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ABSTRACT

The TRS (term rewriting system) Working Group of ICOT has been studying applications of
TRSs to the intelligent programming system. As a result, we have implemented a TRS generator
called Metis, an experimental tool with the many functions required for such a system. This
paper describes the features of Metis and several experiments with it.

1. Introduction

A set of rewrite rules is called a term rewriting system or TRS. The theory of TRSs has a wide
variety of both theoretical and practical applications. It provides models for abstract data types,
operational semantics for functional programming languages, and inference engines for antomated
theorem proving with equality.

The intelligent programming system i8 an important research topic of Japan's Fifth Ceneration
Camputer System (FGCS) Project. A lot of evidence suggests that the study of TRSe will yield
key technologies for the intelligent programming system, in particular for specification, verifica-
tion, and synthesis of programs. The Institute for New Generation Computer Technology (ICOT)
organised the TRS Working Group in 1986 to study TRSs theoretically, and for application to
the intelligent programming system.

Metis i the first result of the activity of the working group. It generates a complete TRS from
a set of equations automatically, semi-antomatically, or interactively. It is also an experimental
tool with the various functions needed for the study of THSs.

The kerne! function of Metis is the so-called Knuth-Bendix completion procedure. Significantly
improved with better capabilities and operability by the incorporation of a lot of facilities. For
example, Metis can provide us with several kinds of ordering methods of terms, but the user
can orient an equation with little knowledge of the ordering methods and obtain an appropriate
rewrite rule that doss not violate termination of the TRS. If the equation cannot be oriented to
either direction, Metis can offer several kinds of recipes. In this case, the user is notified and he



can select a suitable recipe. Metis can manipulate inequations as well as equations and it provides
special handling of associative-commutative operators in the completion procedure,

Section 2 describes the basic concept of the TRS. Section 3 introduces the features of Metis in
the general framework, and in Section 4, several concrete examples illustrate how Metis actually
works.

2. Preliminaries

In this section, we will introduce the terminology and netation in this paper and survey well-
known properties of TRSs.

We will deal with fnite sequences of the following two kinds of symbols (and parentheses and
commas for ease of reading):

(1) A Bnite set F of function symbols, and

(2} A denumerable set V of vaniablea.

We assume the reader is familiar with the concepts of terms, ground lermas, oceurrences, sublerma,
subsiitutions, unifiers, and most general unifiers. In what follows, we will denote the set of all
terms constructed from F and V by T(F,V), and the set of all the ground terms constructed
from F by T{F). The notation t(s] represents a term with s as its subterm. In this context, [s]
represents a certain occurrence of s in t{s]. Thus, ¢{s'] denotes the term obtained by replacing
the occurrence of 2 in ¢[s] with s'. Similarly, we will use the notation tfsy,... y3n| to represent
a term with s4,..., 3, subterms, and t[s{,...,s}| for the term obtained by replacing each s; in
t(s1,..., 3] with s!. Substituticns are denoted by the gresk letter #, possibly with subseripta and
Frimes,

Definition 2.1

A term rewriting system | TRS) is a finite set of pairs [ — r of terms. An element | — r of 2 TRS
is called a rewrite rule. ]

Definition 2.2

Let R be 2 TRS. A term ¢ is said to be reduced to another term u with respect to R, if there exist
a rewrite rule | — r and a substitution & auch that o[f(l)] = ¢ and ¢j#(r)| = u, denoted by t = u

We dencte the reflexive transitive closure of = by 5. ||

Definition 2.3

Let R be a TRS. Two terms u and v are said to be convergent (with respect to R) if there exists
a term ¢ such that u 2 ¢ and v = ¢. A TRS is said to be confluent if ¢; and #; are convergent
for any ¢ and for any two reductions ¢t = ¢; and t = t5. ]



Detinition 2.4

A TRS is said to terminafe if there exists no infinite reduction ¢y = o = - = ¢, =% --- I

Definition 2.5

A term ¢ is said to be frreducible if there exists no term u such that ¢ = w. An irreducible term
a such that £ = s is called an srreducible form of ¢ (with respect to R) and denoted by ¢]. |

If & is a terminating TRS, then every term ¢ has an irreducible form ¢]. Moreover, R is confluent
if and only if the irreducible form t] is unique. In this case, the TR3 R is said to be complete
and the irreducible form £ is called the normal form of £.

