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Abstract

A logical framework is proposed that draws hypotheses to deduce properties of
some unknown facts by relativizing and generalizing already acquired knowledge. It
is called ascription. Ascription formalizes such fexible conjectural reasoning.
Interestingly, asecription draws some inferences by induction, analogy,

cireumseription, and so on.

LIntroduction
Computer systems with capabilities of deductive inference will release man from the

troublesome tasks of a procedural programming and be able to solve problems which he
gives them only declaratively. But deductive inference is deduction of properties of
individuals from given general knowledge, so it eannot provide effective consequences about
facts that are unexpected and not included in general knowledge. This means that deductive
inference cannot make a significant contribution to solving our software crisis. We should
remember unexpected facts always exist and deductive inference is helpless with respect to
them. One promising approach is reasoning by relativizing and generalizing already
acquired knowledge so that it can be applied to unexpected ecircumstances.

Work related to this kind of reasoning was done by John McCarthy et al. Circumscription
proposed there [5,6] is a form of sueh conjectural reasoning as is done by humans and based
on a closed-world assumption. This work is execiting and interesting, bul it seems that it can
explain only a small part of human flexible reasoning and that there still remain some very
important aspects which we should not ignore. These are analogy, induction and other
reasoning which strongly relativizes and generalizes knowledge. Such reasoning is closely
related to human learning capabilities. We have studied reasoning from this point of view
and propose a logical framework, called ascription, which is a form of such conjectural
reasoning. Intuitively, ascription represents the flexible notion that interpretation of &
certain property K lies between two extremes; one, similar to cireumseription, that the only
demonstrated positive instances of K are all instances satisfying K; and the other, that all
except the demonstrated negative instances satisfly K. More precisely we will show this as
follows.

Ascription is based on the following notion. If all the entities that can be shown to have a
property K by reasoning from already acquired knowledge I' can also be shown to have a
property W, and all the entities that can be shown not to have the property K can also be



shown not to have the property W, the property K may be equivalent to ¥. Namely when all
the posilive instances of K that can be shown to be so are the pesitive instances of ¥, and
similarly all the negative instances of K are the negative instances of W, we can assume
the equivalence of K and W.

2.Aseription schema

In this paper we write t instead of & tuple of finite terms for brevity. For example, a
formula A(x) stands for A(x1,--xj) and the quantifier Y= stands for ¥xl.--xk By a finite
set of formulas { A1, A2, -~ , Am } we mean a formula A1IAAZA---AAm.

We regard A{x) as a formula of first order logic in which a tuple = of individeal variables
occur free, where A is a predicate standing for a predicate symbol or & A-expression
AtAF(e)} of a formula F(t) of first order logic. Let K be a tuple of distinct predicate
symbols, K1,-- Kn and 9 a tuple of predicates, W1, Wn, where Ki and ¥i have the same
arity. By [WEK], representing [W1/K1,~ Wn/Kn] and usually abbrevialed [W], we mean a
substitution. We write A['W/K](x) for the result of replacing simultanecusly each occurrence
Ki in Aix) by Wi. And similarly, [At(W(t))] stands for [At.(WI(t)),-- At.(¥n(t))], and Vx.(
Kix) = Wix) ) stands for Vx.( Kl(x) = Wi(z) JA--AVx( Kn(x) = Ynix) ) (where V={ Ki(x)
= Wilz) ) means Ye{ Kilz) DWilx) ) AVl Kilz) © Pi(x) 1.

Definition [ Ascription schema .

Let K and V be tuples of distinet predicate symbols disjoint with each other (V may be
empty, but K must not). And let I' be a set of closed formulas of first order logic containing
all predicates in K and V. The ascription of K to W in I'TK,V] with varigble V is the

schema
FACKAYED, Y] A M (KenYie)), ¥l 2 ve( Kix) =Wi(x) ). - (1)

Here W and Y are tuples of predicates which have the same arity as the corresponding
predicates in K and V. We call the formula on the left side of this schema the ascribable

condition writing As(T K~%.Y/V).

MAt (K(eIAYT(E), Y] express the assumption that all the tuples that can be shown to have
a certain property K by reasoning from certain facts I' can also be shown to have a certain
property W, TIAt.(K(elhP(e)), Y] is, as far as K is concerned, equivalent to the result of
replacing —K by At (—K(t)A-%(t)). Namely ITAt.(K(th/P(t)), Y] express the assumption
that all the tuples that ean be shown not to have a property K by reasoning, can also be
shown nol to have a certain property W. When we can assume that both TIAt.(K(t)
AW(E))LY]) and IMTAt(K{th/¥{t)),Y] are true, (1) lets us conclude the formula on the right
gide, namely that K is equivalent to W.

