot be explained. We may say “a
is like b” and “b is like ", but likeness may be used in different senscs. The inference “a
is like ", derived by a rule like modus ponens, seems to be against our intuition in
general. The problem seems to be that they ignore the common properties on the basis of

which we consider that “a is like b”. Moreover, in the case of analogizing K(b) from the



fact | Wia}, Wib), Kia)}, the relation between K and W should not be ignored, and K and
W must satisfy some condition. Let us take a example. A man is like a [lirework in that
both have short lives. Yet we can never infer that a firework can love someone like a man,
If the condition, thal whatever we know to be capable of loving someone has a short life, is
satizfied, then the inference that a firework can love someone like a man may be justified.
And if a further condition, that whatever we know to be incapable of loving someone has a
long life or is immortal, is salisfied, then it may be even more secure. The ascribable

eondition requires that these two conditions must be satisfied.

Example 3. Let I' be “Hector is animate and would be sad if he were burnt, and if

Britus were burnt, he would be sad oo Namely,

I'={Rurntihector) 28adihector), Animatelhector),
Burntibrutus) 25ad{brutues) 1

Clearly T =Ast Animate~kx (Burotix) 2Sad(x))) , therefore
¥x. (i Burnt(x) DSad{x)) = Animate(x))
This savs thal whoever is sad when burnt is animale. So

I' |~ Animatelbratus),

MNamely, this reasoning, “If Hector and Brutus are burnt then both are sad, and Lo Lhis

cxtent Heetor and Brutus are like each other. Now, Hector is animate so Brutus may also

be so", is then a kind of analogy.
5.3. Inductive inference
Roaders may have already noticed that in a theory with the ascription schema it is
possible to reason inductively.
Example 4. Let T consist of some instances.
I' = { Ruddy-faced{matsumoto-san,oneday),
Ruddy-faced{matsumato-san,today),

Coldieneday), Cold(today) }

Then T FAs{l" Cold—ix Ruddy-faced{matsumoto-san,x]l, therefore



I |~ ¥xi Coldix) = Ruddy-facedimalsumoto-san x} |

This means that if the system knows it is cold, then it guesses Matsumoto-san will be
ruddy faced, and if he is ruddy-faced, then il expects a cold day. Moreover, in this example,
we add the new predicate ‘all’ which cxpresses the property of the whole domain, as
McCurthy proposed [6], and let the new extended theory be I". Namely I'=T'U {Wax.allix)}.
And then " FAs(l"all~kx Roddy-facedimatsumoto-san,x)), so

I" |~ ¥x.( allix} = Ruddy-facedmatsumoto-san,x) J,

and therefore
" |~ ¥x{ Ruddy-facedimatsumoto-san,x} ).

Thic means thal il the system does not know of a day when Matsumoto-san was not ruddy

faced, then it may guess that he is ulways ruddy-faced.

5.4 Common Sense Measoning
Ascription can alsu be a form of common sense reasoning as well as formula

eircumscriplion.

Example 5. MecCarthy proposed a predicate ‘ab’ [7], meaning abnormality, to handle
common sense reasoning. Here “Abn’ is used in a similar sense. Lel I' be as follows. We

wunt o know whether a bird P-suke cun fly or not,

I'={ ¥x.(=Abyx} 2 —Flylx)),
Wx. (Planc(x) o Aby(xl,
Y. Birdixl 2 Abpix)),
Y. (Plane(x) A = Abaix) 2 Flylxh),
x.(Bird(x) A —Abg(x) O Fly(x)),
¥x.(Penguin{x) 2 Abalx)),
Wx. (Birdix] A Dead{x) 2 Aba(x)],
¥x.(Penguinix) A 7 Abg(x) 2 —Fly(x)),
vx.(Birdix} A Dead(x} A = Abgix) 2 ~Flyix)),
Bird(p suke) }