Intuitively, a reduction step represents a computation step. Therefore, termination of a TR3
means that every computation process finally stops and a certain resuit (ie. an irreducible
form) is obtained, while confluence of a TRS means that the result is unique. For this reasom,
eompleteness playe an important role in the study of TRSs (viewed as computation mechanismas)
and the normal form of a term is sometimes called the value of the term.

Historically, however, the concept of THS appeared as a decision procedure of word problems of
universal algebra, where the completeness is very significant as well, becaunse the decidability of
the word problems depend on completeneas of the TRS obtained by converting equational axioms
to rewrite riles.

Definition 2.6

An equational theory is a set of pairs t; = £ of terms satisfying the following conditions. {We
use the symbol = for this purpose, and the symbol = is taken to mean syntactical identity in this
paper.)

(1) #=t for all terms ¢,

(2) If ty = tg, then t7 = {;.

(3) If &y == tg, tg = tq, then t; = ¢,

(4) If ¢y &= t5, then 8(¢;) = #{t3) for any substitution 4.

(5) If ty = t5, then s[t;] = s]ta]. [I

Any set E of pairs | = r of terma can be extended to an equational theory by considering the
closure T{E) of E with respect to the above conditions (1)-(5). In other words, the equational
theory T(E) is the least congruence including E. The set E is called an (equational) aziom system
of the equational theory T(E) and an element of £ is called an amom.

The word problem in an equational theory T involves the determination of whether ¢; = t3 for
two arbitrary terms ¢, and ¢;. Given an équational theory T, suppose that there exists a complete



TRS such that ¢; =~ t3 f and only if ¢;, = t2[ for any two terms ¢; and t3. Obwviously, such a
THRS can be viewed as an algorithm to solve the word problem of T'. Knuth and Bendix devised
a mechanical procedure to convert an axiom system E to a complete TRS which salves the word
problems of T(E) [Knuth 70, Huet 81].

Before introducing the procedure, let us define critical pairs.

Definition 2.7

Let Iy — r; and [; — rg be rewriting rules and s be a non-variable subterm of I3 such that [
and s have a most general unifier §. Let [y = ¢[s]. The term #{l3) is called the superposition of [;
on s in {3. The pair #(c[r|) = #(rz)} is called a critical pair between [} — r; and I; — 5. ||

We are now ready to introduce the Knuth-Bendix completion procedure.

Procedure 2.8 Knuth and Bendix's completion

Step 0: Set E to be the inicially given axiom system. Set R to be empty. Co to Step L
Step 1: If E is empty, the current value of R is the desired TRS. Otherwise, go to Step 2.

Step 2: Remove a pair ¢t = u from E. If the rule ¢ — u or u — ¢ can be added to R without
viclating termination, acquire it as a new rule and go to Step 3. Otherwise, stop; the
procedure is unsuccesaful.

Step 3: Remowve all the rewrite rulea | — r from R such that either { or r i3 reducible by the
acquired new rule and append | = r to E instead. Go to Step 4.

Step 4: Append the acquired rule to RB. Construct all the critical pairs between the acquired
rule and all the rules in R (including the acquired rule itself) and append them to E. For
each equation ¢t = u in F, find irreducible forms ¢| and u] with respect to R, and set
{tl=ul |t uj,t=uc E } to be the new E. Go to Step 1.

If the procedure terminates successfully, the resulting R 5 a complete TRS to solve the word
problem of T'{E) for the initially given E.

3. Term rewriting system generator Metis

Metis is a TRS generator based on the completion procedure described in the previous section. It
has a lot of functions required before, during, and after generation of TRSs for a very user-friendly
aystem. In this section, we will describe ‘several characteristic features of Matis,



3.1 Well-founded ordering of terms

Az can be seen from the above description, a key point of the completion procedure is enauring
termination of a TRS. The standard way to assure termination of a system is to introduce a well-
founded order on the objects of the system and show that the operations in the system always
reduce the objects with respect to the order.

