ICOT Technical Memorandum: TM-01/71

TM-01T)
On Parallel Programming Methodology in GHC
Experience in Programming of A Proof

Procedure of Temporal Logic—
by
K. TAKAHASHI and T. KANAMORI
Mitsubishi Electric Corp.

May, 1986

©1986, ICOT

Mita Kokusai Bldg. 21F 103} 456-3191~5
" D I 4-28 Mita 1-Chome Telex ICOT J32%64
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

On Parallel Programming Methodolegy in GHC

— Experience in Programming of A Proof Procedure of Temporal Logic —

Kazuko TAKAHASHI Tadashi KANAMORI

Central Research Laboratory
Mitsubishi Electric Corparation
8-1-1, Tsukaguchi-Honmachi
Amagasaki, Hyogo, JAPAN 661

ABSTRACT

This paper discusses the parallel programming methodology in
GHC based on our experience in programming of a proofl procedure of
temparal logic. GHC (Guarded Horn Clanzes) is a parallel program-
ming language designed for execution on highly parallel architeeture,
It is said that GHC can express basic constructs of parallel process-
ing such as communication and synchronization very simply, but we
have not yet had enough experiences of parallel programming in GHC.
By programming a proof procedure of temporal logic in (sequential)
Prolog and GHC, we compare the thinking style in sequential pro-
gramming and that in parallel programming. General principles for
enhancing concurrency, programming paradigms in GHC and pro-
gramming style in GHC are discussed based on the experience.

Keywords : Parallel Logic Programming, GHC, Parallel Programming Methodology,
Proof Procedure, Temporal Logic

CONTENTS

. Introduction
2. Prolog and Guarded Horn Clauses (GHC)
2.1. Syntax of GHC
2.2. Semantics of GHC
3. Propositional Temporal Logic (PTL)
3.1. Lapguage of PTL
3.2, Models of PTL
4, w-Graphs Refutation Procedure in Prolog
4.1. Computation of [nitial Node Formula
4.2. Expansion of Node Formulas
4.3. Construction of w-Graphs
44, Check of w-Loop Freeness of w-Graphs
4.5. Sequential w-Graphs Refutation Procedure
5. Programming of w-Graphs Refutation Procedurs in GHC
5.1. Parallel Computation of Initial Node Formula
5.2. Parallel Expansion of Node Formulas
5.3. Parallel Construction of w-Graphs
5.4. Parallel Check of w-Loop Freeness of w-Graphs
5.5. Parallel w-Graphs Refutation Procedure
6. Parallel Programming Meathodology in GHC
6.1. General Principles for Enhancing Concurrency
6.1.1. Early Publication
6.1.2. Early Commitment
6.1.3. Decision Distribution
6.1.4. Efficient Communication Network
6.1.5. Equal Opportunity
6.2, Pregramming Paradigms in GHC
6.2.1. Synchronization in Passive Parta
£.2.2. Communication through Shared Variables
6.2.3. Use of Partially Specifled Data Structures
6.2.4. Usze of Decision Distributible Data Structures
6.2.5. Paradigms in Sequential Programming Revisited
6.3. Programming Style in GHC
6.3.1. Intentional Sequentialization
6.3.2. Incremental Parallelization
6.3.3, Interpreter - Editor + Incremental Compiler !
8.3.4. Visua] Debugging Aids
£.3.5. Performance Measurement of Parallel Execution
7. Cenecluding Remarks
Acknowledgments
References
Appendix

(-

1. INTRODUCTION

*Guarded Horn Clauses (GHC)" is a language designed for execution on highly parallel
architecture [Ueda 85| and regarded as the core of the Kernel Language One (KL1) of the
Fifth Generation Computer System (FGCS) project in Japan. GHC is a descendant of other
Prolog-like parallel programming languages Concurrent Prolog [Shapiro 84| and PARLOG
[Clark and Gregory 84). It iz said that GHC pot only provides us with the basic functions
for parallel processing such as communication and symchronization but also imposes less
burden of implementation than Concurrent Prolog such as multiple environments. But we
have not yet had enough experience of parallel programming in GHC. Especially,we don’t
yet know whether GHC gives us enough expressive power in practice and what transition of
programming style is necessary for GHC.

In this paper, we show our experience in programming a proof procedure of temporal
logic in GHC. The proof procedure,called w-graphs refutation,was familiar with us before
programming it in GHC [Fusaoka and Takahashi 85]. We had its sequential implementation
in Prolog. Fortunately or unfortunately, the sequential version contains subprocedures which
embody three typical programming style. The first one is general recursive style, the second
one is repetitive (tail-recursive) style and the third one is backtracking style. We show what
difficulties we have encountered in programming these procedures in GHC and disccuss the
parallel programming methodology based on the experience.

This paper is organized as follows. In section 2, we give a general introduction of
GHC. In section 3, we give the syntax and the semantics of propositional temporal logic.
In section 4, we explain our proof procedure of temporal logic and present its sequential
implementation in Prelog. In section 5, we show its parallel implementation in GHC. And
in section 6, we compare the differences of thinking style between the sequential version and
the parallel version and diseuss the parallel programming methodology in GHC.

2. PROLOG AND GUARDED HORN CLAUSES (GHC)

In the research of logic programming, Guarded Horn Clauses (GHC) is developed as a
language for parallel logic proramming. It is a machine-independent core of Kernel Language
Oce (KL1). It can express simply the characteristic features of parallel programming such as
processes, communication and synchronization. It is almost like Prolog syntactically, except
that enly one new construct *|' called trust operator is added to Horn Clauses. It needs no
inheritance of multiple environment, which provides us a simpler implementation compared
with other. parallel programming lznguages such as Concurrent Prolog or PARLOG.

2.1. Syntax of GHC

A GHC program is a finite set of Horn Clauses of the following form {m>0,n>0) :
H-G,,..,Gn | By, ..., By
where G;'s and B;’s are atomic formuals defined as usual. H, G;"s and B;s are called clause
head, guard goals and body goals, respectively. The part of the clause before *|' is called a
passive part or a guard, and the part after ‘|’ is called an active part. The special predicate
true is used for denoting the empty goal, and it is sometimes omitted. The clauses
H 1= B 1-
H,.
represent
Hi:- true f By.
Ha-true | true.
respectively,

2.2. Semantics of GHC

Informally the execution of a clause is done in the following manner : When a goal is
called, the clauses whose heads are uniflable are invoked. Execution of the guard goals of
these candidate clauses are tried in parallel, and if guard goals of some clanse succeed, then
the active part of the clause is executed. The execution is done accrording to the following
rules,

Rules of Suspension
{1)[synehronization)
Any piece of unification invoked directly or indirectly in the passive part of a clause cannot
bind a variable appearing in the caller of that clause with
(a) a non-variable term or
(b} anocther variable appearing in the caller
until that clause is trusted.
{2) [sequencing]
Any pieace of upification invoked directly or indirectly in the active part of a clanze cannot
bind a variable appearing in the passive part of that clause with
(a) a non-variable term or
(b) another variable appearing in the passive part
until that clause is trusted.
A piece of unification which can succeed only by making such bindings is suspended until it
can succeed without making such bindings or it turns out to fail.

Rule of Trust
When some clause succeeds in solving its passive part, that clause tries to be frusted.

2

It must confirm that no other clause that belongs to the same procedure has been trusted
for the same call, and if confirmed, that clanse is trusted immediately. We say that a set of
goals succeeds (or is solved) if it is reduced to the empty set of goals by using only trusted
clauses.

The execusion of conjunctive goals are done in parallel ('AND’ parallelism) and the
search of the clauses to be trusted are alio dope in parallel ('OR’ parallelism). In the
programming in GHC, we make use of these mechanisms as well as communication through
streams. The lack of backtracking forces us to change our thinking style and investigate a
new methodology of programming. Later, we discuss on these subjects in detail.

3. PROPOSITIONAL TEMPORAL LOGIC (PTL)

Temporal Logic [Manna and Paoueli 81] is an extension of first order logic to include a
notion of time and deal with logical deseription and reasoning on time. It is a branch of
modal logic [Hughes and Cresswell €8], in which the relation between worlds it considered
as a temporal one. The temporal logic we consider in this paper is a propositional one
called Propositional Temporal Logic (PTL). Three temporal operators used in PTL have
the following intuitive meanings :

oF (always F) : F is true in all future instants
¢F (eventually F) : F' is true in some [uture instant
OF (pext F) : F is true in the next instant

First, we will present the syntax and the semantics of PTL.

3.1. Language of PTL

The language of PTL uses the following four classes of symbols,
{1) The propositional constants frue, false
(2) The propasitional variables P, @, R, ...
(3) The Boolean connectives =, A, V, 2, =
(4) The temporal operators 0, ¢, ©
An atemie formula is either a propositional constant or a propositional wariable. A
literal is either an atomie formula ar the negation of an atomic formula. Formulas are
defined inductively as follows :
(1) Ao atomic formula is a formula.
(2)-F, FAG FVG F 2 Gand F =G are formulas when F and G are formulas,
{3) OF, oF and oF are formulas when F is a formula.

Example 3.1. The followings are formulas of PTL.
{DP o G[Q A -uGH}:I A —0O8, oP A ¢-|P' ageP A oO=-P

A temporal literal ia either a literal or the formula whose outermost operator is o.

3.2, Models for PTL

Let F be a formula of PTL. A complete assignment for F is a function which assigns
truth value (t or f) to every propositinal variable in F. A model M for F i3 an infinite
sequence of complete assignments for F

Ko, K1, K. ...

