ICOT Technical Memorandum: TM-0215

TM-0215
A Parallel Parsing Algorithm and
its Complexity

by

Y, Malsumoto

August, 1986

€986, 1COT

Mita Kokusat Bldg 21F (03 456-31491~5
IG DT 4=78 Mita 1-Chome Telex TCOT J32t454
Minato=ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Parallel Parsing Algorithm and its Complexity

Yuji Matsumoto

ICOT Research Center
Institute for New Generation Computer Technelogy
1-4-28, Mita, Minato-ku, Tokyo 108 Japan

(Slh August 1955}
Extended Abstract

The aim of this paper is to describe the basic algorithm that our parallel parsing
system |[Matsumoto 86a] is based upon, and to estimate its time complexity. Although
the system itself is intended as a general parsing system for Definite Clause Grammars
[Pereira 80|, this paper describes the essential part of the parailel parsing algorithm
for pure context-free grammars. We show that the time complexity of the algerithm is
proportional to the length of the input sentence when it is described by W-PRAM (Write-
enabled Parallel Random Access Machine), which allows both read and write conflicts,
provided that simultaneous write must be attempted with the same value. We, then,
show that the algorithm is directly translated into parallel logic programming languages
such as Guarded Horn Clauses [Ueda 85)].

A context-free grammar G is defined by three-tuple G = (V, P, 5}, where V is the
set of nonterminal and terminal symbols, P iz the set of grammar rules and § is the
starting nonterminal symbol. Our algorithm does not distinguish terminal symbols and
nonterminal symbols. Therefore, the input string a,,as,...,an with length of n can be
any seguence consisting of terminal and nonterminal symbols, Greek letiers stand for
finite sequences of nonterminal and terminal symbols. For the purpose of describing our
algorithm, we uniquely put a distinct identifier to every place between two consecutive
symbols in the righthand side of a grammar rule. For example, for the rule (1), we put
identifiers as shown in (2):

(1) A—+BCD
(2) A—-B1C20D

We use natural numbers for identifiers though they can be anything. Let K be the
get of such identifiers. We define the following sets:

H={(A1])|A€V,0<i<j<n}
and

Ty = {(k,d) | k€ K,0<i<j} (1<7<n)

In our parsing algorithm, these sets are regarded as tables, the elements of which
are entries of them, whose values are “true’ or ‘false’. Each entry has ‘false’ as its initial

value. If the value of (A,1,7) in H is ‘true’, it means that there is an analysis tree whose
root is A and whose leaves are ac;y,2i42,..., a;. If the value of {&,1) in T} is ‘true’ and
the identifier k is contained in the rule 4 — o k 7, it means that there exits a derivation
of a;,1, ..., a; from c.

The Algorithm

begin
1: for each 0<i<n,AcV suchthat 4 =,
parallel do {4, §+ 1) := true ;
repeat NV times

2: for each (B,:,j) =irue and A + Bk a
parallel do (k,1} := true in T; ;

2'; for each (B,i,j) =true and A — B
parallel do (A,1,) := true;

3: for each (B,j,m)=true and (ki) =true in T; such that A - a k B
parallel do (A, 4, m) := true ;

3" for each (B,j,m) =true and (k,i)=truein T}

suchthat A—wa kBk+17
parallel do (k+ 1,1) := true in T,
end repeat ;
if (5,0,n) = true then ACCEPT

end ;

Suppose that the maximum length of the righthand sides of the grammar rules is
¢, the number of the repetition of the algorithm, N, can be less than {e = 1) * n. This
shows that the time complexity of our parallel parsing algorithm is o(n). Moreover, once
an analysis tree is completed, it is never constructed repeaiedly.

This parallel parsing algorithm is easily translated into parallel logic programming
languages such as Guarded Horn Clauses. To do this, we regard terms in H as processes
of the parallel logic programming language, and the tabies T)’s as streams. Making an
element in H to be ‘true’ is identified as creating the corresponding process. Tables are
not considered as sets but as first-in first-out queues. Suppose a,, a, ...,a, is the input
string, the initial goals for the program is as follows:

al(TO,T1),a2(T1,T2),.... an{Tn-1,Tn).

Creating these goals as the initial goals actually correspond to the first step of the
algorithm. Ti’s are streams shared by pairs of consecutive input symbols, provided that
TO and Tn are special terms and are recognized only by the process corresponding to the
starting symbol. Each process has two arguments. The first of them is the input stream
and the second is the output stream. The followings are a direct translation of the steps
in the algorithm into GHC clauses.