Weil-founded orders < on T (F, V') with the following properties are usually used on TRSs.
(1) If £y = tg, then 8{t,) = #{ts) for any substitution §.
(2} Tf £y = £q, then alty] < alta].

Property (1) is called stability and (2) monotonicity. If there is a monotonic and stable well-
founded order on T(F,V) such that [ > r for every rule | — r, it is obvious that the TRS
terminates. There ia a lot of research for such ordering methods, such as well-known Dershowits’s
recursive path ordering [Dershowits 82|. The original version of the recursive path ordering is
defined on the set T(F) of ground terms. Here, however, we extend the definition on the set
T[F, V) of all the terms.

Definition 3.1 Recursive path ordering

Let < be a partial order on the set of function symbols F. The recursive path ordering < of
T(F,V) is then defined recursively as follows:

(1) For a variable v, there are no terms ¢ such thae ¢ < v.

(2) For a non-variable term ¢ = g(t,,---,¢,) and a term s, 2 <t if and only if
(2-1) there exists  such that s = ¢t; or

{2-2) 2= f(21,---,3m) and s; < ¢ for all  and

(2-2-1) f<gor

(2-2-2) f = gand (51, -, am) % (t1, -~ tn), where % is the multi-set ordering [Dershowits
79] induced by <. |}

In (2-2-2) of the above definition, adoption of the multi-set ordering is not always necessary. If
the function symbols f is varyadic (i.e. takes an arbitrary number of arguments) and the order
of the arguments does not affect the value of the function (for example, ¥ and [] representing
finite sum and product), the multi-set ordering is probably the most reasonable. However, if the
function symbol f has a fixed arity, the lexicographic ordering is more suitable in many cases,
There may be cases where the kachinuki ordering |Sakai 85 is the most appropriate.

Metis can handle any of these three versions of the recursive path ordering, namely multi-set,
lexicographic, and kachinuki, The user ¢an employ arbitrary combinations of them, function by



function. As long as the lexicographic order is applied only to function symbols of fixed arity,
any combination defines a monoctone and stable well-founded order on T (F, V). Maoreover, if the
underlying order < on F is total and the lexicographic or the kachinuki ordering are employed
for any function symbol, then it is a total ordering on the limited domain T (F} of the ground
terms, a very impeortant property as we shall see later.

Metis converts axioms to rewrite rules { — r such that [ > r. Moreover, Metis allows the user to
define the underlying partial order < on F incrementally during the completion procedure. If the
user knows little about the above ordering method, Metis can suggest what ordering is needed
on F in order to orient an equation to a certain direction. Therefore, the user just has to decide
which direction an equaticn should be oriented to, when both are possible.

3.2 Associative and commutative operators

The weakest point of the Knuth-Bendix completion procedure is the existence of equations that
cannot be converted to rules without violating the termination of the TRS. The most typical
example of such axioms is the commutative laws, such as A + B = B+ A In fact, encounter
with such an equation causes unsuccessful stop in Step 2 of the procedure. Metis has several
countermeasures to deal with this sitnation. The general measures will be described later.

However, as we can easily imagine, the commutativity of operators is the main source of the
above failure. In many cases, commutative operators are also associative. Metis has a specific
countermeasure effective only against the commutative laws combined with the associativa laws
of the same operators. A function symbol is called an AC-operator if it satisfies the associative
and the commutative law. Metis is equipped with an algorithm of special unification for AC-
operators (called AC-unification) devised by Fages [Fages 84| and can execute the AC-completion
procedure based on Peterson and Stickel's idea [Peterson 81).

Faor example, if Metis is told that + is an AC-operator, then the axioms A + B = F+ 4 and
(A4 B) +C =~ A+ (B + C) are acquired implicitly and AC-unification and AC-reduction are
activated for +. Thus, Metis can generate 0 + ¥ + (=(X + ¥)) = (=X) + 0 as a critical pair
between the same two rules [—-X) + X — 0 by AC-unification, since

0+¥ +(~(X+¥)) & (-X) + X+ ¥ +(~(X +¥)) = (-X) +0.