We define the truth value assignment for formulas in the usual way. Let G be a
subformula of F and M be a model Ky, K;,.... We define the assignment for &G by K|
inductively as follows. When G is a propositional constant frue, G is always assigned t by
K; When G is a propositinal constant false, G iz always assigned f by K;. When G is
a propasitinal variable, G is assigned t or f by K following the complete assignment K.
When G iz of the form ~G', G is assigned t () by K if and only if G' is assigned (t) by
K; When G is of the form G; A Gz, is assigned t by K, if both G, and G2 are assigned
t by K,: otherwise G is assigned f by ;. When G is of the form Gy V G3, G is assigned
t by K; if either G or Gy iz assigned t by K, otherwise G is assigned f by K;. When G
is of the form G; O Gg, G is assigned t by K; if either G, is astigned f or G5 is assigned
t by K,; otherwise G is assigned [by K;. When G is of the form G; = G3, G is assigned

4

t by K if both of G; and Gz are assigned ¢ or both of them assigned f by K;; otherwise
G is assigned f by K;. When G is of the form OG", G is assigned t by K if every K;(j>1)
assigns t to G'; otherwise G iz assigned f by K;. When G is of the form oG, G is assigned
t by K if there exists some K;(5> 1) that assigns t to G'; otherwise G is assigned f by K.
When C is of the form 0G', G is assigned t(f) by K; if and only if ;4 assigns t(f) to G'.

Let F be a formula and M a model Ky, K, ... for F.
(1) F is said to be true(false} in M il F is assigned t(f) by Ko.
(2) I F is true in a model M, we say that M satisfles F', and depote it by M = F.
(3) F is satisfiable if there exists a model which satisfies F.
(4) F is unsatisfiable if it is not satisfiable
(5) F is valid if it is true in every model and we denote it by »F

Example 3.2. Consider the following graph. Intuitively, the edges in the graph correspond
to complete assignments. The edge from the noede Ny to the node N, corresponds to a
complete assignment that assigns t to P, the edge from Nj to N3 corresponds to one that
assigns £ to P and the edge from N3 to N, corresponds to one that assigns t to P. Then,
the infinite path of Ng—Ny— N3—N;— N~ Ny—+N3—.... corresponds to a model for oo F
where the assignment for P is the sequence in which t and f appear alternately ([AN A SN

Figure 3.2. Graph Representation for OoP

Lemma.
When F = G is valid, F* and G are said to be logically equivalent.
(1) The followings hold.
(1-1) F O G is logically equivalent to =F V G.
(1-2) F = G is logically equivalent to (F A G) V (-F A =G).
(1-3) ={F A G) is logically equivalent to =F V ~G.
(1-4) ~(F V G) is logically equivalent to ~F A -G.
(1-5) ~QF is logically equivalent to &~F.
(1-8) ~oF is logically equivalent to O=F.
(1-7) ~oF is logically equivalent to o-F.
(1-8) =~ F is logically equivalent to F.
(2) The followings hold.
(2-1) OG is logically equivalent to G A 0OG.
(2-2) ¢G is logically equivalent to G V 00G.
(3) The followings hold.
(3-1) F A (G Vv H) is logically equivalent to (F A G} V (F A H).

5

(3-2) (F V G) A H is logically equivalent to (F A H) V (G A H).

(3-3) oF A OG is logically equivalent to o(F A G).

{(3-4) F A F iz logically equivalent to F.

(3-5) P A -P is logically equivalent to false when P is an atomic formula.

(3-8) =P A P is logically equivalent to false when P is an atomic formula.

(3-7) false A F is logically equivalent to false

(3-8) F A false is logically equivalent to false.

(3-9) false ¥ F is logically equivalent to F.

(3-10)-F V false is logically equivalent to F.

{3-11) E is logically equivalent to E A ODirue

when E is a formula which does not contain temporal operators.

(4) Let F{G,| and F[G2| be two formulas obtained from F by replacing some subformula
of F with G, and Gg respectively. When G, is logically equivalent to Gz, F[G] is valid iff
FIGa] is valid.

Proof. Trivial. For example [2-2) is proved as follows.

We will show that oG = G V 007 . Assume that M = Ky, K;,... is any model, and
we will show that M =oG = G v 0¢G, that is, the formula is assigned t by Kq. By the
definition of assignment on = , it is sufficient to show that for any model M = K, Ky, ...,
oG is assigned t by K iff GV 00G is assigned t by Kp. We will prove if-part. Assume
that oG is assigned t by K. Then there exists K; such that G is assigned true by K. If
f =0, is assigned t by Ko. Otherwise, there exists j{7>1), such that G is assigned ¢ by
K ;. Therefore oG is assigned t by K, that is, 00G is assigned t by Ko Hence, G V 00G
is assigned t by K. Only-if-part is trivial.

4. w- GRAPHS REFUTATION IN PTL

An w-graph is a graph in which each node is labeled with an expression called node
formula. When a formula of PTL is given, the w-graphs refutation procedure shows whether
the formula is valid or not as follows.

{1) Negate the givern formula.

(2) Compute initial nede formula Fy of the negation of given formula

(3) Construct an w-graph by starting from the initial w-graph consisting of only one node
corresponding to initial node formula and successively expanding nodes in the w-graph.

{4) Check the w-loop freeness of the constructed w-graph. I it is w-loop freethe given
formula is valid.

4.1. Computation of Initial Node Formula

The negation of the given formula is once converted to it: negation mormal form in
arder to compute initial node formula before constructing the w-graph.

Deflnition 4.1.1. Negation Normal Form
Let & be a formula obtained from a formula F by applying the rules below as far as
possible. Then G is called a negation normal form of the formuia F.
[Rule NNF1| remove implication and equivalence
FO26G6 = ~FVG
F=G => (FAG)V(~FA-G)
[Rule NNF2| move negation inwards
S(FAG) =» =FV-G
=(FyG) => =FA-G

=aF = oaF
& F == [O=F
-oF == O-F
—_p = F

Negation normal forms are unigue. Note that the pegation normal form of a formula
is valid if and only if the original formula is valid. (See lemma (1) and (4).)

Example 4.1.1. Let F be (0P D ¢(Q A ~¢R)) A -0OS. F is converted as follows.
(oP D o(@ A =oR)) A ~OS

I Rule NNF1
(moP Vv o(@ A =oR)) A 208
I Rule NNF2

(0-P v o(Q A O-R)) A -5
The last formula is the negation nermal form of F.

Later,we need to check whether we have constructed an w-graph corresponding to a
model af PTL in which the eventualities in a negation normal form Fy are satisfled.

Definition 4.1.2. Eventuality Set
Let F be a formula in a negation normal form. The set of all subformulas G such that
&G i3 a subformula of F is called eventuality set of F.

Example 4.1.2. The eventuality set of the formula (O-P V o(@ A o-=R)} A ¢=8is{(@ A O-R),-5}
The eventuality set of the formula oF A ¢=Fis {P,-F}. The eventuality set of the formula

T

([oeP A oo@) is {P,@}.

From now on, we denote the negation normal form of the negation of the given formuiz
by Fp and the eventuality set of Fp by ESp.

Definition 4.1.3. Initial Node Formula
Let F be a formula. An initial node formula [Fy)(y of F is a formula suffixed by { },
where Fp i3 in a negation normal form of F.

An ipitial node formula [Ful{} is logically equivalent to the formula F and it is a special
form of a node formula defined later.

The computation of initial node formula is implemented in Prolog as follows.

compute_ipitial_node_formula(F ,NNF EveSet) :-
negation_normal_form(F,NNF},
compute_eventuality_set(NNF ,EveSet).

negation_normal_form(F,G) -
remove_implication_snd_equivalence(F,F1),
move_not_jowards(F1,G).

remove_implication_and_equivalence(imply(F,G),or(not(F1),G1)) -
remove_implication_and_equivalence(F F1),
remove_implication_and_equivalence(G,G1).
remove_implication_and_equivalence(equivalent(F,G),
or{and(F1,G1),and{not(F1),n0t(G1}))) :-
remove_implication_and_equivalence(F F1),
remove_implication_and_equivalence(G,G1).
remove_implication_and_equivalence(and(F,G}),and(F1,G1)) :-
remove_implication_and_equivalence(F,F1),
remove_implication_and_equivalence(G,G1).
remove_implication_snd_equivalence(or(F,G),or(F1,G1)) ==
remove_implication_and_equivalence(F,F1),
remove_implication_and_equivalence{G G1).
remove_implication_and_equivalence{always(F),always(G)) :-
remove_implication_and _equivalence(F,G).
remove_implication_and_equivalence(eventually(F),eventually(G)) :-
remove_implication_and_equivalence(F,G).
remove_implication_and_equivalence{next(F),next(G)) :-
remove_implication_and_equivalence(F ,G).
remove_implication_and_equivalence(not(F),not{G]) :-
remove_implication_and_equivalence(F,G).
remove_implication_and_equivalence(F,F).

move_not_inwards(and(F,G),and(F1,G1)} -
move_not_inwards(F F1), move_not_inwards{G,G1).

move_not_inwards(er{F,G),or(F1,G1)) :-
move_not_inwards(F,F1), move_not_inwards(G,G1).

move_not_inwards{always(F),always(G)) -

move_not_inwards(F,G).
move_not_inwards(eve ptually(F),eventually(G)) =-
meove_not_inwards(F,G).
move_not_inwards(next(F),next(G)) -
move_not_inwards(F,G).
move_not_inwards(not(and(F,G)),0r(F1,G1)) -
move_not_inwards(not(F),F1), move_not_inwards(nct(G),G1).
move_not_inwards(not(or(F,G)),and(F1,G1)) :-
move_not_inwards(not{F),F1}, move_not_inwards{not(G),G1).
move_pot_inwards(not(always(F)) eventually(G)) -
move_not_inwards(not(F),G).
move not_inwards(not(eventually(F)),always(G}) :-
move_not_inwards(not(F),G).
move_not_inwards(not(next(F)),next(G)) :-
move_not_inwards(not(F),G).
move_not_inwards(not{not(F)),F).
move_not_inwards(F F).

compute_eventuality_set(and(F,G),S) -
compute_eventuality_set(F,5F),
compute_eventuality_set(G,5G),
union(SF,8G,S).
compute_eventuality_set(or(F,G),5) =
compute_eventuality_set(F,SF),
compute_eventuality_set(G,5G),
union(SF,SG,S).
compute_eventuality_set(always(F),5) =
compute_eventuality_set(F S).
compute_eventuality _set{eventually(F},5) :-
compute_eventuality_set(F SF),
union([F|,5F,3).
compute_eventuality_set(next(F),S) :-
compute_eventuality _set(F,S).
compute_eventuality_set(F []).