Now, when the formula p follows from a set of formulas I' by a natural deduction system,
we write I' - p. Let Ty "{Kh~Wh} be Fp3* U { As(Ty " Kb=Wh Yh/Vh) 3 ¥x( Kh{z) = Wh(x)
'} (h = 1,2,) and Ty" be T. Let Ty* be T {Kh~Ph}, written T{K!~W1 ... Kh~Ph} If a



finite number n exists such that I'}* - p, we will write I' |-t~y .. ge~ye p and usually
abbreviate this as T |~ p.

Example 1. Let T bhe some relations ameng ‘life’, ‘'mammal' and 'human’ and a few
instances about ‘homoiothermal’. We want to know what ‘homoiothermal' is. Aseription
shows a candidate of the coneepts equivalent to 'homoiothermal’, I' may be

I' = I'NHomoiothermal]

= { ¥x.(Human{x) D Mammalix)} ,
¥x.(Mammalix) 2 Life(x)) ,
Ax.(—Human(x) S Mammal(x)) ,
Tx.{~Mammaliz) A Lifelx)) ,
Fyx.iHuman(x) A Homoiothermali(x}) ,
Jx.(Lifeix) A —Homoiothermal(x)} }.

First we check whether ‘'mammal’ ean be eguivalent to ‘homoiethermal’ or not, namely
check the ascription condition As(I",Homoiothermal—-Mammal).

TMix.{Homoiothermalix) A Mammal(x))] =

I Yxi{Humanix) 2 Mammal(x)) ,
Yx.(Mammal(x) 2 Life(x)} ,
Jx.{ " Humanix) A Mammal(x}) ,
Ix.(~Mammal(x) A Life(x)} ,
dx.{Human(x)
A (Homoiothermal(x) A Mammal(x)}) ,
Ix . (Lifelx)
A—(Homeiothermalix) A Mammal(x])) }

IAx (Homoiothermal(x) v Mammal(x))] =
{ -, Ix.{Human(x)
A (Homeiothermal(x) v Mammal(x))} ,
Ix.(Life(x)
A —i{Homolothermal(x) v Mammal(x)]} }

Clearly T | MAx.(Homoiothermal(x)AMammal(x))] A I'Ax.(Homoiothermal(x)yvMammal(x))],
50

I' U { As(THomoiothermal ~Mammal)
3 ¥x.(Homoiothermal(x) = Mammal(x)} }
I ¥x.(Homoiothermal(x) = Mammal(x)).

This shows that "homoiothermal’ may be ‘mammal’. And therefore we get

I'j~ ¥x(Homoiothermal(x) = Mammal(x))
A ¥x.(Humani(x) O Homoiothermal(x))



Ao Yx (Homoiothermal(x) O Life(x)).

Notice that these inferences cannot be derived by circumscription |5] (even formula
circumscription [6]).
Now if we add the axiom

Ix.( ~Homoiothermal(x) A Mammal(x))

then IM[Ax.(Homoiothermal(x) 3 Mammal(x))] is inconsistent, so Vx.(Homoiothermal(x) =
Mammal(x)) is nol a theorem of the extended theory I" ,where I' = TI' U {
Ix.(~ Homoiothermal(x)AMammal(x)) }. This shows that reasoning by ascription is non-

monotonic,

3.Model theory of ascription

Definition [ W-tending model in K wilh variable V |.

Let M(I) and N(T') be models of the sentence I We say M is a more W-tending model
than N in K with variable V, writing M Zg.wy N, if M and N have the same domain,
and if all other predicate symbolsnot in K,V have the same extensions in M and N, but the
extension of Ax.(K(x)AWx) in M includes its extension in N and the extension of
Ax(—K{x)A-W(xX)) in M includes its extension in N,

Definition [ most W-tending model in K with variable V).
A model M of I' is called most W-tending in K with variable V iff M’ Zg.gy M only if
M =g~.wy M (where by "M'=g-yyM " we mean " M’ 2 g-gy Mand M' Sg-py M "L

4,0n satisfiability of ascription

In this section we propose two consistency conditions which are sufficient conditions for
ascription to preserve consistency, and introduce a class of most T-tending model which
preserves thal any instance of ascription is true. When these conditions are satisfied, a
consistent T cannot contradict the result drawn by ascription. One of these is on using
aseription only once, called CCPA (consistency condition on parallel aseription), and the
other is on using it more thun once with the same T, called CCSA {consistency condition on

gequential aseription).