Moreover, if it has the rule 0+ A — A, the above critical pair is reduced to ¥ +{—-(X+VY)) = -X
by AC-reduction.

As shown in the above example, an AC-operator is supposed to be a binary function symbel
and Metis allows us to use infix notation for binary function symbols. Inside Metis, however, an
AC-operator is treated as if it were varyadic. For example, the term ¢, + - .- + ¢, is converted to
+{t1y..., t3) with a varyadic function symbol +, in whatever order the operator + is applied to
the arguments. The muiti-set ordering is supposed to be the ordering method for AC-aperators
unless otherwise specified, since the above treatment makes it the most reasonable ordering as
we mentioned before.



1.3 Orientation-free rules and S—u:tra.teg‘y

There sxist many equations other than commutative laws which cannot be converted to termi-
nating rules. The approach of incorporating special unification algorithms for such equations has
been studied systematically by Jouannaud and Kirchner [Jouannaud 841

A simple trick to handle non-orientable equations is introducing a new function symbal. For
example, if the equation A% = 4 x A cannot be oriented to either direction, a new function symbol
square is introdeced and the problematic equation is divided to the two equations 4% = aquare( A}
and Ax A = square(A). Thus, Metis can continue the completion procedure, since both equations
can be oriented left to right. This technique seems to be too simple, but the effect is worth
implementation [Knuth T0, Sakai 84].

A more radical remedy for such equations is adoption of orientation-free rules. This remady is
called the unfailing completion procedure [Hsiang 85, Bachmair B6]. Metis is equipped with an
extended version of the unfailing completion procedure called S-strategy devised by Hsiang and
Rusinowitch |Hsiang 85|. The S-strategy has enabled Metis to manipulate not only non-orientable
equations, but also inequational axioms as well as equational axioms.

The S-strategy can be viewed aa a kind of refutational theorem proving technique for systems
of equations and inequaticns. Before introducing the S-strategy, we will extend the concepts of
reduction and critical pairs and introduce the concept of extended narrowing and subsumption.
Let us fix a monotonic and stable well-founded order < on T(F, V).

Definiticn 3.2

A term ¢ is 2aid to be reduced to another term u by an equation { = r (or r =2 {), if t > u and there
exists a substitution # such that ¢[8({)] = t and c[#(r)] = u. This reduction is called extended

reduction by an equaiion) and denoted alse by ¢ = u. JJ

Definition 3.3

Let Iy = ry (or ry = ;) and Iy = rg (or ry = I3} be equations Let s be a non-variable subterm of i
such that [, and s have a most general anifier 6. Let Iy = ¢[s]. If #(1,) 2 #(ry) and 8(lz) £ 8(r2),
then the pair #{c[r1|) = #(r;) is called an eztended critical pair between I} ~ ry (or ry, = I,) and

Iz = ry (or ry = by). |

If every rule I — r has the property that { = r, the above definitions are natural extensions of
the ordinary reduction by a rule and the ordinary critical pairs between rules. For example, if
[ r, the condition thai ¢ = u in reducing ¢ to u weakens the rewrite power of the equation [ = r
exactly to the same level as that of the rule [ — r, since < is stable and monotonic, Similarly, if
Iy = ry and Iz > ry, the set of all extended critical pairs between equations l; = r; and lg = ry is
equal to the set of all critical pairs between rules [; — ry and Iz — rg.

_'F_



Definition 3.4

Let {j = »r, {w ri = ;) be an equation and I3 % rz2 {or r2 # [z} be an inequation. Let s be
a mon-variable subterm of Iz such that I, and s have a most general unifer #. Let Iy = ¢[s]. If
#(1)) # 8(ry), then the inequation #{e|r;|) # #(rz) is said to be narrowed from I3 # ry [or rg 2 [3])

using iy =3 (orry = 4). 1
Definition 3.5

An eguation ¢ =~ u is said to be subsumed by other equations I} =r; {orr =1{;), ..., L. = r, {or
Fro == L,), if there exists a substitution § such that <[#{l,),...,#{l.)] = t and ¢[f(ry), ..., O[ra)] = u.
An inequation ¢ 2 u is said to be subsumed by another inequation | 2 r {or r 2 {), if there exdists
a substitution § such that 8{]) = ¢ and #(r) = u. |}

Unfailing completion is 2 modified wersion of ordinary completion employing extended eritical
pairs and extended reduction instead of the ordinary ones; and the S-strategy can be viewad as
the unfailing completion with refutation by extended narrowing.