Figure 4.1. Computation of Initial Node Formula

4.2. Expansion of Node Formulas

An w-graph is a graph whose nodes are labelled with expressions called node formuia.

Deflnition 4.2.1. Node Formulas

Let ESg be the given fixed eventuality set. A node formula [Flg iz a formula F suffixed
by a subset H of ESy, where F is in a negation normal form and may contain ©* in stead
of © and the suffix H is called history set (ar h-set for short). ¢*G is semantically identical
to ©G. 0" is called marked eventuality and ¢ is called marked formula.

From now on,we call node formulas simply formulas and we sometimes use [Fly in
place of F. A pode formula [Flg is logically equivalent to the formula F. The intuitive
meanings of the mark and the history sets will be explained later.

Example 4.2.1. The followings are nede formulas.
[oP A 0-Plg, [0"~Plge}, [0"Pliey, [0°P A 0*-Plg

In our proof procedure, we comitruct the w-graph of Fp by starting from an imitial
w-graph and successively expanding nodes in the graph. Suppose we are trying to expand a
node labelled with [F)y. New node formulas are obtained by converting F to its next prefix
form Fypr and then converting Fypp to its disjunctive normal form Fpyr and expanding

Fprr.

Definition 4.2.2, Next Prefix Form
Let F' be a formula in negation normal form and & be a formula obtained from F by
applying the rules below
[Rule NFF1] postpone O
o& == G A ooOG
[Rule NPF2| postpone ¢ and o*
oG = G Voo'C
"G = GV oo
as far as possible to subformulas not inside the next operator 0. Then G is called next prefix
form of F.

The converzion to a next prefix form is eszentially based on the tableau methods [Wolper
81]. Note that the next prefix form of a formula is valid if and only if the original formula
is valid. (See lemma (2) and (4))

Example 4.2.2. A formula (6P A ¢=F) is converted as lollows.
(P A o-F)

1 L
PV oo'P -P Vv 0o*=P
The next prefix form is (P V 0¢*F) A (-P V 06*~P)
Example 4.2.3.
A formula (0-P Vv (@ A O=R)) A &5 is converted as follows.
(0=F v ¢(@ A O=R)) M il
1 [l 1
=P A oO-P (@ AO-R) Voot (@ A O=R) =5 W ooa8
it
=R A 0O-R

10

The next prefix form is
(=P A 0o=P) v ((@ A (-R A OO-R)) V 00°(@ A O-R))) A (=5 V 006°8)

Example 4.2.4. A formula 00P A DoQ is converted as follows.
DoF M ooQ

1 1
oP A oOoP o@ A coo@
i L
P v oo*P Qv oo'Q

The next prefix form is ((P V co"P) A cooP) A ((@ V 00°Q) A 000Q).

Defnition 4.2.3. Disjunctive Normal Form
Let F be a formula in a next prefix form and & is a formula in the form
(E1 A OF1) V (Ez A 0F3) V V (Ea A OFa)

where E,;, E3,..., En and Fy, Fa, ..., F, are formulas other than false. Ey, E;, ..., E, do not
contain temporal operators, and F; and F; are not literally identical if 1527, If G is obtained
from F by applying the following rules to subformulas of F as far as possible, then G i3 said
to be in a disjunctive normal form of F. (Note that there exizts as a special case G iz the
unigue propositional constant false. It is also considered as in a dijunctive normal form.)

[Rule DNF1] distribute A over V
FA(GV H)=(FAG)VI(FAH)

(FVG)AH =(FAH)V(GAH)

{Rule DNF2] eliminate simple contradictions and duplication
P p =P == false where P is an atomic fermula
=P AF = false where F it an atomic formuela
Jalse N F = false
F A false =3 false
JalsevVF =>F
Fy false =>F
FAF ==F

[Rule DNF3| supplement next part
Current formula F is io the form € V¥ C2 V ... V¥ Cn where each C; i3 a conjunction

of temporal literals.
C; ==C; A oOtrue where C; isa conjunction of literals (i.e.including no o-formulas)

[Rule DNF 4] ordering
oG AF=>F A0G where F isn't in the form of oF"

[Rule DNF5] merge O
OF A 0G =2>0(F A G)

[Rule DNF6| combination by next part
(FAOH)V (G AOH)=>(FVG)ACH

Example 4.2.5. Consider the following four formulas.
(P AOQ)V (=P V R)AORQ A S))
(P A 0Q) V (=P A oOtrue).
(PAOQ)V (R AOQ)
(P AOQ)VOR
The first two formulas are in disjunctive normal form, while the last two are not.

Assume that (E; A OF1) V (Ez A OF2) V ==+ V (Ea A OFn)
11

is a disjunctive normal form of F. If F is in a negation normal form, each F;isin a negation
pormal form. Note that the disjunctive normal form of a formula is valid if and only if the
original formula iz valid. (See lemma (3) and (4).)

Example 4.2.6. Let F be a formula in next prefix form
(P W oo*F) A (P Vv oo F)
It is converted as follows,
(P V oo'P) A (-P V 00"~ P)
iI. Rule DNF1
(PA=P)V(PAOS-P)V (00"P A ~P)V (00"P A 00"P)
4 Rule DNF2
(P ACo'=P)V (00"P A=P) V(00 P A 0o"-P)
I Rule DNF4
(P A 06 =P)V (-P A 05 P}V (00 P A 00" ~P)
I Rule DNF53
(P A0 =P)V (=P A0o P) v (o[e"P A ¢"=P))
The last formula iz the disjunctive normal form of F.
(P Aoo*~P)y (P Aoe*P)v (o{e*P A o"=P))

Example 4.2.7. A formuls in next prefix form
{(=P A oa-P)V((@ A (R A 0o-R)) V 00*(@ A O-R))} A (=8 V 00*-8)
is converted to its dizjunctive normal form
(P A-SACO-P)V(-PAOC@PA-S)VQ@A-RA-S AoD-R) Y
(@ A =R Ao[O-R A ¢"=8)) V (-5 A ofe*(@ A O-R))) v ((ofe*(Q A T=R) A ©°-5))

Example 4.2.8. A formula in next prefix form
((P v co*P) AoooP) A((Q Voo'Q) A coe@)

is converted to its dizjunctive normal form
(PA@AopePAOe@))V(PAC[@ePAS'@ADQ)) YV
(@Aro(e*PAnoP ADoe@)) vi(o{(e*P ADeP A o°Q ADSQ))

Expansion of node formulas is the basic operaticn in constructing w-graphs and defined
by using next prefix forms and disjunctive normal forms as follows.

Definition 4.2.4. Expantion of Node Formula
Let E5; be the given fixed eventuality set, [F|y; be a node formula and
(E1 AOF)V [(E2 AOFZ) WV .. WV (Em A OFm),
be a ditjunctive normal form of the next prefix form of F. Then [Filg, is an expagsion of
[Flg if and enly if
H.—{ESU_ES‘ it H=ES,
PUONES; — ESUH otherwise
where E5; = {G | ¢"G iz a subformula of F;}.

Each H; is called a history set(h-set, in short)of F;. H-sets are introduced to ensure that
eventuality will actually be realized. Each element of h-set indicates the history of the
realization.

Example 42.9. Let Fy be 6P A ¢-P in a negation normal form. The eventuality set ES,
is {P, P} from the example 4.1.2. By the example 4.2.6, a node formula [oP A ¢-P|g is
converted to

(PAo(e*-P)) Vv (-PAo(e*P)) v (ofe*P A o*-P))

12

Let §;,5; and S; be node formulas corresponding to the formulas

o"=-P,

&'P,

o*~P A e'P
respectively. For each 5;, we define the corresponding h-set H;. For eack S;, ES; is computed
as follows.

ES, = {~P}
ES; = {FP}
ESy = {P,-P}

Since { }5£E5,;, Hy is computed as follows.
Hy = (ES; — ES))UUH = ({P,~FP} — {~PHU{} = {P}.
It means that <P is fufilled. Similarly Hy and Hy are computed as follows,
Hy = (ESp — ES2)UH = ({P,~P} = {PHU{} = {-P}.
Hy = (ESy — ES;)UH = ({P,~P} — {P,~PHIN}={}.
Thus, three node formulas
5y = [o*~Plp),
5z = I'D'P]{ﬂp].,
S = [0*P A 0*=P]p
are generated.

