ICOT Technical Memorandum: TM-0240

T™-0240

Motes on Transtormation Techniques for

Generate and Test Logic Programs
hy

H. SEEI and K. FURUK AWA

Movember, 1986

1986, 1COT

Klia Kokusar Bldg. 21F (5 daG-3191 -5

I(:D I 4-28 Mita '-Chome Telex ICOT Ja2064

Minato-ku Tokyo 108 Japan

Institute for New Genera_ti_on Computer Technology

Notes on Transformation Techniques for Generate and Test Logic Programs

Hirohisa SEKT and Koichi FURUKAWAT

ICOT Research Center
Institute for New Generation Computer Technology
Mita-Kokusai Bldeg. 21F, 1-4-28, Mita,
Minato-ku, Tokyo 108, Japan

{ order not significant

Ahstract

This paper presents three transformation techniques for a class of logic programs.
Target programs are declaratively written programs based on a generate and test
paradigm, which are usually very inefficient under the Prolog default control strategy.
All of three transformation techniques are based on a simple idea that a tester
should prune incorrect search trees eagerly by imterleaving testers into generators
immediately after the testers become active. Rules of each transformation technique
are given within the framework of Tamaki-Sato's unfold /fold transformation [TS84b],
incorporating with a static dataflow analysis and/or some appropriate laws, and
the correctness of each transformation is proved. Transformed programs under the
default control strategy are assured of being at least as efficient as those under the
coroutine mechanism. Interestingly, the above idea naturally leads to a promotion
strategy [Bir34] known in functional programming and even for a class of programs
to which the coroutine mechanism is not effective, the promotion strategy is proved
to be effectively applied.

[Contents]
1. Introduction
Preliminaries
Unfold/fold and rearrangement by dataflow analysis
. Unfold/fold based on structural commutativity
. Unfold/fold using promotion strategy
. Discussion
Acknowledgement
References

Appendix

1 Introduction

Program transformation piovides a powerful methodology for the development of softwara,
especially the derivation of efficient programs either from their formal specifications or from
declarative but inefficient programs. Programs written in a declarative form are often inefficient
under the Prolog’s standard left to right control rule. Typical examples are found in programs
based on a generate and test paradigm. There seems to exist two alternative approaches to
ensure efficiency for such programs. One approach is to introduce a corautine {or freeze) mecha-
nism implemented is IC-PROLOG [CMG82), PROLOG- [Col82], MU-PROLOG [Nai83], CIL
[Muk85], and so on. The other is a program transformation approach. Although the coroutine
mechanism is useful and easy to use, it has often been pointed out that its control mechanism
causes substantial runtime overhead. Furthermore, when all solutions of an original program are
required, the transformation approach makes it possible to obtain a corresponding GHC [Ued85]
program by {urther appiying Ueda's method [Ued86a) to 2 transformed program. Hence, in this
paper, we adopt a program transformation approach to get rid of the coroutine mechanism.
Our objective is to provide transformation techniques effective in a class of tvpical programs of
the generate and test type. Program transformation techniques described in this paper ensure
those programs at least the same efficiency under the default control strategy as that of the
corresponding programs with the coroutine mechanism, and sometimes the efficiency is shown
to be substantially improved.

After summarizing preliminary materials in section 2, three transformation techniques based
on uniold /fold transformation are proposed. In section 3, an anfold/fold transformation tech-
nique incorporating a simple dataflow analvsis is described. Section 4 gives another unfold /fold
transformation based on structural commutativity. In section 5, an unfold JHold transformation
with promotion strategy is explained. The correctness of the above transformations is estab-
lished in the appendix. In section 6, we give a summary of our transfarmation technigues and
a discussion of related research,

2 Preliminaries

Program transformation rules used in this paper are based on those of Tamaki and Sata
[TS84b]. Their basic rules are definition, unfolding and lolding (for the strict definition, see
[TS84bj} :

(1) Definition : Introduce a new predicate definition.

(2) Unfolding : Replace an atom A occurring in a body of a clause by the body of
another clause whose head is unifiable with A.

(3) Folding : Replace goals (s in a body of a clanse by the Lead of anotler clause whaose
body is unifiable with 7.

The following transformation rules are special cases of goal replacement in [TS84b].

(4) Laws : Transform goals Gs in a body by applying available rewriting rules about
predicates appearing in Gs. (e.g., associativity, commutativity).

(5) Rearrangement : Rearrange order of goals in a body of a clause.

Target programs to which the above transformation rules are applied are typical programs
based on the generate and test paradigm. Those programs are nsually supposed to be of the
form (hereafter, programs are defined following the syntax of DEC-10 Prolog [BEP*33]}.

:- moda spec(+,=]).
spac(X,¥) :- gemerator{(X,¥), testeriY).

The meaning of this program is that, for a given input variable (or possibly a set of input
variables) X, predicate generator generates output ¥ until ¥ satisfies the condition specified by
the predicate tastar. A mode declaration is given for the sake of understandability and it shows
how a program is to be used. Variable Y is called a shared variable, shared by the generator and
the tester. In the following, data structures treated here are mainiy confined to lists, although we
believe our transformation techniques are effective for other recursively defined data structures.