2: Bb{Ti,Ti)} :- true | T)=[{{k.Ti)]. (for each A — Bk a € P)
2's B(Ti,Tj) :- true | a(Ti,Tj). (for each A — B £ P)
3: b{[{k,Ti}ITj].Tm} :- true | af{Ti . Tmi),b(Tj,Tm2),merge(Tmi,TmZ,Tm) .
for each T — a k B € P)
3 b{[(k,T)ITi).Tm} :- true | Tm=[(k+1,Ti)!Tmi].b(T;.Tmi}.
(for each A - ¢ k B k+1 § € P)

Since tables T's are now represented by streams, their conlents are processed
sequentially. This is implemented by 3 and 3". Note that all of these processes can be
and should be execuied in parallel. Moreover, outputs of all the process sharing the same
output stream should be merged into a single siream. Therefore, the further tranalation
is necessary. In our parallel parsing system, clause bodies of the processes of 2 and 27
having the same head predicate are bundled up into a single clause. Clauses such as 3
and 3" are defined as OR clause alternatives since no identifier is recognized by more
than one process. The further translation is illustrated by the following example. The
nonterminal symbol “NOUN® in the sample grammar (3) is first translated into the clauses
in (4). Each occurrence of ‘NOUN’ in the body of grammar rules produces one clause in
(4). Clauses of (5) are the final translation of these clauses.

(3) NP — DET 1 NCUHN
HP — DET 2 NOUN 3 REL_CLAUSE
NP — NHOUN
NOUHN — HKOUN 4 PP
NOUN — KOUN & PRED

{4) noun(X,Y) :- true | ¥Y=[(4,X}].
noun(X,¥Y) :- true | Y=[{5,X)].
noun(X,Y) :- true | np(X,Y¥).
noun([{1,X)|X1],Y) :- true [np(X,¥1),noun(X1,¥2) merge(¥1,Y2,Y).
noun{[{2,X) 1X1],¥) :- true | Y=[(3,X)]¥1].n0un(Xi,¥i).

(5) noun(X,Y)} :- true | nounl{X,¥1),noun2(X,Y2) merge(¥1i,Y2 Y).
nouni(X,¥Y) :- true | Y=[{4.,X),(5,X)|¥1] . np{X, ¥1).
noun2([1.¥) := true | Y=[3.
noun2([(1,X) I1X1],Y) :- true | np(X.Y1i) noun2(X1.Y2) merge{¥1,Y2 ¥Y}.
noun2 (L{2. X3 [X1],Y) :- true | Y={{(3.,XJ Y1l ,noun2{X1,Y1).
noun2([_1%X].¥) :- otherwise | mnoun2{X,Y).

In (5), processes for ‘noun’ are classified into two types of clauses, ‘nount’ and
‘noun2’. The former deals with the clauses that work without regard to the content
of the input stream (i.e. processes whose first argument is a variable). The first three
clauses in (4) are bundled up into the single process ‘nouni’in (5). The work of the other
clauses in (4) depends on the first content of the input stream and they are defined as
OR processes. The first clause for ‘noun2’ deals with the case where the input stream is
empty, and the last clause is for discarding the first element of the input stream if the
identifier in it is different from any identifiers that are useful for the process.

In our implementation, TO is defined as a special term, which is recognized only by
the starting symbol. When the starting symbol receives the term, it produces another
reserved term that indicates the end of the analysis. In order to recognize the termination

of the analysis, we define a process that receives the siream Tn, the one produced by the
last symbol in the input string. This process reparts the end of the analysis when it
receives the specially reserved term.

Considerations

First of all, we have tc note that the derived parallel parsing program writien in
GHC is not a linear algorithm since the randem access tables are realized as streams.
It may be possible to implement the tables by processes which actually manage random
access memory structure. However, we still have the problem of resolving simultaneous
write requests.

In the parallel logic programming implementation, processes are independent each
other, Therefore, processes that have the same root name and cover the same porticn of
the input string might be duplicated. Although this does not affect the tjme complexity
if the resource of processes is abundant, this problem should not be neglected since the
assumption is not realistic.

The Prolog implementation of our aigorithm has been aiready finished. The streams
are realized by difference lists in this implementation. This system shows that our al-
gorithm is also practical as a sequential analysis of natural languages based on Definite
Clause Grammars [Matsumoto B6b|.

References

[Matsumoto 86a] Matsumoto, Y., “A Parallel Parsing System for Natural Language
Analysis,” Proc. International Conference on Logic Programming, pp.396-409,
Imperial College, London, 1986,

[Matsumoto 86b] Matsumoto, Y. and Sugimura, R., “SAX: A Parsing System based
ou Logic Programming Languages,” Computer Software, Vol.3, No.4, 1986, (in
Japanese)

[Pereira 80] Pereira, F.C.N. and D.H.D.Warren, “Definite Clause Grammars for Lan-
guage Analysis - A Survey of the Formalism and a Comparison with Augmented
Transition Networks,” Artificial Intelligence, 13, pp.231-278, 1980.

|Ueda 85] Ueda, K., “Guarded Horn Clauses,” Proc. The Logic Programming Conferencs,
ICOT, 1985.