Example 4.2.10. Let Fp be (0DoF A 0o@) in negation normal form. The eventuality set ES,
is {P,Q} from the example 4.1.2. By the example 4.2.8, a node formula [0oP A OoQ)y; is
converted to
(PAQAODoPADOQ)) V (PAolooP Ao*Q ADQ)) VW
(QAc(e*PADeP AD2Q)) V (ofe*PAOsP A S*Q ADSQ))
Let §,,5;,5; and 54 be node formulas corresponding to the formulas
goP A Do@,
oeP A o*°Q A 02Q,
o*P A OoP A Do,
O*P AO6P A 0*Q A DSQ
respectively. For each 5;, ES; is computed as follws.

ES = {}
E5: = {Q}
ESy = {F}
ES,={P, @}

Since { }7# ES,, we compute the corresponding h-set H; as H; = (ESy; — ES;)|UH.
Hy=({P,Q}—{hHU{}={(P,Q}.
Hy=({P,Q}—{QhU{}={P})
Hy=({P,Q}—{PHU{} =1{Q}.
Hy=({P,@}—={P,@hU{}={}

Thus, four node formulas
S, =|oeP A DQQ]{F.Q},

S; = [0oP A &'Q A DoQ(r),

83 = IO'P M OoP A DCﬁQI{Q},

Sy=[0*P AOoP A o'Q ADoQ|(y
are generated.

Example 4.2.11. Now, consider expansion of node formulas from the node formula

[DoP A ¢*Q A DOQlp).
Suppose the eventuality set ESy is {P, @}. The formula is converted to the next prefix form,

13

then to the same disjunctive normal form with that of moF A 00@Q. Let 5,, 53, 55, 5, and
Hy, Ha, Hy, H, are formulas and h-sets defined in the example 4.2.10. Each H; is computed
by (ESs — ES;)UH.

Hy=({P,}—{HU{F}={FP,Q}

H; = ({P,@}—{@hU{FP}={F}

Hy = ({P,Q} — {P}HU{F} = {FP,Q}

Hy=({P,Q}— {FP,@HU{P} = {FP}
Thus four node formulas

51 = [0oP A 00Ql(r,q)

S; = [09oP A ©*Q A 05Q)(p),

Sy =[¢"P A CoP A Co@Qlir.qh

Se=[e'PAOel Ao'Q@ ACeQm
are generated.

Our purpose is to construct an w-graph by expanding node formulas repeatedly. In
this procedure, we repeatedly apply the rule NPF2. But it may continuously postpone the
instance in which G is true by zatisfying the o0e'G part of the disjunction. In order to
escape such a case, ©° and h-set are introduced.

&" G indicates that the instance in which & is true is postponed and h-set indicates
that there need not exist the instance in whick G should be true any more since it is
already realized. h-set represents an incremental information about the realization of the
eventualities. We will give an intuitive explanation a little more.

See examples 4 2.10 and 4.2.11. In the examples, disjunctive normal forms of the given
formulas are identical. In the example 4.2.10, the h-set of the given node formula is { }
which means that neither P nor § is realized yet. For the node formula 5i, for example,
@ is added to the h-zet as the information that @ is realized. On the other hand, in 4.2.11,
the h-set of the given formula is {P} which means that P is already realized. For the node
formula 53, @ is added to the h-set as the information that Q is realized. And together with
the former information, Ky becomes {P,@}. It means that both P and @ are realized and
that there need not exist the state in which P is true nor @ is true any more. However, the
given node formula DoP A ¢"Q A DoQ requires that P and Q should be realized infinitely
often respectively. We have to guanrantee that both P and @ are realized after the instance
corresponding to Ss. (It is not mecessary that P and @ are realized at the same instant.)
Therefore, the information about the realization of the eventuality is once cleared. It is
2 special instant. The node formula whose h-set is equivalent to ESg corresponds to the
special instant in which all the eventualities in ESy have at least once realized by continuing
the expansion from the initial state or latest special instant.

The expansion procedure is implemented in Prolog as follows.

expand_node_formula([F,H|,ES0,NewNodeFormulas) :-
next_prefix_form(F,NFF),
disjunctive_normal_form(NPF ,DNF),
generate_new_node_formulas(DNF ,ES0,H, NewNodeFormulas).

%%% (1) Next Prefix Form

next_prefix_form(and(F,G),and(F1,G1)) :-
next_prefix_form(F,F1),

14

next_prefix_form(G,G1).
next_prefix_form(or(F,G),0r(F1,G1)) =-
pext_prefix_form(F,F1),
next_prefix_form(G,G1).
next_prefix_form(eventually(F),or{F1,next(eventually*(F)))) :-
next_prefix_form(F F1).
pext_prefix_form(eventually*(F),or(F1,next(eventually*(F)))) :-
next_prefix_form(F F1).
next_prefix_form(always(F), and(F1,next({always(F)))) :-
next_prefix_form({F F1).
next_prefix_form(F,F).

%%%% (2) Disjunctive Normal Form

disjunctive_normal_form(NPF,DNF) :-
distribute_and_over_or{NPF Disjunction),
simplify_and_gather_next_formulas{Disjunction, DNF).

distribute_and_over_or(or(F,G), or(F1,G1)} -
distribute_and_over_or(F F1),
distribute_and_over_or(G,G1).

distribute_and_aver_or(and(F,G), H) :-
distribute_and_over_or(F F1),
distribute_and_over_or(G,G1),
distribute{and(F1,G1),H).

distribute_and_over_or(F F).

distribute(and{or(F,G) H),or(F1,G1)) :-
distribute_and_over_or{and{F H),F1),
distribute_and_over_or{and(G, H),G1).
distribute(and(F,or(G,H)),0r(F1,G1)) =-
distribute_and_over_or{and(F,G),F1),
distribute_and_over_or{and(F H)},G1).
distribute(F F).

simplify_and_gather_next_formulas(or(F,G),Fs) :-
simplify_and_gather_pext_formulas{(F,F1),
simplify_and_gather_pext_formulas(G,G1),
unionl(F1,G1,Fs).

simplify_and_gather_next_formulas{Conjunction,Fs) :-
simplify_conjuction_of_temporal_literals(Conjunction, Fi).

simplify_conjuction_of _temporal_literals(F,[G]) :-
flatten_and_partition(F,Current,Next),
eliminate_confliction{Current,Ct),
merge_next_formulas(Ct,Next,G).

flatten_and_partition(and(F,G),Ct Nt} -
flatten_and_partition(F,Ct1,Ntl)},
flatten_and_partition(G,Ct2,Nt2),
union({Ct1,Ct2,Ct},

15

union(Nt1,Nt2,Nt).
flatten_and_partition(next(F),[[,[F]).
flatten_and_partition(F,[F],] |).

eliminate_eonfliction(Ct,Ct1) -
eliminate_confliction(Ct,Ct,Ct1).
eliminate_confliction(Ct, [F|Fs| false) :-
member(not(F),Fs).
eliminate_confliction(Ct, [not(F)|Fz| false) :-
member(F Fa).
eliminate_confliction{Ct,[F|Fs],Ct1) :-
eliminate_confiiction(Ct,Fs,Ct1).
eliminate_confliction(Ct,[],Ct).

merge_next_formulas(false,_ false).

merge_pext_formulas(_,[|,always(true)).

merge_next_formulas{_,Nt,Nt1) :-
mg_next_formulas(Nt,Nt1).

mg_pext_formulas([F|[]|,F).

mg_next_formulas([F,G|,and(F,G)).

mg_pext_formulas([F|Fsj,and(F,G)) =
mg_next_formulas(Fs,G).

unionl([false),L,L).
wnionl(L,{false],L).
unionl(L M,N) - union(L M,N).

7675 % (3) Generate New Node Formulas

generate_pew_node_formulas([F|Fs],ES0,HO,[NF1|NF3]) :-
gen_new_node_fermula(F ES0,HO NF1),
generate_new_node_formulas(Fs ESO,HO,NFs).

generate_new_node_formulas([1,_,_.[]).

gen_new_node_formula(F ES0HO,[F H1]) -
compute_marked_eventuality_set(F,ES1),
define_h_set{HO,ES0,ES1 H1).

compute_marked_eventuality_set(and({F,G),S) :-
compute_marked_eventuality_set(F,SF),
compute_marked_eventuality_set{G,5G),
unien(SF,SG,S).

compute_marked_eventuality set(or(F,G),S) :-
compute_marked_eventuality _set(F,S5F),
compute_marked_eventuality_set(G,5G),
union(SF,5G,3).

compute_marked _eventuality_set(always(F),S) :-
compute_marked _eventuality_set(F,S).

compute_marked_eventuality_set(eventually*(F),5) :-
compute_marked_eventuality_set(F,SF),

16

union([F],5F,5).
compute_marked_eventuality_set(next(F)S) :-

compute_marked_eventuality_set(F,S).
compute_marked_eventuality_set(F,[).

define_h_set(H,ES0,ES1,H1) -
equivalent_set(H,ES0),
complement(ES0,ES1,H1).

define_h_set(H,ES0,ES1,H1) -
complement{ES0,ES1,HO),
union(H0,H,H1).

Figure 4.2. Expansion of Node Formulas

17

4.3. Construction of w-Graphs

Definition 4.3, w-Graph

Let F be a formula obtained by converting the negation of given formula to its negation
pormal form and ESp the eventuality set of Fy. An w-graph of Fy is the minimum graph
satisfying the following conditions.
(1) Each node is labelled with different node formulas.
(2) There is a special node Ny called initial node labelled with [Fo]qy.
(3) When there exists a node N labelled with [F|g and [Filn,, [Fal,, - - - [Fm]a. are all ex-
pansions of [Fg, there exist m nodes Ny, Na, ..., Ny, labelled with [F]a,, [Falmg, - - [Fmloa
and m directed edges from N to Ny, Na, ..., Nem.