3 Unfold/fold and rearrangement by dataflow analysis

All of our program transformation techniques described below are based on 2 simple guiding
principle that a tester should prune incorrect search trees eagerly by interleaving testers into
generators immediately after the testers become active. In order to illustrate this idea, we
consider the following class of simple programs in this section, namely, the tester of a given
program can be unfolded into primitive (evaluable) predicates. For these programs, unfold/fold
transformation and rearrangement of goals are sufficient. A simple static dataflow (or mode)
analysis of goals is necessary in order to rearrange goals appropriately. Namely, for a given goal,
the analysis should give information about which arguments in the goal must be instantiated
into ground terms, when it is executed for a certain ground input (if any) and terminates with
success. The mode analysis given by [Mel33], for example, is sufficient for the present purpose.
Using the mode analysis, the transformation for such class of programs is performed as follows:

i) Unfold the tester into primitive (evaluable) predicates.

ii) Determine by a mode analysis when variables in each derived primitive predicates
are instantiated.

iii) Rearrange each primitive predicate just after a generater predicate which instantiates
variables in the primitive predicate.

Clearly, the equivalence of the transformed program with an original program is preserved,
since only unfolding and rearrangement rule are used. As an example, consider the following
program.

Ex. 3.1 Send More Money [Fur36] (a eryptarithmetic addition program !

send([[5,E,¥,D],[M,0,R,E],[¥,0,¥,E,¥YI])

:= sum(Ri,0,0,%,0), sem(R2,5,M,0,81), sum(R2,E,Q,N,R2), (3=1)
sum(fe N ,R,E,R2), sun{0 ,D,E,Y, R4}, (3-2)
diffarant{[5,Z,5,0,4,0,8,%]}, (3-3)
¥ =\=a, 3 =\= 0. (2-4)

sum(®,X,¥,Z,81)
:= remainder(R), digiz(X}, digiz(Y},
T ig R+X+Y, R1 iz T/10, 2 is (T mod 10).

repainder(0).

ramaindar(i}.

digitv{0).

digit(9).

different(d}.

different{[XI¥]) := out_of(X,¥), diffareat(Y).
out_eof(X,0).

cut_of({X,[AIL]) := X =\= A, out_of(X, LJ.

The above program is a well-known cryptarithmetic addition program. For given strings of
letters, “SEND”, “MORE" and “MONEY™, each of which represents different integers among
0,1,...,9, the problem is to find an appropriate assignment of digits for each letter so that
adding the numbers represented by “SEND” and “MORE” yields the number represented by
“MONEY™. Goals (3-1), (3-2) are the generator part and (3-3), (3-4) are the tester part.
From the definition, (3=3) can be unfolded into a set of evaluable predicates of the farm : X =\=
Y, where X and ¥ are different characters among S,E.N,D,M,0,R,Y. The mode analysis shows
which arsuments in a goal of the generator (predicate sum in this case) are instantiated when
it is called and terminates with success. Since we assume that the generator part is executed in
default control, it is easily known from the mode analysis when each predicate X =\= Y becomes
evaluable.

Hence, we can interleave these primitive testers into the generator part immediately after
they become evaluable as follows ;

send([[S,E,¥,D],[M,0,R,E],IM,0,N.E, ¥I])

:= sum(fR1,0,0,M,00, A M is instantiatad
M =\= 0,
sum(R2,3 ,M,0,R1), A S, 0 are instantiatad

'Recently, we found that Ueda independeatly gives a quite similar transformation of this program [Ueds&b),
although he takes it up in a slightly different context.

S=\=0, S=\=M, 5 =\=(0=\=}),

sum{f3,E,0,N,R2}, A E, N ara instantiated
Es\w M, E=s\=5, E=\=0, E=\= N, N=\=M, N=\=35 §=\=qQ,

sum{R4,N,R,E,R3), % R is instantiated
R=\=HM, Ae\m 5, Reu\mQ, Ro\mE, R =\=},

sum{0 ,D,.E,Y¥,R4), A D, T ars instantieted

=\= ¥, D=\=8, D =\=17,

D =\=M, D=s\=5, D =\= =
s, Y =\=E, ¥ =\=N, R =\= Y.

¥ =I";' Hr ki ='|||.=r ="l._=

-

(==
o
it
-
I
8]
L
w

Clearly further transiormation is possibie if we partiaily evaluate the generator predicates
(i.e.. “sum” in the above) and interleave each primitive tester into the appropriate places among
those unfolded generator predicates. Then, the behavior of the derived program exactly corre-
sponds ta that of the original program under the coroutine mechanism.

4 TUnfold/fold based on structural commutativity

In this section we describe another transformation technique which can apply to more compli-
cated programs. They do not enjoy such properties as those given in Section 3. As an example,
consider the following program.

Ex. 4.1 Aeyelic Path Finding Program

= mode good_path(+,-).
geod_path(X, Path)
:= path(X, Path), good_.list(Path).

path(goal, [goall).
path(¥, [W[Fach])
:~ neighbor(N, Next}, path(Next, Path).

good_list([J).

good_1ist([XIL]) :- out_ef(X,L), goed_list(L).
out _of(X,0).

out_of(X,[AIL]) = X =\= A, out_of(X,L).