Definition [CCPPA]. By CCPA we mean the condition that W can be transformed into one
of the expressions of the following form: F, A (K(BAF(E) or At(K(t)wF(t)), where F is a
tuple of predicates in which no predicate gymbols in K,V occur.

Theorem 1 (satisfiability of parallel ascription). Let ITK,V] be consistent. When CCPA is

gatisfied, the following sentence is true;
it ITE V] FIMAa(KeARE), Y] A e (KeyP(e),Y] then MK, V] u {Ve( Kit) =
Wit) )} is consistent.



Theorem 2. When CCPA is satisfied, most W-tending model is called proper. Any instance
of the aseription in K to W of T with variable V is true in all the proper most W tending

model in K of I' with variable V.

Definition [CCSAl For some sequence of Ki,Vi ( i=1,-,n, n=2), by CCSA we mean the
condition that for all ij ( ij=1,-n, =] ) KiVi are digfeint to KjVj and for all k
(k=1,-n) Yk can be transformed into one of the expressions of the following form: Fk,
AUKK(EAFKE) or A(Kk(thyFk(t), where Fk is a tuple of predicates in which no predicate
symbols in Kk, Vk, - Kn,Vn occur.

Theorem 3 (=atizfiability of sequential ascription). Let I' be consistent. If TI[KiVi]
FITAE (K e) AW ), Vi) A A (Ki(ehyWiled), Yil ti=1,--,n, n=2) and CCSA are satisfied,
then I' U {vt.( Kl{e) = Wi(t) ) ¥e( Kn(t) = Wn(t) )} is consistent and I' [~ Wt
KIe) = WIE) ) A - AVe] Kn(t) = Wnlt) L

By Theorems 1 and 3, when CCPA or CCSA are satisfied we are assured of the existence
of a proper most W-tending model of K. Note that the result of theorem 1 can be applied to
circumseription. Lifschitz showed that circumscription preserves consistency when I' is a set
of almost universal formulas [3], which is a generalized class of separable formulas he
propnsed himself 12] and wniversal formulas proposed by Etherington[l]. This condition
guarantees the existence of a minimal model. Note that this condition is en I', while CCPA
{and CCSA} is on the predicates which ascription relativizes. But the couples of predicates
which are intended in [2] to be relativized by circumscription under separability eondition
gatisfy CCPA. From this standpoint, CCPA is a weaker condition than separability
condition. When CCPA (and CCSA) is satisfied, even with no minimal model, a proper most
W.tending model exists and circumseription preserves consistency.

5.What reasoning can mscription formalize?

In this section we will describe what reasoning aseription can formalize. As mentioned
above, ascription represents the flexible notion that the interpretation of a certain property
K will lic between the extremes of the two. First we give these extremes. They will be
useful in understanding the Mexibility of the properties of ascription. Then we describe two
types of reasoning, analogy and induction, which ascription is a form of. Ascription seems to
be characterized by its formalizing these reasoning especially from knowledge on individual
instances, namely described by formula with no variable terms. These reasoning is
important because they are closely related to human learning ability. Last, it is a natural
result, but we show that ascription is also a form of common sense reasoning.

5.1 Reasoning in the extremes, circumscription and inscription

The notion of our ascription involves that of predicate (parallel) circumseription proposed
by John McCarthy [5]. Indeed, under CCPA, any theorems of a theory with the predicale
circumscription are also theorems of our theory with the circumseription schema of

gseription. We show this.



We can derive two significant products from ascription. One product is predicate
eircumseription, which formalizes such conjectural reasoning as is based on the closed-world
assumption. Its model, called the most K,-tending model, corresponds to the minimal
model. The other is called inscription in this paper (indeed, both circumscription and
inscription are inecluded in formula circumscription, but we feel it is unsuitable to use the
same ferm for them because of their quite different nature), which formalizes such
conjectural reasoning as generalizes some concepis. But inscription seems to generalize too

strongly.