The w-graph of a formula Fp is constructed as follows.

Construetion of w-graph of Fy
Let Fg be a formula in negation normal form.

(1) Create an initial node N labelled with the initial node formula [Fp|(}. Initialize the set
of unexpanded nodes Unezpanded to {Ng}.

(2) Repeat the following (3) until Unezpanded = { }.

(3) Take one of nodes in Unezponded. Suppose it is corresponding to [F|y. Generate node
formulas [Fy|gr,, [Falerg, oy [Fnler,, from [Flz. If there already exists a node corresponding
to [Fi)g,, create an edge to the node. I there exists no node corresponding to [Fi]s,, create a
new node N; labelled with [F;]g, and an edge to the node and add the node to Unezpanded.

This procedure terminates in a finite steps, since there exist only a finite number of node
formulas generated from Fy.

Example 4.3.1. Let F; be
oeFP A De@.
The construction of the w-graph of Fy proceeds as follows.

Create an initial node Np labelled with [CoP A 0o@](). Initialize the set Unezpanded to
{Ng}. Take from Unezpanded the node Ny labelled with [DoP A 00Q|() and generate
node formulas from it. Then the following four node formulas are generated : {See example
4.2.10).

5, = [ooP A ooQl(p,q)

S; = [DoF A ©°Q A O0Q(r},

Sy = [o*"P A OoP A DoQl(g),

Sy=[c"P AOoP A 2@ ADoQ|py
Since there exists no node corresponding to these node formulas, Ny, Na, Ny and Ny are
corresponding to §y, S3, 53 and S, , respectively, and edges to these nodes are created. And
Ny, Na, Ns and Ny are added to Unezpanded. Then, since Unezpanded = {N;, Nz, Ni, N}
#{ }, take N, labelled with [DoP A 00@|(p,q) 3% one of nodes from Unezpanded and
generate node formulas from it. In this case, the following four node formulas are generated

S5 = [DoP A 0eQl(r.qQh
Ss = [DoP A ¢°@ A DeQl(r},
S;=[0"P A OoP A DeQl(gn
Sg=[0"P AOoP A o°Q A ToQ|(y
Since there exist the node Ny, N, N3 and Ny corresponding to Ss,Ss, Sy and Sy, respec-

18

tively, create edges from N, to those nodes. Since Unezpanded = {Na, N3, Ni} #£{ },
take N3 one of nodes and repeat the procedure in this way (Appendix 1). The constructed
w-graph is shown iz Figure Al.

Example 4.3.2. Let Fy be ooP A o0O-P. The eventuality set ES; is {FP,0-P}. The
construction of the w-graph of Fy proceeds as follows. The next prefix form of the formula
is

((P v co"F) A cooP) A ((-P A cO-P) ¥ 0o*0-P).
The construction of the w-graph of Fy proceeds as foilows.

Create an initial node Ny labelled with [00F A ©0-P|(}. Initialize the set Unezpanded to
{Ny}. Take from Unezpanded the node Ny labelled by [DoP A ¢0~Fj3. Then three node
formulas are generated ;

5y = [OoF A o*O-Flp),

Sz = [¢*P A 0oP A O-Plio-r}

Sy = [0*P A OoP A o°0-Plp
Since there exists no node corresponding to these nodes, Ny, Ny and Ny are created cor-
responding to §,,5; and 853, respectively, and edges to these nodes are also created. And
add Ny, N7 and Nj to Unezpanded. Then, since Unezpanded = {N, N3, N3}£{ }, take
Ny labelled by [0oF A ©*0-P(p}, 22 one of nodes from Unezpanded and generate node
formulas from it. In this case, three node formulas are generated :

5y = [0oP A ¢"0-P|p)

Sy = [Q'P AOoP A D"PI{P,D"!P}

Sy = [0*"P ADeP A o*o-Pl(py
Since there exists the node N correspondidg to Sy, create edges from N; to Ny, and since
there exist no nodes corresponding to Sy and Sy, create Ny and Ny corresponding to thess
nodes, respectively, and edges to these nodes are created. Since Ny and Ny are added to
[/nezpanded, it becomes { Nz, Na, Ny, Ns}. Take Nz from Unezpanded as one of nodes and
repeat the procedure in this way (Appendix 2). The constructed w-graph is shown in Figure
4.4.1.

Construction of w-graphs is implemented in Prolog as follows.

construct_omega_graphs(F0,ES0, WGraph) :-
construct([{FO,[J],ESOQ,[|,[[FO,{]]l,Connect, ExistNodes),
rename_and_list_up_omega_nodes{ExistNodes,graph([|, Connect,|), WGraph,ES0,0}.

construct(|], ES0,Connect ExistNodes,Connect, ExistNodes).

construct([NF |Unexp|,ES0,Cnt,Ext,Catl Extl) -
expand_nodes(NF,ES0,NFs,Cnt,CatD),
create_nodes{NFs,Unexp,Ext, Unexpl, Ext0),
construct{Unexp0,ES0,Cnt0,Ext0,Cntl, Extl).

expand_nodes(NF ESQ,NFs,Cat, [[NF,NFz]|Cnt]) :-
expand_node_formula(NF,ESO,NFs).

ereate_nodes(|], Unexp,Ext Unexp Ext).
create_nodes([F|NFs|,Unexp,Ext,Unexpl Extl) :-
member(F,Ext),
create_nodes(NFs,Unexp Ext Unexpl, Extl).
create_nodes([F|NFs],Unexp,Ext,Unexpl Extl) :-

19

member(F,Unexp),

create_nodes(NFs,Unexp,[F |Ext],Unexpl Extl).
ereate_nodes([F|NFs],Unexp,Ext, Upexpl Extl) -

create_nodes(NFs,[F|Unexp|,[F|Ext],Unexpl Extl).

rename_and_list_up_omega_nodes(] |, graph(Ns,Egs,Ws),graph(Ns,Egs,Ws),_,_).
rename_and _list_up_omega_nodes(|NForm|NForms),graph(NFs,Cnt, WFs),
graph{Nodes,Edges, Wnodes),ES0, Number) :-
rename_and_listup(NForm,graph(NFs,Cnt,WFs),graph(Ns0,Egs0,Ws0),ES0,Number),
N1 iz Number-1,
rename_and_list_up_omega_podes(NForms,graph(Ns0,Egs0,Ws0),
graph(Nodes, Edges, Wnodes) ESO,N1).

rename_and_listup([F ,ES|,graph(NFs,Cnt,WF 1),
graph([Nbr|NFs],Cntl,[Nbr|WFs]) ESO,Nbr) :-
equivalent_set(ES ES0),
replace_symbols_in_the_connections([F,ES],Nbr,Cnt,Catl).
rename_and_listup(NF,graph(NFz,Cnt WFs),graph{[Nbr|NFs|,Cntl, WFs),_,Nbr) =-
replace_symbols_in_the_connections{NF ,Nbr,Cnt,Cntl).

replace_symbols_in_the_cennections(NF Nbr,[],{]).

replace_symbols_in_the_connections{NF,Nbr,[C|Cnt],[E[Egs]) -
replace_symbols{NF ,Nbr,C E),
repiace_symbols_in_the_connections(INF,Nbr,Cnt, Egs).

replace_symbols(NF ,Nbr,[NF NFs|,[Nbr,ConnectedNodes]) :-
replace(NF ,Nbr,NFs,ConnectedNodes).

replace_symbols(NF Nbr,[NF1,NFs| [NF1,ConnectedNodes]) :-
replace{NF ,Nbr,NFs,ConnectedNodes).

replace(NF,Nbr,[||]).

replace(NF ,Nbr, [NF|NFs],[Nbr|CntNodes]) :-
replace(NF,Nbr,NFs,CotNodes).

replace(NF ,Nbr,[NF1|NFz|,[NF1|CntNodes]) :-
replace(NF Nbr NFs,CntNodes).

Figure 4.3. Construction of w-Graphs

20

4.4, Check of w-Loop Freeness of w-Graphs

Deflpition 4.4. w-Loop Freeness

Let Fy be a formula in 3 negation normal form and ES; its eventuality set. A node N
labelled with [F'|g in the w-graph of Fj is called w-node when H = ES;. The loop which
starts from an w-node W and returns to the same w-node W is called w-loop of W. (A loop
may visit several nodes). If there is no w-loop, then the graph is said to be w-loop free.

Example 4.4.1. In the Appendix 1, Ny, Ny, Ny are w-nodes and Ny— N, is an w-loop and
Ny—=N¢—=N, is also an w-loop. In the Appendix 2 (Figure 4.4.1), N is an w-node and the
graph i3 w-loop [ree.

The w-loop freeness of the w-graph is checked by the following procedure.

Checking the w-Loop Freeness of w-Graphs

(1) Initialize {1 to the set of all w-nodes in the w-graph of Fy.

(2) While 015£{}, repeat the following (3). If the repetition stops with 0 = {}, the graph is
w-loop free.

(3) Take cne of the w-npede W in {I. Check whether there exists an w-loop of W. If there
exists such a loop, the w-graph is not w-loop free. Otherwise, remove W fram 0.