Procedure 3.6 S-strategy

Suppose that a system of equational and inequational axioms is given together with an equation
or inequation to be solved (called the target formula).

Step 0: Set E to be the given axiom system plus the negation of the target formula (Skolemized
if necessary}. Set R to be empty. Go to Step 1.

Step 1: If E is"empty, the current value of R is a complete set of equations and imequations
deduced from the axioms and the negation of the target formula, in the sense that neither
new equnations nor new inequations can be derived. Since R is also comsistent, the target
formula cannot be deduced from the axioms. If E is not empty, go to Step 2.

Step 2: Remove an squation ¢ = u or inequation ¢t 2 u [:all.ed the ruling t'urmula] frem E. Go
to Step 3.

Step 3: If the ruling formula is an equation, move all the equations | = r and all the inequations
[ # r from R to E such that either | or r is reducible by the ruling formula and remove

all the equations subsumed by the ruling formula from R. If the ruling formula is an
inequation, remove all the inequations subaumed by the ruling formula from R. Go to Step

4.

Etep 4: ﬁ.pPend the ruli.ng formula to B. Construct all the extended eritical pairs and all the
narrowed inequations between the ruling formula and all the equations and inequations in
R. Append them te E. For sach equa.tian t e uor hlequa.ﬁl:m t 2 uin E, find irreducible
forms t| and u] with respect to equations in R. If there is an inequation ¢ 3 u such that
¢t| and u] are unifiable, then stop. A contradiction is detected and, therefore, the target
formula is deduced from the origihally given axiom system. Otherwise, let the new £ be



the set of equations ¢ = u| such that #] # u) not subsurmed by any equation in R and
inequationa ¢{ # u] not subsumed by any inequation in R. Go to Step 1. ]

The unfailing completion differs from the S-strategy only in that it does mot treat nen-ground
inequations. If the ordering < is total on the set T {F) of all the ground terms, the S-atrategy is
logically cemplete and, therefore, so is the unfailing compietion.

4. Experiments

Let us begin with purely algebraic examples. The first example is the word problem of ring
theory.

Example 4.1

Metis was given an AC-operator + and a binary operator », (not AC in general) with the following
axioms:

(1jo+4=4

(2) (~A)+4=0

(3) (A« B)sC=A4+(Bs+C)
(4) (A+ B}« C=A+C+BaC
(5) A+(B+C)=AsB+AsC

We made Metis run the completion procedure in antomatic mode. Metis obtained (A=B)sC =
As(B+C)and 0+ A = A as the first and the second ruling formula and converted them to
the rules (A+ B) s C — A« (B () and 0+ A — A, respectively. The third ruling formula
(—4) + A = 0 could be criented left to right by the recursive path ardering, if 0 < + or 0 < —.
Therefore, Metis asked the user which should be introduced.

[METIS] -» Kk
©< Knuth - Bendix (autematie sxecutien) >>
Hew Rule im rl: (A*B}*C =-> A=(BeC)
Hew Rule im ra: o+A -> A

You cam orient -A+A -> O by the following.
[1] 0O << +
[2] 0 << -
else exit

After selecting 0 < +, we made Metia eontinue the procadure.



select no 7 1
[ 0 €< + ip asserted. ]

Hew Rule im Td: -A+A -> 0
Hew Rule im Td: -(=-4) =-> A
Hew Rule is rh: =(0) -> 0

Which do you want to oriezt 7
[1]  A*(B+C) => A*B+A=C
[2]  AsB+A=C => Ax(B+C)
elae exit

The sixth ruling formula was the left distributive law and it could be oriented to either direction
depending on the orderings on function symbols. Since we instructed Metis to convert it to the
rmle A # {_E o ﬂ'] — A B+ A, the system auntematically introduced + < — as the ordering
on function symbals.

gelect ne 7 1
[ + < & is asserted. ]

New Hule im h: A= (B4C) -> A*B+A=C
Hew Rule is T: (A*B)wQ =-> AwC+Bsi
lew Rule ia rB: A+ -{B+A) -» -BHB

{ + €< = ig asserted. ]

The eighth ruling formula can be converted to the rule 4 + (=[5 + A)}) = =8 if and only if
+ < —. S0 Metis introduces the ordering without interaction.