For a given graph G, predicate good_path(X,Path) finds an acyclic path which stares from
node X and ends at a designated node “goal”. The relation of the are from node X to Y in G is
specified in terms of the predicate neighbor(X,Y). The predicate path(X, Path) is a generator
which gemerates a path {rom node X to goal, while good list{Path) checks whether a list
Path contains element repetitions or not. Note that the above program might not terminate
if it is executed under the Prolog default left to right control rule. The generator “path”

instantiates a shared variahle Path successively from its head. When Path is instantiated into
[alL], say, then the tester “good_list” could be unfolded into out.ef(a,L) & good list(L).
However, out_of(a,L) cannot be evaluated until the rest of the list L is instantiated. Hence,
the unfold/fold transformation and rearrangement are clearly insufficient to interieave testars
into generators immediately after the testers become evaluable. However, the following symbolic
manipulation wowid suggest an alleviation of this difficulty. From its dernition. the predicate
goed list is svmbolically transformed as follows:

good list([X1.X2,....%n,gcall)
:- eut_sf(Xi, X2, ... ,In,gzeall),
out_of{Xz, [X3,...,Xn,zoall),

out_of(In, [geall),
out_of {(goal,d).
% unfolding of each "outr_of"
re= Il=\=X2,........... JXi=\=Xn,Xi=\=goal,
X2=\=X3,...,X2=\=1n,X2=\=goal,

In=\=goal.
Since predicate ¥=\=" i5s commutative,

1= X2=\=X1,X3=\=X1, ..., Xn=\=f1 goal=\=]1,
X3=\=12,...,Xn=\=X2,goal=\=}2,

goal=\=In.

Rearranging the order of the above goals, the structure of the formula is equivalently transformed
as follows:

e X2=\=11,
I3=\=X2, X3=\=Xi,

In=\=Xn-1,..,Xn=\=X2, Xn=\=X1,
goal=\=Xn, ... goal=\=X2, goals\=X1.
We call this property “structural commutativity” here. Note that this reardering is analogous to
the exchange of double summation: T, Ef:t- Ty = Ef:: Tis; Tie
Folding goals in the above formula:

1= out_or{Xz, [X1]3,

out_2f(fa, [fn-1,...,%2,.%113,
out_of (goal, [in,Xn-1,...,X2,X1]).

= good_list([geal,X=,...,X2,X1]).

Therefora,
good_list([X1,X2,..., Xn,goall) = good_list([goal,Xn,...,X2,X1])

holds and the predicate geod.path is transformed as follows:

good_path(X1, [X1,X2,... .In,gnal]}

:- path{X:i, (Xi,X2,...,In,goalll, good_lisc([X1,X2,...,Xn,geall).

:= neighber(li,lX2), out_ef(X2, [Xi1), (4-1)
neighkor({i2,X3), out_of (X2, [X2,%11),
neighbor{ia-L,XnJ, out_of{¥n, [¥n-1,...,.%2.X1]13,
neighber{in,goall, out_of(goal, [Xn,Xn-1,...,X2,X1]).

Now, in (4-1), when X2 is produced by neighbor(X1,X2), the tester out_of (X2, [¥1]) can
immediately check whether X2 is contained in a set of previously generated elements, namely
{X1} or not. The same situation holds for other elements X3,...,%n and goal. The second
argument of the tester “out_of™ is used as a stack which accumulates elements obtained so far.
These considerations lead us to the following improved program geed_pathi, which includes an
extra argument as an eccumnulotor of previously generzted elements.

good_path(X, Path)
:= good_pathi(X,([d,Pazh).

good_pathi(geal, Path, [geall)
= out_of{goal, Pathl.
good_pathi(N, History, [N|Pathl)
= eut_of (N, History), neighber(N, Next),
good_pathi(Next, [N|History], Path).

We can generalize the above discussion and give the following program transformation
scheme.

A Program Transformation Scheme based on Structural Commutativity
Suppose we are given a program of the generate and test type described in (3-53). Suppose also
that a predicate “taster” satisfies the following condition (we call this property the structural

commutativity of predicate “tester”) :
there exists a predicate tester’ s.t.

taster{l) = testar'{L") for any list L, {Cg=1)
where

(1) L~ means a reversed list of L , i.e., reverse(l,L7), and

(2) tester’ is of the following form :

zastar?([J).
testar? ([XILIY := t7(X,L), taster'(L).

Then, the above program is equivalently transformed as follows :
spec(X,Y) :- speci(X,[,Y).

specil(Ead, Hist,EndValue) := terainator{End,EndValue), testaerl(EndValue,Fist).
speci(N,Hist, [VIVsl)
= p(¥,V,Next), t’(V, Hisz),
specl(flext, [V[Hist], Vs).

Predicate tester! is defined in Appendix-1.

The detailed process of the program transformation is given in Appendix-1. Clark [Clat9)
and Gregory [Gre30] show the transformation of eight queens problem (shown below) using
accumulators. The above scheme gives a transformation which can deal such programs in a
unified way.