Whether there exists an w-loop of W is checked as follows. Though we present a
nondeterministic one below for simplicity of description, the actual implementation in Prolog
gearches the path by uzing the backiracking mechanizm,

Findlng An w-Loop of W

(1) Initialize Traced to {W}, Np to W and ¢ to 0 (A node in Traced is said to be traced. A
node not in Troced is said to be untraced.)

(2) Repeat the following (3).

{3) If there is no node to which an edge outgoing from N, leads, stop with failure. Otherwise
take a node Ny to which an edge outgoing from N; leads. If Nyy, = W, stop with answer
*there exists an w-loop of W™. Otherwise, trace N; (add N; to Traced) and increment § by
1.

As we gave an intuitive explanation in example 3.2, some infinite paths in the w-graph
of Fp correspond to models of Fy. Moreover, we can show that w-graph of Fy is not w-loop
free if there is a model of Fy. Hence, w-loop freeness of the w-graph indicates that Fj is
unsatisfiable.

2

Example 4.4.2. We will illustrate the above procedure on the w-graph of oo P A oo-P.

Figure 4.4.1. The w-Graph of OoP A oO-P

(1) Find an w-loop of N4.
0. Initially Traced = { N4 }.
1. Take a node N2 as one of such nodes that have an edge from N4.
2. As N2#N4 apd N2 is an untraced node, add N2 to Traced. Then Traced becomes
{N4, N2}.
3. Take a node N2 as one of such nodes that has an edge from N2.
4. As N2=N4 and N2 is a traced node, check another node which has an edge from

N2.
5. Since there is no node that has an edge from N2, stop with failure.

(2) Select another w-node and check
Check w-node other than N4. However, there is no other w-node. Thus the graph is

w-loop [ree.

It iz easily implemented in Prolog as follows.

check_omega_loop_freeness (graph(Ext Egs, [W|W4]),'not omega-loop free’) :-
find_an_emega_loop(W Ext Egs).

check_omega_loop_freeness (graph(Ext, Egs,[W|Ws|),A) :-
check_omega_loop_freeness(graph(Ext, Egs, Ws) A).

check_omega_loop_freeness (graph{Ext,Egs,| |),'omega-loop free’).

22

find_an_omega_loop(W Untraced Egs) :-
find_path(W, W Untraced Egs Ega).

find_path(N,M,Untraced,[[N,CNs|[Eg:0] Egs) -
take_one_node(N1,CNs),
test(N N1 M, Untraced Egs).
find_path{N M,Untraced [[Node, ||Egs0],Egs) -
find_path(N M, Untraced, Egs0, Egs).

test(N .MM, _,).

test(N,N1,M,Untraced Egs) :-
member(N1, Untracad),
delete(N, Untraced Untracedl),
find_path{N1M, Untracedl Egs Egs).

take_one_node(N,|[N|rNs]).
take_one_node(N,{_|Ns]) -
take_one_node(N Ns).

Figure 4.4.2. Check of w-Loop Freeness of w-Graphs

23

4.5, Sequential w-Graphs Refutation Proeedure

Lastly in this section, we show the top level of the sequential w-graphs refutaion
procedure for checking the validity of the given formula,

Sequential w~-Graphs Hefutation Procedure

Negate a given formula F, compute initial node formula of the negation of given formula.
Then construct the w-graph § and check w-loop freeness of . If § is w-loop free, F is valid.
Otherwise, F i3 not valid.

The procedure is implemented in Prolog as follows.

prove(F) :-
refute{not(F),A),
write_answer(A,F).

refute(F A) -
compute_initial_node_formula(F F0,ES0),
construct_omega_graphs(F0,ES0,G),
check_omega_loop_freeness(G A).

write_answer('omega-loop free F) :-
pretiy_print(F),
pretty_print(‘is valid’).

write_answer('not omega-loop free,F) :-
pretty_print(F),
pretty_print{’is not valid’).

Figure 4.5 Sequential w-Graphs Refutation In Prolog

24

5. PARALLEL «»-GRAPHS REFUTATION PROCEDURE IN GHC

First, we discuss the parallel programming for each procedure compute_tnitial_node_formuia,
ezpand_node_formulas, construet_omega_graphs and cheek _omega_loop_freeness.

5.1. Parallel Computation of Initial Node Formula

The implementation of the procedure compute_initial_node_formula in GHC is quite
easy. Three subprocedures remove_tmplication_and_equivalence, move_not_inwards and
compute_eventuality_set were written in general recursive style in sequential version. They
are easily transformed to GHC programs with a few syntactical modifications. The im-
plementation iz as follows.

For example, take the first clause of remove_implication_and_equivalence. I the
head unification of the clause succeeds, then it forks three subprocesses which run in
parallel. The two of them try to solve remove_implication_and_equivalence(P, P1) and
remove_tmplication_and_equivalence(Q, @1), while the third one tries to bind A to and(P1, @1)
which is propagated to unily with a head of some other process.

compute_initial_node_formula(F,NNF EveSet) :-
negation_normal_form(F ,NNF),
compute_eventuality_set{NNF EveSet).

negation_normal_form(F,G) :-
remove_implication_and_equivalence(¥ ,F0),
move_not_inwards(F0,G).

remove_implication_and_equivalence(and(P,Q), A) :-
remove_implication_and_equivalence{P P1),
remove_implication_and_equivalence(Q,Q1),
A=and(P1,Q1).
remove_implication_and_equivalence(or(P,Q), A) -
remove_implication_snd_equivalence(P,P1),
remove_implication_and_equivalence(Q,Q1),
A=or(P1,Q1).
remove_implication_and_equivalenee(always(P), A) -
remove_implication_and_equivalence(P Pl1),
A=always{P1).
remove_implication_and_equivalence(eventually(P), A) :-
remove_implication_and_equivalence(P,P1),
A=ceventually(P1).
remove_implication_and_equivalence| next(P), A } :-
remove_implication_and_equivalence(P,P1},
A=next(P1).
remove_implication_and_equivalence(imply(P,Q), A) =-
remove_implication_and_equivalence(P,P1),
remove_implication_and_equivalence{Q Q1],
A=or(not(P1),Q1).
remove_implication_and_equivalence(equivalence(P,Q), A) =~
remove_implication_and_equivalence(P P1),
remove_implication_and_equivalence(Q,Q1),
A=or(and({F1,Q1),and(not{P1),not{Q1))).
' 25

remove_implication_and_equivalence(not(P), A) =-
remove_implication_and_equivalence(P, P1),
A=not{P1).

remaove_implication_and_equivalence(P, A) :- atom(P) | A=P.

move_not_inwards{ and(P,Q), A) -
move_not_inwards(F,F1),
move_not_inwards(Q,Q1), A=and(P1,Q1).
move_not_inwards(or(P,Q), A) :-
move_not_inwards({P P1),
move_not_inwards(Q,Q1), A=or(P1,Q1).
move_not_inwards(always(P)A) -
move_not_ionwards(P,P1), A=always(P1).
move_not_inwards(eventually(P), A) -
move_not_inwards(P,P1), A=eventually(P1).
move_not_inwards(next(P), A} :-
move_not_inwards(P,P1), A=next{P1).
move_not_inwards(not(and(P,Q)), A) :-
move_not_inwards(not(P),P1),
move_not_inwards(not(Q),Q1), A=or(P1,Q1).
move_pot_inwards(not(or(P,Q)), A) :-
move_not_inwards(not(P),P1),
move_not_inwards(not(Q),Q1), A=and(P1,Q1).
move_not_iowards(not(always(P)),A) :-
move_not_inwards(not(P),P1), A=eventually(F1).
move_not_inwards(not(eventually(FP)), A) =-
move_not_inwards(not(P),P1), A=always(P1).
move_not_inwards(not(next(P)), A) :-
move_not_inwards(not(P),P1), A=next(P1).
move_not_inwards(not(net(P)), A) -
move_not_inwards(P,A).
move_not_inwards(not{P},A) :- atom(P) | A=nst(P).
move_not_inwards(P, A) :- atom(P) | A=P.

compute_eventuality_set{and(A,B),ES) =
compute_eventuality_set{A ES1),
compute_eventuality_set(B,ES2)union(ES1 ES2,ES).
compute_eventuality_set{or(A,B), ES) =
compute_eventuality_set{A ES1),
compute_eventuality_set(B,ES2) union(ES]1,ES2,ES).
compute_eventuality_set(alway:(A) ES) -
compute_eventuality_set(A ES).
compute_eventuality_set{pext{A), ES) :-
compute_eventuality_set(A,ES).
compute_eventuality_set{not[A), ES) -
compute_eventuality_set(A,ES).
compute_eventuality_set(eventually(A}, ES) :- ES=[A].
compute_eventuality_set(A, ES) :- atom(A) | ES=[].

Figure 5.1, Parallel Computation of Initial Node Formula
26

5.2. Paralle]l Expansion of Node Formulas

As the procedure ezpand_node_formulas is rather complicated, we divide it into some
modules and make clear what processes should rum in parallel. Among the rules in the
coovertion from NPF to DNF, DNF2~DNF6 can be applied in parallel, and h-set can be
computed at the same time. Therefore, we divide ezpand_node_formulas into the following
three sequential subprocesses, and consider a parallel programming of each subprocess.

1. Negation Normal Form (negation_nermal form)

convertion from NNF to NPF

2. Distribute A over W (distribute_and_over_ar)

convertion by using DNF1

3. Simplification (simplify_formulas)

conversion by using DNF2~DNF&

The process of negation_normal_form is implemented in GHC similar to the process
in recursive style such as remove_implication_and_equivalence .