Wew Rule is rid: -(A+{-B)) -= B+(-A)
Hew Rule is riQ: -{A+B) -> -A+(-B)
DELETE B
DELETE re
DELETE 9
New Rule im rll: AxQ+A*B =-> A+B
Hew Rule i= rl2: A0 -> 0
DELETE ril
DELETE rils
New Hule is rld: O*A+B=A => Bsi
New Rule is rid: Qsg => 0
DELETE rld
DELETE ris
Kew Rule ia riE: {-A)=B+A*E -> 0

Vhich do you want to orient ¥



[1] (-A)*B =-> -A+B
[z2] -AsBE -» (-A)+H
else exit

gelect mo 7 1

[ - << » ig amserted. ]

Hew Rule is ri6: (-A)=B -> =-A+H
DELETE ris

DELETE riE*

Hew Rule ia TiT: A*{-B)+A%B -> 0O
Hew Rule is rid: A={-B) -> -A+B
DELETE TiT

DELETE TiTs

Kouth = Bendix terminated.
Your system is [ COMPLETE ]

The procedure terminated successfully. The following is the resulting complete TRS for the word
problem of rings.

[METIS] -> list
<< gtate listing >>»

“ring"

operators:
+ / AC ( multiset ordering )
0/
- /1
* /2 ( left to right lexicographic ordering )

orderinga:
0 € "P £ % =
LIs L o "'.",—
+,0 < "= £ ¥

+.5,0 < wan

equations:
No equations.

rules:
ri: {A+B)+C =-> As«(B=C)
rd: O+A ~=-> &



rle: A+O+E  -> A+D

r3: =A+A => O

rie: A+(-B)+B -> A+0

Td: =(=A) => A

rs: -{0) ->» 0O

ré: A=(B+C) => A*B+AsC
T (A+B)=C -> A=C+HsC
rld: -(A+B} ~-> -A+(-B)
rid: A=) -> Q

rld: G=p -> @

Ti6: (-A)*B =-> -AsB

ria: Ax(-B) -> =AsB

Huet and Hullot developed a method to prove inductive theorems without explicit induction
[Huet 82| uaing a modified version of the Knuth-Bendix completion procedure. Their method is
called inductionless induction and ia effective for many theorems which uwsually require explicit
induction.

In order to use the method, ground terms have te be classified into two categories, namely,
constructor terms which are always irreducible and constructed only of special function symbols
called constructors, and non-consiructor ferme which are always reducible and include a function
symbol other than constructors. To prove an inductive theorem, we add the statement as an
axiom and execute the completion procedure. The staternent is an inductive theorem if the
process succeeds to completion withont yielding any rules to rewrite constructor terms.

Metis was given an ordinary definition of the append operation for two lists and two different
definitions of the reverse operation of a list.

[METIS] -» list Tule
<< state listing >>

=== append & reverse ---"
Tules:
Ti: append([1.4) => A [e3]
r2: rev({[1.A) =-> A [e5]
3: reverse([]) -> [I [e1]
rd: append([A|B],C) -> [Alappend(B,C)] [ed]
r5: rav([A|B].0) -> rev(B, [AlIC]) [e8]
8 reverse ([A|B]) -> append(reverse(B),[A]) [=2]



If we define [__| | (¢ons) and || (ndl) as the constructors, then the above conditions are satisfied,
We added an equation rev(A, [l) = reverse{A) and had Metis execute the completion procedure.