Ex. 4.2 Eight queens problem

:= mede solutienl+,-).
solution{[1,2,..,8], Perm)
:= permutatien([1,2,...,8], Perm), safa(Perm).

permutation((J,d).
permutation(L,{QIM]) :- remove(,L,L1), permutation(Li,M).

remeve (X, [X|L],L).
remave (X, [YIL],[YIM]) :- remevel(X,L M).

safe([]).
safe([QIList]) :- nodiagonal(Q,List,1), safe(List).

nodiagonal{gi, (J,.H).
nodiagonal(q:, [QzIL].N)
¢t~ noattack(Q1,32,N), N1 is N+1, nodiagonal{Qi,L,Ni).

acattack(dl,02,40)

i Q1 » 92, DiZf? iz Q1 - g2, Diff =\= 1},
noattack(Q1,Q2.N)

1= 02 » g1, DiZ2f is G2 = g1, Diff =\= N.

A solution of this program is represented as a permutation of [1,2,..., 8] which gives the
column numbers of the queen in each of the eight rows. Predicate safe(L) checks whether nn
two gueens in L lie on the same diagonal. It is clear that predicate safa satisfies the condition
{C4-1), l.e., safa{L) = safa(L"). Hence, the above program is transformed as follows :

solutien(1,2,...,8], Parz)
:- smelutiomi{[i,2,..., g2],.0 .Perm).

selutioni(d, Resuls,).
solutioni{L, History, [QIMI}
;- rsmovel(d,L,Li),
nodiagenal(Q,Histery,.1),
solutieni(L1, [QiHistaryl M).

Ex. 4.3 5isw sort

= moda sors=(+,=).
gsert(J,0).
sert(X,¥) :- permutation(X,¥), orderad(Y}.

crdered({[J}.
erdered([X]1).
ordered{[X,¥IL]) := X =< ¥, order=d([Y|L]).

Predicate crdered also satisfies the condition (C2-1), since ordered(L) = orderad’ (L"),
where predicate ordered’ is of the form :

erdared*{[0).
erdered? {[X]).
ordered®([X,YIL]) := ¥ =< X, ardered’([YIL]).

Hence, the above sort program is transformed as follows :

sort(X,Y)
- sorti(X,,Y).

sexti(Od,_,0).
sort1(X,dist, [GIVs])
= removel{d,X,X1),
' (0, Hist),
sorti(X1,[Q[Hise] ,Vs).

' (_, OJ.
(X, [HIT])
= Hs< X, £(X,T).

Note that the original program is an O(n!) sort program, while the derived one is an O(2")
sart program, which achieves the same efficlency as that of the corresponding program under
the coroutine mechanism.

Furthermore, the following proposition gives a simple sufficient condition of (C2-1).

A Sufficlent Condition of {C4d-1)
Suppose that the predicate “tester” is defined as follows :

1 cf.
tastar([d). % goed_list{}.
testar([XIL]) L goed list(IXIL])
= ow (XL, % = aut_of(X,L),

A
h

tastar(l]. good_lisz(l}.
=(X,0). | out_of(X,.0).
t(X,[AlL]) % oout_of(X,[AlL])
= clX,4), i = X =\= 4,
t{X,L). A our_of(X,L].

Then “testac” satisfies (C&-1), L.e.,
tester(l) = testar’'(L") for any listc L,
where

taster’' ().

taster’ ([TIL]) := &' (X,L), taster’'(L).
2 (x,0).

' (X, [AIL]) == efAX), = (X,L).

The correctness of this condition is given in Appendix-2. Note that those programs in Ex.
4.1, Ex. 4.3, and Ex. 4.3 satisfy the above sufficient condition.

5 Unfold/fold using promotion strategy

In this section we expiain the third program transformation technique. A eclass of target
programs here is quite different from those in previous section in that the shared variable (list)
between a generator and a tester is not instantiated incrementally and the coroutine mechanism
is no longer effective. Consider the following example which illustrates why the previousiy
mentioned techniques are not appropriate and a new technique is required,

10

Ex. 5.1 Another Slow Sort

:- mods sorz(+,-).

sort(X,T) :- perz(X,Y), ordarad(Y). (5-1)
% the predicate "ordered" is defined in Ex. 4.3.

pern([J,).

par=([AlX].,Y) :- perm(X.Z), insert(i.Z.Y).

inser=(A,X,[AIX]).

insexr={A,[3|X],[B1Y]) :- izzexr={(a,L,Y).