As for the process of distribute_ond_over_or, we use the Wand’s algorithm[Wand 80| in
order to get high efficiency. Though it is suitable rather for sequential execution and lacking
clarity, it provides high efficiency. As this subprocedure has more sequential characters.

The output of distridute_and_over_or is 8 disjunction of the conjunction of temporal
literals. Each conjunction is of the form

Fy, Fa0G,. oG,
where Fy, ..., Fn are formulas which include po temporal operators The process simplify_formulas
executes the convertion of the formulas by the rules DNF2~DNFB and generate a set of node
formulas. Do the following procedure sequentially for each conjunction.

(1) Initially set NeztFormulas = { }. For each temporal literal F in the conjunction, do
the following in parallel.

If —=F is included, stop all the other processes and return the result false.

If F is included as a formula F;, stop the process of Fi.

If Fisinthe form of 0G;, &y is added to NeztFormulas.

Otherwize, do nothing.
(2) For NexztFormulas , do the following in parallel.

If NezxtFormulas = { }, then returp Ofrue as a result and compute the h-set.

If NeztFermulas = {Gy, ..., Gm}, thea retwn Gy A ... A Gm and compute the b-set.

The implemantation is shown below.

In the program, ‘&' denotes the sequential execution. Note that subprocesses of simplify_formulas
have ‘JudgeStop’ as an argument. It is 3 termination flag in order to terminate other
processes related to a conjunction € at the moment when C is found to be false.

expand_node_formulas(F ,H,Xn E50,NodeFormulas) =
pext_prefix_form(F ,NFF),
distribute_and_over_or(NPF DNF1),
simplify_formulas(ESO,H, Xn DNF1,NodeFormulas).

oEon% Next Prefix Form

27

pext_prefix_form{and(P,Q),A) -
next_prefix_form(P,P1)},
next_prefiz_form(Q,Q1), A=and(P1,Q1).
next_prefix_form(or(F,Q), A) -
next_prefix_form(P P1),
next_prefix_form(Q,Q1), A=er{P1,Q1).
next_prefix_form{always(P),A) -
next_prefix_form(P P1),
=and(P1,next(always(P))).
next_prefix_form{eventually(P), A) =-
next_prefix_form(P,P1),
A=or(Pl,next{m_eventually{F))).
next_prefix_form({m_eventually(F),A) -
pext_prefix_form(F,P1),
A=or(Pl,next({m_eventually(P))).
next_prefix_form(not{F),A) :- A=not({P).
pext_prefix_form(P, A) - atom(P) | A=PF.

%769 Distribute A over V (Wand’'s Algorithm)

distribute_and_over_or{Formula,Answer) -
distribute_and_over_or{Formula,| |,| |,Answer).

distribute_and_ower_or(or(X1,X2),Lits, Rest Ans) :-
distribute_and_over_or(X1,Lits Rest,Al),
distribute_and_over_or(X2,Lits Rest,A2),
append(A1,A2 Ans).

distribute_and_over_or{ and{X1,X2),Lits,Rest, Ans) :-
collect_and(and(¥X1,X2) NewRest),
union(Rest,NewRest, [Rest1|Rest2)),
distribute_and_over_or{Festl,Lits Rest2 Ans).

distribute_and_over_or(X,Lits Rest Ans) :- otherwise |
distribute_and(X,Lits,Rest, Ans).

collect_and(and(X1,X2),Rest) :-
collect_and(X1,Restl),
collect _and{X2 Rest2),
union{Restl Rest2 Rest).
collect_and(X,Rest) :- otherwise | Rest=[X].

distribute_and(X Lits Rest,Ans) -

member(X, Lits,yes) |

distribute_next_and(Lits,Rest,Ans).
distribute_and(X Lits Hest, Ans) -

otherwise |

distribute_next_and([X|Lits| Rest,Ans).
distribute_pext_and(Lits,[|,Ans) - Ans=[Lits].
distribute_next_and(Lits [Rest1|Rest2] Ans) :-

distribute_and_over_or{Rest]l Lits Rest2 Ans).

%% % Simplification
28

simplify_formulas(ES0,H0,Xn,[F |DNF|,NodeFormulas) :-
(gather_next{JudgeStop F,Next),
check_contradiction(JudgeStop,F,[]}) &
supplement_next_part(JudgeStop,Next, NewNext) &
make_node_formula_list(ES0,H0,Xn, NewNext, NodeFormulas,EndNodeFs),
simplify_formulas(ES0,H0,Xn,DNF EndNodeFs).

simplify _fermulas(ES0,HO,Xn,| |, NodeFormulas) -
NodeFormulas=|[end,end]].

gather_next(JudgeStop,[next(F)|Fs|, Next) :-
prolog{var{JudgeStop)) |
Next=|F|EndNext|,
gather_next{JudgeStop,Fs EndNext).
gather_next{JudgeStop,[F|Fs] Next) :-
prolog(var(JudgeStop)),
Fy=next(_) |
gather_next{JudgeStop Fs Next).
gather_next(stop,_,_).
gather_next(JudgeStop,| |, Next) :- Next=[|].

check_contradiction{Judge,|],_).
check_contradiction{Judge,[not(F)|Fa],C) :-
member(F,C, yes) |
Judge="stop".
check_contradiction(Judge,[F|F3],C) :-
Fy\=not(G),
member({not(F),C,yes) |
Judge="stop’.
check_contradiction(Judge,[F|_],) -
=="falze’ |
Judge="stop’.
cheek_econtradiction{Judge, [F|Fs],C) - otherwize |
cheek_contradiction{Judge Fs, [F|C[).

supplement _next_part(stop, ,NewF) :-
NewF ="falze".
supplement_next_part{Judge,| |, NewF) -
prolog{var(Judge)) |
NewF =|[always(true)|. supplement_next_part(Judge,F ,NewF) :-
prolog(var(Judge)), F\=]] |
NewF=F.

make_node_formula_list(ES0,H0,Xn F ,NF EndOfNF) - F\=false |
merge_next(F,F1),
compute_h_set(ES0,HO,F1,H),
NF=([Xn,(F1,H)}|EadOfNF].
make_node_formula_list(_,_,_,false, NF,EndOfNF) :-
NF =EndOfNF,

merge_next([F|Fs|,F1) - Fs\=[] |
F1=and(F2,F),
29

merge_next(Fs F2).
merge_next{[F],F1) :- Fi=F.

compute_h_set(ESQ,HOF H) :-
equal{ES0,HO,no) |
compute_marked_eventuality_set(F ES1),
delete(ESO,ES1, H1),
union(HO,H1 H).

compute_k_3et{ES0,HO,F H) :-
otherwise |
compute_marked_eventuality_set(F,E51),
delete(ES0,ESL H).

compute_marked_eventuality _set(and(F,Q),H) -
compute_marked_eventuality_set(P,H1),
compute_marked_eventuality_set(Q,H2),
union{H1,H2 H).

compute_marked_eventuality_set(or(P,Q),H) :-
compute_marked_eventuality_set(P H1),
compute_marked_eventuality_set(Q H2),
union(H1,H2 H).

compute_marked_eventuality_set(always(P),H) :-
compute_marked_eventuality_set{P,H).

compute_marked_eventuality_set(m_eventually(P),H) :-
H=[P].

compute_marked_eventuality_set(F H) -
otherwise | H=[|.

Figure 5.23. FParallel Expansion of Node Formulas

3.3. Parallel Construction of w-Graphs

In the construct_omega_graphs procedure, we try to execute expand_node_formulas
procedure for each node in parallel. Since new node formulas are generated as an output
stream of each node process at the same time, it is impossible for each ezpand_node_ formulas
process to decide whether the node formula is an existing one or not. It is necessary the
system to introduce some graph manager which controls all node formulas. It manages
creation and abortion of node processes,

The process construct_omega_graph forks three subprocesses graph_manager, node_process
and mutiplezer. Graph_manager creates a node_process il a new node formula is generated
and aborts it if the expansion of the node formula is over. It also stores a current list of
nade formulas and checks whether newly generated node formula is an existing one or not.
Node_process expands the corresponding node formula. Multiplerer arranges generated
node formuizs in order by using the Kusalik's algorithm (6.1.4). If all node formulas are
expanded then graph_manager terminates.

A graph is represented as a list of quadruples (N ode N mbr, OutStrm, InStrmas, NodeType)
where NodeNmbr is the node number, OutStrm iz the stream wariable, and NodeType
is either omega or not — omega. InStrms is a list of the stream variables associated
with the node which has an edge flowing into the node NodeNmbr. Thus, at the end of
conatruct_omega_graphs procedure, graph_mianager generates the output in this form.

ao

Let Fj be a given formula in NNF.

(1) Create the processes of graph manager GM, multiplexer MUX, and node process N P,
correspondoing to the node formula [Fol¢y. Initialize Ezist to { } and Graph to {}. For
each process, do the following (2).
(2) NP : For each node process NP, let NF be the corresponding node formula. Do the
followings.
Expand NF. Assume that NFy, ..., NF; are the node formulas generated from NF .
For each i, send MUX a pair of (NF;, X) where X i1 the stream variable corresponding
to NF;.
Then terminate.
MUX : Merge the inpul streams into MergedStream and send it to GM. If every stream
gets to the end_of_stream, it terminates.
GM : Repeat the following procedure until MergedStream is { }.
Take a node formula NF; from MergedSéream.
I NF; is a member of Exist, then send a message to the corresponding NFP; (as a
result, X is added to the tail of InStrms of NF;).
If NF;is not a member of Ezist, then register NF; to Ezist as a new node formula,
and create the corresponding node process N FP;. (the head of the InStrms of NP,
is X). Add the pode to Graph.