[METIS] -> kB iNTERACTIVE

<< ¥nuth - Bendix (interactive execution) >>

Current ruling formula [ CAN ] be oriented.
P eT: reverse(A) =(«3)= wey(i,K []1) Ee g
Which do you want to oriemt 7
[1] reverse(A) -> rev(i, [])
[2] reverse(A) <- rev(A,[l)
else exit
¥hich 7 1
[ rev << reverse is asserted. ]

Current ruling formula is [ ORIENTED ]

New Rule is T reverse(A) =-> rev(A,[])
DELETE r3
DELETE  42]

Current ruling formula [ CAN ] be oriented.
e eB: rev(A,[B]) =(<*)= append(rev(a, [1),[B]) >3
Which de you want to eorienmt 7
[1]  zev(A,[B]) -> append(rev{A,[]1),[B])
[2]  rev(a,[B]) <- append(rev(a, [1),[B])
else exit
Which T 2
[ rev << append is asserted. ]

Current Tuling formula is [ ORIENTED ] .
Hew Rule is r8: append (rev(A, [17,[B]) -> =xev{A,[E])

Current ruling formula is [ ORIENTED ] .
Hew Rule is ra: append(rev(A, [B]),[C]} -> =xev{A, [B,C])

Current ruling formula ie [ ORIENTED ] .
<L el0: append(rev(A,[B,Cc]),[D]} =>= rev(A,[B,C,D]) EEES S

Since the current and the former ruling formulas suggested that a new lemma

append(rev(A, B), C) = rev(A, append( B, C))

—_ 1% —



would be useful, we added it.

[METIS/KB] -> mew 1EMMA
<< jintroduce a new lemma »>

Lemma > np‘pendfru\r(h.B},C:l - rl?[.ﬂ,lpp!ndfﬂ.{:}}.

Current ruling formula ia [ ORIENTED ]

Hew Rule is Ti0: append {rev(A,B} , €} -> rev(A, append(B,C})
DELETE 8
DELETE s

Kouth = Bendix is terminated.
Your system is [ COMPLETE ].

The completion terminated and, therefore, both the target statement and the lemma inserted on
the way were proved to be inductive theorems.

Several examples were taken from the theory of A-calculus and combinators [Hindley 86, Baren-
dregt 84]. In the theory of combinators, the combinator K = AXY. X and 8 = AXY 2, X «
Z# (¥ « Z) {as usual we assume that symbols ¢ standing for application of functions are left
associative) are called basic combinators because all the A-terms without free wvariables can be
constructed from S and K only.

Example 4.2

It is well-known that the identity I = AX. X is represented by S*H*K. Let Metis try to find the
identity. Metis was given thetwo axioms K+ X ¢ Y = X and S« X+ ¥+ Z = X« 2+ (V + T}
for K and 5. The problem can be expressed as 3MVX [+ X = X, Metis converted its negation to
Skolemized form A + $1(A) # $1(A4) ($1 is the so-called Skolem function).

[METIS] -> proVE eeTRATEGY TERMINAL
<< prove formulas by S-strategy >>

Foermula > some(I,all(X, I+X = X )).

Try to prove formula : A* $1(A) =/= $i(A)
Enter S-strategy...

Current ruling fermula is [ IKEQUATION ]
Hew Rule is rl: A= $1(A) <=/-» $1(A)

Current ruling formula is [ ORIENWTED ] .



New Rule is Tra: k«h#H -> A

Current ruling formula is [ INEQUATION ] .
Hew Rule im T3: A <=/=> $1(k+A)

Current ruling formula is [ NOT ] orientable.
New Rule iam d: gxA=Hs( <-> AsCa(BaC)

Current ruling formula is [ ORIENTED ] .
Hlew Rule is 5: s*kejsB -> B

eld: $1(azk+A) =/= $1{a=kep) [z5/rl] is a ceontradictiom.
Then [ PROVED J.