The above sort program differs from the one in Ex. 4.3 in that parm’s 2nd clanss iz definad
in different way, which delays the instantiation of the shared variable ¥ in (5-1). The following
symbelic manipulation will llustrate how the computation proceeds.

sort([X1,X2,...,Xa].
:- perm([X1,X2,....,%n],7), ordered(Y).
i \

perz([X2,...,Xrl,¥1), insers(X1,71,Y)

|
pera([X3,.,Xn].Y2), Einsan{Ii.Yﬂ,YI},

L
- s =

| ! -
perm([Xn],¥n-1), insert(In-l.‘:‘n-i,Ya-zq}?
| \
perm([],¥Yn), insert{Xn,¥n,¥n-1)

For a given list [a1,22,...,an], the value of ¥ in a call pern([at,a2,...,an], Y) is not
determined until the value of Y1 in a call perm([a2,...,an], Y1) is completely instantiated and
goal insert(X1,T1,Y) is executed. Hence, neither the coroutine mechanism nor the transforma-
tion based on structural commutativity is effective in this case. Again, back to our first principle
that a tester should prune incorrect search trees eagerly by interleaving testers into generators
immediately after the testers become active, we examine the above computation in more detail.
Goals insert(X1,Y1,Y), ordered(Y) in the above can be regarded as (a local) generate and
test program. Namely, for ground inputs 1,Y1, a goal insert{X21,Y1,Y) non-deterministically
instantiates a shared variable Y and then its value is checked by a goal ordered(Y). This is a
reason of the inefliclency of the original program. Hence, instead of checking ¥ by ordered(Y)
at the very end, the ground input Y1 should be checked beforehand whether ordessd(¥1) holds.
Furthermore, under the condition that ordersd(¥1}, we can deterministicallv insert X1 inzo ¥1
obtaining the result ¥ for which it is guaranteed that ordered(Y¥), i.e., bv empioving predicare
op_insert defined below,

L order preserving imserzicn
op.ingsert(a,0,[A]).

11

cp_insert(a,[31X],[A,B[Y]) - A =< B.
ep_imserz(a,[B1X].[BIY])
:= A » B, op.insert{A,Z.¥J.

Interestingiy, this consideration naturally leads us to the prometion strotegy known in func-
tional languages [Bir234]. We further apply svmbolic manipulation to the above formula according
to the promotion strategy. At first, we note that predicate “insert” and “crdered” satisfv the
following condition (Bird calls this condition a “continuity condition™ [Bir34)).

inzert(4,Y,Z) & crdarad{Z) = orderad(Y) & op_.inserz(i,Y,Z} (5-2)

Then, using this logical equivalence, the original program is successively transformed as
follows:
Unfald perm in (5-1) :

sorsid.0O7. (5-3)
sort([A[X],Y} :- perm(X,Z), insert(i,Z,Y), ordered(Y). (5-4)

Usze continuity condition (3-27 :

sort({[AlX],Y) :- perm(X,Z), ordered(Z), op_insert(A,Z.Y). {5-5)

Foid by sort in (5-5) :

sert([AlX],¥) :- sort(X,Z), op_insert(A,Z.Y). {5-8)
(eneralizing the above discussion, we derive a generalized program transformation scheme,

the form of which is quite similar to that used in functional languages [Bir84].

A Program Transformation Scheme Using the Promotion Strategy
Suppose that we are given a generate and test type program of the following form :

:= made spec(+,-).
spec2(X,Y) :- generator2(X,Y), tester(Y).

generator2(End, EndValue)} :- terminator({End, EndValua).
generator2{N, Result)
H p(H,Value, Next), genaratorZ{Next ,Vs},
modifier{Value,Vs Result).
where medifier(Value,Vs,Result) is a certain predicate which returns a value Result from
inputs Valus and Vs.
If there exists some predicate modifier’ s.t.

moedifier(H,R,Result) & testar{Result)
= tagter{R) & modifier’(H,R,Result) for any H,R,Result, {C=a)

12

then program spec2 is equivalently transformed into:

spec2(End,EndValue) :- terminator(End,EZmdValue), testar(EndValus).
spec2 (N, Rasuls)
t= p(N,Value,Next), spec2(Nexs,Vs), medifier’(Value,Vs,Resuls),

The correctness of the derivation of the above program based on uniold/fold transformationis
omitted because it is quite straightforvard., As previcusly mentioned. the coroutine mechanism
is not effective in this case. Hence. as for the coroutine approach, the computational complexity
of Ex. 5.1 is O(n!), wiere = is the lenzth of an input list. On the other hand, program
transformation using the promotion strategy produces an O(a°) insertion sort program.

Note that the promotion strategy is sometimes effective also in the sragramin {3-3). In this
case. the continuity condition requires the existence of a predicate p’ satisiving the following
condition:

pid,Value,Yaxt) & tester{[ValualVvs])
= p'(N,Valua,Nexz) & testar(Vs), where generator{Nexz,Vs). (C5h)

or, equivalently:

p(N,Valus,Next) & t(Value,Vs) = p’(N.Value, Next),
where generator(Next,Vs) & tester(Vs) [i.e., spec(Next,Vs}]. (C5b')

It could be considered that the above (CSt’) gives an implicit definition of a predicate p’.
When the above condition holds, then the original program can be transformed in a similar way
as follows :

spac(End ,EndValue) :- terminator(End,EndValua), tester{EndValue).
spec(¥, (Value|Vs]) :- p’(N,Valua,Next), spec{Next,Vs).

The slow sort program in Ex. 4.3 is the case where the above condition is satisfied. Here,
the continuity condition is of the following form :

removal(d,X,X1) & ordered([alY])
= selact(A,X,X1) & ordered(Y)}, whare permutation(Xi,¥Y)

where salact(A,X,X1) is a predicate which selects an element & from a given list X that is
less than or equal to all the other elements X1. Using this condition, the original program is
transformed as follows :

sort([0,0).
gert (X, [A[Y]) = salac=(A,.X.X1), sort(¥1,Y).