Let Qg, = {W|I'+ V= Wix) > Kix) ) A As(TK~¥) } and Q. = { ¥ | T + Vx( K(x)
2 Wiz) ) A As(TK~Y } where K, satisfy CCPA. Let K,,;, be conjunction of all elements
of Ok, and K.y be disjunction of all elements of Q.. i.e.

Kmin =AMW € Ok,
Kmax =V"uq" € Qg

We can prove K, € Qg, and Kppe € Qg Then we ascribe K to Ky or Kpax, we
obtain respectively Yx( K(x) = K. jn(x) } or Vx.{ Kix) = Kpae(x) ). Thus the two schemala
follow from I'NK~Kpin} and I'NK~Kqpax} respectively, namely,

Ve Wix) D Ki(x) ) A AsiPK~¥) D Ve K(z) D Wix)) e 2)
Ve Kix) D Wix) ) A AsiTE~W) D ¥ Wix) DK(= ) - (1

Now we assume that Yx( W(x) O Kix) ). Then Ve(K(t)AW(t) = W(k)). Therefore,
MAt(K(e) AW =1TP]. And since VE(K(t)/T(t) = K(t)), MAt.(Kith/¥(t)]=TK], which
is precisely the set of axioms I' and is true. Therefore, from the assumption and (2),

Ve (W(x) O Kix)) A IT¥] O vVx.(K(x) D ¥(x)). e (4)

This is the same schema that McCarthy proposed as predicate circumseription.
And similarly,

Vx.(Kix) 2 ¥ix)} A [MT¥] D Vx(¥ix) 2 Kix)). e (B)

We call (5) the inscription schema. Notice we can use either (4) or (5) on some K with
replacing W' by any predicate (if CCPA is satisfied, they preserve consistency).

Example 2. We can see the various examples on circumseription in [5]. One interesting
example on inseription can be seen in the field of machine learning. Michalski proposed
selective generalization rules [4], which consists of ten rules; the dropping condition rule, the
adding alternafives rules, ete. If we can properly change these rules into the closed formulas
of first arder logic, these rules will be the theorems of theory with inseription schema. Here
we explain it partly.

Most of selective generalization rules are essentially described as follows,



From ¥={ ©(=) O K=z} ) A Vel dix) O Tx) ),
infer V= ¥ix) 2 Ki=) ).

Now let T be { ¥ui{ ®ix) O Kix) ), Vx.( ®{x) D ¥ix) } }, then ITK] = ¥=x.( Kix} 2 Kix)
W) IATIAE (Kt P(e))). Therefore,

{ V. ®(x) O Kix) ), V= $(x) 2 Pix) } }
[~ ¥ Wix) D K(x} ).

5.2, Analogical inference

Aseription is a form of a certain class of analogy. According to the notion of aseription,
analogy is considered as follows. When a resembles b, where a and b are tuples of entities,
we consider a and b to have some common property W, And now let a  have some property
K relevant to W in that K and ¥ satisfy the asceribuble condilion. Then we can infer that b
has alsv the pruperty K_ Here, to satisfy the ascribable condition means at least that we do
not know the fact that b does not have the property K.

We do not know of research on formalizing analogical inference which diseussed the
relation between resemblance between two instances and the property we want to ascribe
{or deny) to the one of the instances by analogy. But this relation should not be ignored.
Two properties like K and W must satisfy some conditions. For example, a man is like a
firework in that both have short lives. Yet we can never infer that a firework can love
someone like a man. If the condition, that whatever we know to be capable of loving
someone has a short life, is satisfied, then the inference that a firework can love someone
like 2 man may be justified. And if a further condition, that whatever we know to be
incapable of loving someone has a long life or is immortal, is salisfied, then it may be even
more secure. The aseribable condition require that these two conditions are satisfied.

Example 3. Let I' be "Hector is an organism (predicate, Life) and would be sad if he
were burnt, and if Brutus were burnt, he would be sad,tooc.” Namely,

I'={Burni{hector) 28ad(hector), Life(hector],
Burnt(brutus) 2Sad(brutlus) .

Clearly [' As(I'Life~Ax.(Burnt(x)2Sadix)}) , therefore
V. ((Burnt{x) DSad{x)) = Life(x)).
This says that whoever is sad when burnt is an organism_ Se
I |~ Lifelbrutus).
Namely, this reasoning, "If Hector and Brutus are burnt then both are sad and in this

point Hector and Brutus are like each other, now Hector is an organism so Brutus may also
be s0”, shows itself as a kind of analogy.