The first ruling formula was the target formula A » $1{A) # $1{A) and the second was the axiom
for IL, which waa oriented left to right. The third formula was an extended narrowing from the
first using the second, since A = K+ A«$1(K + A) # $1(K = A). The fourth was the axiom for 8
which could not be oriented. The fifth was an extended critical pair between the fourth and the
second, since S« K e A+ B =K+ Ba(d+ B)= B. Using this, a contradictory narrowing was
obtained from the first ruling formula. By examining this process, we easily find ail terms of the

form S+« K = A are equal to the identity function, and S = K = K is merely an instance of such
Lerme,

Example 4.3

Next, we made Metis try to prove the fixed-point theorem, i.e. that there exists a fixed-point for
any combinator, with the existence of the combinators B = AXY Z. X + (¥ + Z) of composition
of functions and M = AX. X » X of sellapplication, which are defined by B = S+ [K+5)+ K
and M = S+Is1 Metls was given the axioms Ba X s V+ Z = X+ (V2 Z)and M+ X = X» X,
The theorem can be expressed as YFIP F+ P =P,

[METIS] -> list all
<< ptate liating >>
operatora!:
* / 2 ( lexicographic ordering left to right )
bSO
m/ O

orderings:
Heo erderings

— 15 —



equationa:

el: m*d = A*A [axiom]

e2: beA=BeC = A*{B=*C) [axiom]
rules:

o rules.

[METIS] -> prove sstrategy terminal
<< prove egquatioms by S-atrategy >»

Equation > all(F,some(P, F#P = P ]).

Try to prove eguatiom : §i*A =/= A
Enter S-astrategy...

Current ruling formula is [ IMEQUATION ] .
Hew Rule im ri: $ish <-/-> A

Current ruling formula is [ WOT ] erientable.
cLg el: m*A = Awd oo e

Since the above ruling formula could not be oriented, we let Metis introduce a new function
symbol 2 and rewrite both A+ A and M+ 4 to 5[ A). Acquisition of the new function symbol and

arientation of new equations was done interactively as follows:

[METIS/PROVE/S-STRA] -* new funciiem
<< introduce a mew function >>
Operator?s
[ @3: m*=A = s(A) (exiom) is asserted. ]
[ ed: A*A = a(A) (axiom) is asserted. ]

Current ruling formula [ CAN ] be oriented.
CeLL e4: AsA ={<)= g(A) 333>
[METIS/PROVE/S=STRA] => muggestion current
<< puggestion for ordering >>
Which do you want to orient 7

[1] A=A => a(A)

[2] Asa <= a(A)

elae exit
Which 7 1
[ 8 €< * ig asserted. ]
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Current ruling formula is [ ORIENTED ] .
New Rule is rl: AxA -> a(A)

Current ruling formula is [ ORIEMTED ] .
Hew Rule is r3: m*A  => g(A)

Current ruling formula is [ INEQUATION ]
New Rule is T4: s($1) «-f-> %1

Current ruling formula ie [ ORIENTED ]
Hew Rule im r5: brAsBsl -> A«(B+C)

Current ruling formula is [ ORIENTED )
Hew Rule is Th: e(b)*AsB -> ba({4=B)

Current ruling formula is [ ORIENTED ] .
ew Rule im rT: s(bap)«B -3 A* (b*A+E)

Current ruling formula is [ ORIENTED 1.
New Rule im I8 A*(B*(b4A+B)) -> g(bsAsH)

Current ruling formula is [ DRIENTED ] .
Hew Rule ig r9: s(a(b))sA -> b=(a(b)*A)

Current ruling formula is [ INEQUATION 1.
Hew Rule ia rio: alb+$i=h) <-/-> Ae(beg1s4)

e32: s(be$iem) =/= s(b*$ism) [r3/710] is a contradiction.
Ther [ PROVED ].

Metis finally found a contradictory inequation. The inequation was obtained by substituting M
to A in r10 and rewriting the right hand side by r3. The inequation r10 was from r1 and r8, since

s(Bs§lad)=51«(A+(Bs $1=A)) £ A+ (B+$1e4).
and the rule r8 was from r2 and r5, since
A*[BiI:B-AJB}}——B!Atﬁtl:BnA-B]za{Hwﬂ.'B]_

Examining this process of refutation showed us that m*(B*$1%m) is the value substituted to the
original variable A in the inequality sbtained by the negation of the target formula. In fact, it is
a fixed point of $1, since

M+ (B+$1+M)=Be§lsMs(BsS1sM)=51s(Ms(Be+$1+M))

17 —
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