The above derived prosram is precisely a selecticn sort program.

13

6 Discussion

We have shown how our program fransformation techniques are applied to a class of typieal
generate and test programs and how they can be equivalently transformed into efficient pro-
grams under the Prolog default control rule. These transformation methods achieve the same
efficiency as the coroutine mechanism. [ndeed. efficiency can sometimes be substantially im-
proved by emploving the promotion strategy, evez in cases where the coroutine mechanism is
not effective. Furthermore, it should be noted that programs derived by the transformation
technigues proposed here are shown to fall under the class of Prolog programs specified by Teda
Ued®5al, which are transformable into corresponding GHC {Guarded Horn Clauses} programs
[Ued23). Hence, our transformarion techniques described in this paper make it possible to com-
plie programs written in high-level and constraint-hased representation languages such as CIL
and Proloz-I] into corresponding GHC programs.

There exist several studies on the program transformation technigues for generate and test
logic programs. (Gallagher proposes a transformation method for the eight queeas problem
[Gal’2]. His approach differs from ours in that he has inrroduced a kind of “metapredicates”
to simulate the coroutine mechanism. Another approach is presented by Bruynooghe et al.
[BSKS6]. From a trace tree obtained by symbolic execution of a given query, they derive a set of
clauses which specifies the transition of states in that trace tree. Their approach is quite similar
to Gallagher's in that the state transition is described in metapredicates. On the contrary, our
transformation methed does not introduce such metapredicates. The transformation rules are
within the framework of Tamaki and Sato [T584b], which preserves the equivalence of programs.
Hence, the justification of our transformation technigues is quite immediate, as long as the
correciness of the laws used is proved.

Gregory’s approach is similar to ours [GreB0]. Using the information of IC-PROLOG's an-
notations which specify whether data is transferred sagerly or lazily, annotated programs are
transformed into sequential programs. His method is, however, strictly based on Burstall and
Darlington [BD77], and neither transformation techniques based on structural commutativity
nor promotion strategy are introduced. Clark [ClaTd] also gives a transformation for eight-
queens program, which is an instance of cur scheme based on structural commutativity. As an
application of their theoretical framework, Tamaki and Sato propose a transformation system
called “Append Optimizer” [TS584al. Since they intend to malke an efficient and fully automated
transformation system, their target programs are confined to programs containing append pred-
ieates, However, their aim of reducing redundaney and nondeterminism by transformation is
quite similar to ours. Recently, Ueda [UedS6b] proposed a transformation method which simu-
lates the coroutine mechanism using continuation. His approach is quite different from ours in
that his method transforms a given program into a deterministic one, and data transfer from
the generator to the tester is performed not by a shared variable. but by continuations. Hence,
the proof of the eguivalence of a transformed program with an original program seems to be left.

Compared with previous transformation approaches, the contributions of this paper could
be summarized as follows :

1) Three transformation techniques are presented which are effective for a class of gen-

14

erate and test logic programs.

2) A sufficient condition is given where a transformation based on structural commu-
tativity is proved ta be affactive.

3} The promotion strategy is shows to be effective for a class of generate and test logic
programs, even if the coroutine mechanism is not effectiva.

Acknowledgement

The zuthors wish to express their thanks to Kazuhire Fuchi, Director of ICOT Research Center,
who provided us with the oppertunitr to pursue this research. We would also like to thank
Yuji Martsumoto, Toshihike Mivazaki and other members of ICOT First research laboratery
who participated in discussion on their research. Special thanks are due to Kazunori Uedz and
Akikazu Takeuchi, who gave valuable suggestions on our current wark,

References

[BBP*83] D. L. Bowen, L. Byrd, F. C. N. Pereira, L. M. Pereira, and D. H. D. Warren.

[BDTT
[Bir34]
[BSK36]

[ClaT9]

[CMGS2)

[Cals2]

[Furig]
(Gal32|

DECsystem-10 Prolog User’s Manual, November 1983.

R.M. Burstall and J. Darlington. A Transformation System for Developing Recursive
Programs. J. ACM, 24(1):44-67, 1977.

R. 8. Bird. The Promotion and Accumulation Strategies in Transformational Pro-
gramming., 4CM Trans. on Programming Languages and Systems, 6:487=-504, 1984,

M. Bruynooghe, D.D. Schreye, and B. Krekels. Compiling Control. In Proc. 1986
Sympesium on Logic Pregramming, pages 70-77, IEEE Computer Seciety, 1938,

K.L. Clark. Predicate Logie as a Computelional Formalism. Research Mono-
graph 79/3%, TOC, Dept. of Computing, Imperial College of Science and Technology,
1979,

K.L. Clark, F. McCabe, and 5. Gregory. [IC-Prolog Langucge Features, in Logic
FProgramming, pages 253-266. Academic Press, 1982,

A. Colmeraner. PROLOG II Reference Manual and Thearetical Model, Technical
Report, Groupe Lutelligence Artificielle, Faculté des Scieaces de Luminy, Marseille,
1982,

K. Furukawa. Introduction to Prolog. Ohmne-sha. Tokve, 1986. iz Japanese.
J. Gallagher. Simulating Corouting for the 3 Queens Program. Logic Pregramming

Newsletter, (3):10-11, 1982, Pereira, L.M. (ed.) Universidade Nova de Lisvoa.