First we try Lo deeide what is abnormal and what ean fly.
re

[IAxAFly(x) A (Plane(x)yBird(x}/\ = Penguin(x)/ ~ Dead(x))),
Ax.(Abpix) A (Plane(x)yBird(x))),



hx tAbgix w (falsel),

Ax.(Abglx) v (PenguinixhyBirdix) A\ Dead(x))),
Ak (Abglx) A (Penguin{x)APlane(x))),

A fAbgix) A (Birdix)ADead{x)APlanetx))) |

And similarly

re=
Mis(Flyix) v {Plane(xh/Birdix)A - Penguinix) /= Deadix))),
Mo tAbx) W (Plane(x)hyBird(x)),
Ax(Abaix) A Ualsed,
hx{Abalxl A (PenguinixhyBird(x)ADead(x})),
Ax.(Abgix) v (Penguinix}APlane(x)),
Ax.(Abgix) v (Bird{x)ADead(x)APlane(x))].

Thus by wsseription we ean get the candidates of the properties, Aby,- Abs and Fly, Now we
assume Lhat Posube is as normal as possible, that is we try to minimize its abnormality,
Minimizing abnormality correspunds to supplementing lack of knowledge with common

sense knowledge. Finally, the instance of aseriplion is

TThxiManeixt A (falsel),
AxfPenguin(x) A (falsel),
AxdDeadix) A (false)),
W (Flylx) A (Plane(xhyBird(x)A ~ Penguin(x)A— Dead(x))1,
Ax (AL x) A (Plane(xpyBird(x1)),
M (Abeix) v (falsel,
Ax.(Abgix) 3 (Penguin(xhyBird(x)ADead(x))),
Mo (Ahgix) A (PenguinfxdAPlane(x),
A (Abg(x) A (Bird(x)ADead(x)APlaneix))}]
I
TThx.(Plane(x) W (falze)),
hx. (Penguin{x) v (false]),
Ax(Dead(x) v (falsell,
A (Fly(x) v (Plane(xhyBird(x)A — Penguin(x)A —~ Dead(x)),
A iAb(x) v (Plane(xhyBird(x})),
Ax.Abaix) A (falsel),
hx {Abgix) A (Penguin{x)hy/Bird(x)/ADead(x))),
Ax.(Abg(x) v (Penguin(x)APlane(x)),
hx (AbRIx]) W (Bird(x)/ADead( =z} APlane(x)]
-y
¥x. = Planelx) A ¥x = Penguin(x) A ¥x. 7 Deadix)
A ¥x (Fly(x)=(Plane(x)/Bird(x)/ = Penguin(x)/ — Dead(x))

A o

I' |~ ¥x.(Fly(x)= Bird(x)).



fnd

[ |~ Flyip-suke).

6.Conclusion and remarks
As described above, ascription uniformly formalizes diverse and flexible conjectural

reasoning performed by humans But, of course, there still remain more difficult problems
on its use. How do we, humans, usc these various types of reasoning properly? Our
conclusions will often contradict each other depending on how we interpret our knowledge
ahout a eerlain property K; in & narrow sense, as in circumseription, or in a broad sense,
as in analogy. This problem is deeply relevant to human preference and lies beyond the
scope of our logic. We have not considered this much, but it seems that when we have less
instances of K, we prefer a narrow interpretation, and that when we have sulTicient
instances of K, we prefer a broad interpretation. Considered from the viewpoint of
ascription, this seems lo correspond more or less to the situation that there are, roughly
gpeaking, so many various dubious candidates for W to K in the former case. Indeed, it will
be difficult to chonse an adequate W, but Kmin is one of the well-founded candidates. In
the latter case, because we get more infurmation on K, there aure fewer ecandidates so it
ceams Lo be easier to choose. Anyway, an adequate W will usually be given in a moderale
sense, i.e., neither in the narrowest nor in the broadest sense. We believe that aseriplion is
a general form which can cover any proper interpretation of K between one extreme and

another.
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