5.4. Inductive inference
Readers may have already noticed that in a theory with the ascription schema it is

possible to reason inductively.
Example 4. Let I' consist of some instances.

I' = { Ruddy-faced(matsumoto-san oneday),
Ruddy-faced(matsumoto-san,today),
Coldioneday), Colditoday) }

Then T - As(l',Cold~Ax. Ruddy-faced{matsumoto-san,x)), therefore
I' |~ ¥x.( Cold(x) = Ruddy-faced(matsumoto-san,x) ).

This means that if the system knows it is cold, then it guesses Matsumoto-san will be
ruddy-foced, and if he is ruddy-faced, then it expects a cold day. Moreover, in this example,
we add the new predicate ‘all’ which express the property of the whole domain, as McCarthy
proposed [5], and let the new extended theory be I". Namely I" = I' U {¥x.all(x)}. And then I"
FAs(lall~Ax Ruddy-faced{matsumoto-san_x)), so

I" |~ ¥x.( all{x) = Ruddy-faced(matsumoto-san,x) ),

and therefore
I" |- ¥x.( Ruddy-faced{matsumoto-san,x) ).

This means thatl if the system does not know of a day when he was not ruddy-faced, then it
may guess that he is always ruddy-faced.

5.4 Common Sense Heasoning
Ascription with variables can be a form of common sense reasoning as well as

cireumseription.

Example 5. MecCarthy proposed a predicate ‘ab’ [6], meaning abnormality, to handle
common sense reasoning. Here "Abe' is used in a similar sense. Let I' be as follows, We

want to know whether a bird p-suke can fly or not.

I'={ ¥x.(Bird(x} A —Ab1(x) 2 Flyix}),
Yx.(Penguinix) 2 Abj(x)),
¥x.(Penguin(x) A —Abg(x) 2 —Fly(x)),
Bird(p-suke) }

Now we assume that P-suke is as normal as possible. Then we decide what iz abnormal and

assume its minimality,



AsiMAby Fiv], Aby~Penguin,
Ax.(Bird{x)™ = Penguini{x)Fly(x)VFly)
e={ Vx(Bird(x) A —(Abi(x)A\Penguinix))
2 (Bird{x}"\— Penguin(x)y/Fly(x))) ,
¥x (Penguinix) 2 (Abyix)APenguin(x))) ,
Va.(Penguinix) A —Aba(x)
5 = (Birdix)A - Penguin(x)Fly(x)) ,
Bird(p-sule) }
W Yx (Bird(x) A o (Ab1(xbhPenguinix))
= (Bird(x)A - Penguin{xhFly(x))
Wy (Penguinix) = {Abpix)yPenguinix))} ,

It is easy to see that I' FAs( [TAby,Fly] , Aby~Penguin , Ax. [(Bird(x)" = Penguin(x)¥Fly ).
And similarly, T' FAs( T{Penguin] , Penguin~false ). Therefore, by theorem 3,

I'{Aby ~Penguin, Penguin—~false}

- ¥x(Abj(x)=Penguini(x)) A ¥x.~Penguin(x)
I |~ ¥« —Aby(x)

I' |- Flylp-suke).

6.Conclusion and remarks

As deseribed above, ascription uniformly formalizes diverse and flexible conjectural
reasoning performed by humans. But ,of course, there still remain more difficult problems
on its use. How do we, humans, use these various types of reasoning properly?  Our
conclusions will often contradiet each other depending on how we interpret our knowledge
about a certain property K; in a narrow sense, as in circumscription, or in a broad sense, as
in analogy. This problem is deeply relevant to human preference and lies beyond the seope
of our lagic. We have not considered this much, but it seems that when we have less
instances on K, we prefer a narrow interpretation, and that when we have gufficient
instances on K, we prefer a broad interpretation. Considered from the viewpoint of
ascription, this seems to correspond more or less to the situation that there are, roughly
speaking, so many various dubious candidates for W to K in the former case and indeed it
will be difficult to choose an adequate W, but Kmin ic one of the well-grounded candidates.
In the latter case, because we get more information on K, there are fewer ecandidates so it
seems to be easier to choose. Anyway, an adequate ¥ will usually be given in a moderate
sense, i.e. neither in the narrowest nor in the broadest sense. We believe that ascription is &
general form which can cover any proper interpretation of K between one extreme and

another.
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