15

[Gresi]

[TS34a]

[TS84b]

[Ued25]

[Ued36a]

[Ued86b]

5. Gregorv, Towards the Compilation of Annotated Logic Proqgrams. Research Re-
port DOC 20/16, Dept. of Computing, Imperial College of Science and Technology,
1980.

C. 5. Mellish. Some Global Optimizations for a Prolog Compiler. J. Logic Program-
ming, 2(1):43-68, 1985,

K. Mukai. Horm Cleuse Logic with Parameterized Types for Situation Semantics
Programming. ICOT Technical Renart TH-101. ICOT. 1985,

L. Naish. Automating Contrel for Logic Programs. J. Logic Programming, 3:167-183,
1983.

H. Tamaki and T. Sato. On Append Oprimizer. In Proceedings of Logic Programming
Conference, Tokvo, 1084, in Japanese.

H. Tamaki and T. Sato. Unfold/Fold Transformation of Logic Programs. In Proceed-
ings of the Second International Conference on Logic Programming, pages 127-138,
Uppsala, 1984,

K. Ueda. Fuarded Horn Clauses. Technical Report TR-103, ICOT, 1935, A revised

version is in Proc. Logic Programming "853, Wada, E. {ed.), Lecture Notes in Computer
Science 221, Springer-Verlag, Berlin Heidelbers, pp.168-179, 1986,

K. Ueda. Making Exhaustive Search Programs Deterministic. In Proceedings of the
Third International Conference on Logic Programming, pages 270-232, London, 1986.

K. Ueda. Making Exhaustive Search Programs Deterministic (II). In Proceedings of
the Third Annual Conference of Japan Society of Software Science and Technology,
Tokyo, 1986, in Japanese.

Appendix 1

Before we prove the correctness of the transformation scheme described in Section 4, we need
the following lemma.

Lemma

Suppose that predicate “tsster” is defined as {ollows :

tastar{J}.
tester{[XIL]) := ¢(X,L}, saster(lL].

If “cester” satisfies the following condition :
there exists a predicate taster’ a.t.

testar(l) = testar’(L”) for any list L, (C4-1)

whera

LG

{1} L~ means a reversed list of L , L.e., reverse(L,L™) , and

(2) testar’® is of the following form :

tastaz' (0.
testar' ([XIL]) := ' (X,L), weszez'(L).

then
testeri(l] = Tastari(l,2J, (1=}
where
tastari(d,).
tasTeri([XILI, ¥) - £'(X,¥), teszazi(l, [T1Y15.
[proof]

(case 1) When L = [], the proof is trivial.
{ease 2) When length(L) > 1. the proof is by induction on the length of list L.

[base case] When length(L} = 1, say L=[a}, then the proposition to be praved is
that

tastar{lal) = testari(fal,[}.

Using {C4-1) and unfolding the right hand side (RHS) of the above,

tagter'([al} = <t'{a,[d), testeri(l,[al).

Uniolding the left hand side of the above, we obtain
t{a,0) = t'(a,),
which is trivial.
[induction step] Suppose that (Lm) holds for any list L s.t. length(L) < k {k>1).
Here we introduce the following notation conventions.
For any list L, L™ means a list 5.f. reverse(L L")
For any list LM, L+ M means a list N s.t. append{L,M,N).
Let L be a list s.t. length(L) = k. We must prove that
tester{[aiL]) = testeri([alLl]l, ().
Using (C4-1) and unfolding RHS,
teastar’ (L *[a]) = t7(a,[0), testari(L, [al).
Lat L= = [UM~] (i.e., L =Mxl], note that length(M)= k-1). Then the following
transiormation sequence is allowed :
Unfolding of LHS :
t1(1,M"«[al), tester’(¥~=[a]) = t'(a,Z), tasteri(M=[1],[a]].

17

Using (Ca~-1) :
£ (1,8 %[a]), tester{[aiM]) = t'(a,d), testari(M={1],[al).

By the induction assumption :

T —

' (1,4 =[a]), testari([aiMl.) = ' {a,), testeri(M=[1],[2]).
Unfelding of tas<exi in LHS :

(2, w7210, £%(a, 00, teszeri(¥, (2]} = v’ (a,0), testeri(M+[1],[2]),
which is egzivalent o

£, =720, tastezsi(M,[al) = testeri(M«[1],[a]} (A1=13

In place of {A2-L), we prove the following generalized formula :
for any lst LN :
' (1, M"=N), tastari(M,N) = zesteri{M=[1],N) (a1=-1")

[proof of {(A1-1')] The proef is by induction on M in (A1-1').

[base case] (i.e., M =[] } The proposition to be proved is

' (1,N), testeri{J,N)} = testeri{[1].,N).
Unfolding RHS, the above is equivalent to

(1,0} = = (1,N), sesseri(J,01IN]2,
which is trivial from the definitian.
[induction step] Suppose that, for any N,

' (1 ,M7*N), tastari(M,N) = testari(M=+[1],.N)
holds. Then, we have to prove that

t'(1,M"=[a]sN), testert([alM],¥) = testeri([alMI=[1],N).
Unfolding testerl in each side and noting that

[aiMi=[1] = [a]=M=[1], M**[a]=N = M~ [alll],
the above formula is rewritten into :

£ (1,0"«[alN]), t*(a,N), testeri(M,[alu])

= t'(a,N), testert(M+[1],[alN]},

which is equivalent to :

' (1,M"«[alN]), testeri(M,[all]) = testeri(Ms[l],[alN]).
The above {ormula is immediate from the assumption of induction.

(Q.E.D.)

The correctness of a transformation scheme based on struetural commutativity

spac(X,Y) := generazor(X,Y), testar(¥). (A1-2)

By lemma (La), the above is equivalent to:

spec{X,¥Y) :- generater(X,Y), testari(¥,[]). (A1=3)

13

Then the following transformation sequence is allowed.
Introducing a new definition :

speci(X,4ist,¥) :=- generatos(X,Y), testeri(Y,Hist).
Folding {A1-3) by (A1-2):

spec(X,¥) :- speci(X,0.Y¥).

Unrolding generator in (41-4) @

{al-4)

speci(Ead,Hist,ZndValue) :- termimator({Zad,EndValue), testari(Z=dValne, Hisc).

soe=i (U, Fiss, [Value|Vsl)

- /% gamerzter{ll, [Value{Vs]) w/
p(N,Value,Yexz),
generator(Next,Vs),

f®= testari{[ValuelVs], Hist). *
<'{Value, Hisz),

testari(Vs, [ValuelHist]). (A1-5)
Folding (A1-8) by (41-4) :
speci(N, Hist, [Valua|Vs])
:= p(¥,Value,Next), t'(Value,Hist},
specl(Next, [Value|Hist], Vs).
Appendix 2
The correctness of the sufficient condition of (C4-1)
Suppose that the predicate “tester” is defined as follows :
% oer.
taster{]). % good_ list([]).
taster{[X|L]) % good_list([XILI}
= t(X.L), A = out_of(¥X,L),
taszar(l). % goed_list(L).
(X, 0). % our_of{X,[).
(X, [AILD) % out_of(X,[AIL])
= clX,A), 4 i~ X =\= 4,
t(X,L). A out_of{X,L).
Then “tester™ satisfies {C4-1), i.e.,
tastar(lL) = tastar’'(L”) for any list L, (Ci=1)
whers
tastar’ ().
testar’ ([XIL]) := £?(X,L), tastar’(L),.
et (X, 05.

t’fﬁ-[AlL]j Hi :{ﬁnx}: ‘L‘-"[K,L]-

19

[proof!
(case 1) When L=[], the proof is trivial.
{case 2) Whesn length{L) > 1, the proof is by induction on the length of list L.
[base case] When length(L) = 1, say L=[a], then the prapasition to be proved is
that
tester(fal) = tester’([al),
both sides of which are unfolded as follows:
e(a,d), testar({[J) = v'{a,[d), taszar’' (),
which is immediate {rom the definitions of predicates £, t’, testar and teszar’.
[induction step] Suppose that (C4~-1) holds for any list L s.t. length(L) < k (k=21).

Let L be 2 list s.t. length({L)} = k. We must prove that

tastarifall]) = testar’ (L™*+[al)
Let L=Ms+{l] {i.e., L=0|M"]). Then the following transformation sequence is al-
lowed:

Unfolding each atom :
tla, M«[1]), tester(M=[{1]) = t’(1,M =[a]), tester’' (M +[a]).
Using the assumption of induction in both sides :
tla,Me[1]), testax’'([1IM"]) = €' (1, M «[al), tester([alM]).
Unfolding in both sides :
tla,M=[1]), £ (1,M°), tastar'(M") = ¢ (1, M +[a]), t(a,M}, taster(M)
Again, using the induction assumption (i.e., tastar’(M") = tastar(M)),
t{a,M«[11), £ (1, H7) = ¢ (1, M «(al), t(a . M). (a2-1)
The correctness of (42-1) is immediate if the following lemmas are proved :

for any al, L,
t(a, L#[1]) = <(a,L}, cla,l) (42-2)
t'{a, L=(1]) = t'(a,l}, c(2,a) (A2-27)
[proof of (A2-2)] The proof is by induction on L.

[base case} i.e., L=1 | The proposition to be proved is
t(a,[11) = t(3,0), c(a,ll,
The above is equivalently unfolded intc :
c(a,l), t(a,0) = (a,0), ¢(a,l),
which is trivial.
[induction step] We must prove that
t(a, [bIL1#[11) = tCa, [IL]), cla,D).
Unfaolding ptedjcz.:es “¢” in both sides. we cbtain :
c(a,n}, tla, Lx[1]) = cla,b), t(a,L), cla,1),
which is equivalent to :
tla, L+[11)} = £(a,L), 2(a,l).
The abova is clear from the induction assumption. (Q.E.D.)

Note that the proof of (42-2") is similar to the above.

(QED))

20