(NF 1, Xk)
(NF 2, Xk}

(NFn, Xk)

InStrms= [_,_,XkISVI [XKSV]

Fizure 5.3.1. Stream Flow In Parallel Constructlon of w-Graph

construct_omega_graphs(JudgeStop,ES0,F Graph) :-
Exist=[[No0,X0,10,F||NewExiat],
Graph=[[No0,X0,10,n0t-omega]|NewGraph),
node_procesa(JudgeStop, ES0,0,Exist,StrmList),
multiplexer{JudgeStop, StrmList, MrgdStrm),

31

graph_manager{JudgeStop,ES0,0, MrgdStrm,Graph, Exist).
%% 7% Node Process

node_process(JudgeStop,ESQ,NodeNo,[[No,Xn, _,(F,H)]|Exist],StrmLiat) :-

prolog(var{JudgeStop)) |

expand_node_formulas(F ,H Xn,ES0,ExpFormulas),

MNa:=NodeNeo,

StrmList=[ExpFormulas|EndStrm],

NodeNol:=NodeNo-+1,

node_process(JudgeStop ES0,NodeNol,Exist, EndStrm).
node_process{_,_,_,[|,StrmList) :- StrmList=[].
node_process(stap,_,_,_,_).

%9% Mutiplexer

multiplexer{JudgeStop,StrmList, Mrg) -
merge(JudgeStop, StrmList Mrg).

merge(JudgeStop, StrmList Mrg) -

prolog{var(JudgeStop)),
wait_strm(JudgeStop,StrmList ActiveStrm, CheckStrms) |
arrival{JudgeStop, ActiveStrm,CheckStrms Mrg).
merge{JudgeStop,| ,E) - E=[].
merge(stop,_,_).

arrival(JudgeStop,[[E,F||ActiveStrm],CheckStrms,OutStrm) :-
prolog(var{JudgeStop]} |
OutStrm=/{[E,F|[Mrgl,
busy_wait{ JudgeStop,CheckStrms,[ActiveStrm],Mrg).
arrival{ JudgeStop,| |, CheckStrms,OutStrm) -
prolog{var{JudgeStop)) |
OutStrm=Mrg,
busy_wait(JudgeStop,CheckStrms,| | Mrg).
arrival(stop,_,_,_).

busy_wait{ JudgeStop,||[E F][Strm}|CheckStrms],CheckedStrms, OutStrm) :-

prolog(var{JudgeStop)) |

QutStrm==|[E,F|[Mrgi,

busy_wait{ JudgeStop,CheckStrms,[Strm|CheckedStrms] Mrg).
busy_wait(JudgeStop,||]|CheckStrms]|,CheckedStrms,OutStrm) =-

prolog(var{JudgeStop)) |

OutStrm=Mrg,

busy_wait(JudgeStop,CheckStrms,CheckedStrms,Mrg).
busy_wait{ JudgeStop,[Strm|CheckStrms],CheckedStrms Mrg) -

prolog(var(JudgeStop)),

prolog{wvar(Strm)) |

busy_wait(JudgeStop,CheckStrms,[Strm|CheckedStrms] Mrg).
busy_wait(JudgeStop,| |,CheckedStrms,OutStrm) -

prolog(var(JudgeStop)) |

OutStrm=Mrg,

3l

merge(JudgeStop,CheckedStrms Mrg).

busy_wait{ JudgeStop,Strms,CheckedStrms Mrg) -
prolog(var{JudgeStop)),
prolog(var(Strms)) |
make_stream(JudgeStop,Strms,CheckedStrms,CheckStrms),
merge{ JudgeStop,CheckStrms Mrg).

busy_wait{ stop,_,_,_).

make_stream(JudgeStop,X,[Y|L],L1) =-
prelog(var{JudgeStop)) |
L1=[Y|s],
make_stream({ JudgeStop X, L.5).
make_stream(JudgeStop,X,[],L1) -
prolog({var(JudgeStop)) |
L1=X.
make_stream(stop, X,_,L1) = L1=2X.

wait_strm(JudgeStop,{[(E,F]|Strm]|StrmList],5t1,5t2) :-
prolog(var{JudgeStop)) |
St1=[[E,F]|Strm],
at2=>5StrmList.
wait_strm(JudgeStop,|[]|StrmList],St1,8t2) -
prolog(var{JudgeStop)) |
Sti=[],
St2=5trmList.
wait_strm(JudgeStop, [Strm|StrmList], Active St) :-
prolog{var{JudgeStop)),
preleg({var(Strm]),
wait_strm(JudgeStop,StrmList ActiveStrm,CheckStrms) |
Active=ActiveStrm,
St=[5trm|CheckStrms].
wait_strm(stop,_,_,_).

9% 7% % Graph Manager

graph_manager(JudgeStop,ESO,No,[[Xn,(F,H)]|Fs],Graph, Exist) :-
prolog{var{JudgeStop)} |
exist_node(JudgeStop,ES0,[Xn,(F,H)],Graph,Exist) &
graph_manager(JudgeStop,ES0,No,Fs,Graph,Exist).
graph_manager(JudgeStop,ES0,No, [[end,end]|Fs]|,Graph Exist) :-
prolog(var{JudgeStap)) |
Nol:=No+1,
check_graph_termination{JudgeStop,Nol F1,Graph,Exist) &
graph_manager(JudgeStop, ES0,Nol Fs,Graph, Exist).
graph_manager(_,_,_,[],_,_)-

exist_node{stop,_,_,_._).
exist_node(JudgeStop, ES0,[Xn (F H)|,Graph,Exist) :-
prolog(var(JudgeStop)) |
exist_node(ESO,[Xz,(F H)|,Graph,Exist).
a3

exist_node(ESO,[Xn,(F H)|,Graph,Exist) :-
check_member((F H),Exist InStrm,yes) |
search_end(InStrm, Endln),
Endlp=[¥n|NewEndlx|.

exist_nede(ES0,[X0,(F,H)|,Graph,Exist) =
otherwize |
check_type(ESD,H, Type),
lo={X0|Endln],
search_end(Exist,EndExist),
EndExist={[Ne¢,Xn,In,(F,H)]|EndExist1],
search_end{Graph,EndGraph),
EndGraph=({No,Xn,In, Type||EndGraphl].

search_end([G|Gs),EndG) :- search_end(Gs,EndG).
search_end(G,EndG) :- prolog{var(G)) | EndG=G.

check _type(ESOH,Type) :- equal(ESO,H, yes) | Type="omega’.
check _type(ESO,H,Type) :- otherwise | Type="not-omega’.

check_member((F H),[[_,_,In(Fn Hn)|[Exist] Instrm Ans) :-
F==FE,H==HH I
Instrm=In,
Ans="yes’,
check_member((F H),Exist Instrm Ans) :-
prolog(var{Exist]) |
Instrm="no’,Ans="no’".
check_member((F H),[_{Exist],Instrm,Ans) :- otherwise |
check_member((F H}),Exist,Instrm,Ans).

check _graph_termination{JudgeStop, Num0,Fs,Graph,Exist) :-
prolog(var{JudgeStop)),
prolog(var(Fs)) |
check_graph_termination{Num0,0,Exist,Graph).
check_graph_termination(stop,_, ,_,_).
check_graph_termination(JudgeStop,Numo0,[[_,_||Fs],_,) -
prolog(var{JudgeStop)) | true.
check graph_termirnation(NumO Numl Exist,Graph) :-
prolog(var(Exist)),
Num0 < Numl | true.
check_graph_termination(Num0,Num1l,Exist,Graph) :-
prolog(var{Exist)),
NumO=:=Num]l |
Exist=][],
terminate_graph(Graph).
check_graph_termination(Num0,Num, |[No,_,_,_||[Exist] Graph) :-
integer(No) |
Numl:=Num-1,
check_graph_termination{Num0,Numl, Exist,Graph).
check_graph_termination{_,_,_,_) :- otherwise | true.

terminate_graph([[_,_,In,_}]|Graph]) :-
34

gearch_end{In Endln) &
Endln={ |,
terminate_graph{Graph).

terminate_graph{Graph) :-
prolog{var(Graph)) |
Graph=[|.

Figure 5.3.2. Parallel Construction of u-Graphs in GHC

5.4. Parallel Check of w-Loop-Freeness of w-Graphs

The program of check_of_omega_loop_freeness in Prolog is in typical backtracking
style. Because GHC has no backtracking mechanism, we have to change the algorithm for
GHC program. We uze a programming technique similar to one in [Shapire 83]. Each node
is considered as a process sending messages each other. With each node NodeNmlbr, we
associate a stream variable OutStrm. Let M be the number of nodes in the graph. The
graph is represented as a list of M quadruples (Node Nmbr, OutStrm, InStrma, NodeType)
where NodeN mbr is the node number, OutStrm is its associated stream variable, InSirma
is a list of the stream variables associated with the node which has an edge flowing into the
pode Node Nmbr and NodeType is either omega or not_omega. Moreover, extra argument
*Judgestop’ is added as a termination fag. It can stop other processes as soon as an w-leop
is found.

Example 5.4. Let X1,X2 and X3 be stream variables.
[(8,X0,[|,net-omega),(1,X1,[X0,X1,X2],omega),(2,X2,[X0,X1,X2|, not-omegal]
represents the graph shown in example 3.2.(Figure 3.2).

The following procedure shows the parallel checking the w-loop freeness of the w-graph.

Farallel Cheek of w~Loop-Freeness of w-Graphs
(1) Initialize C' as the set of all nodes in the w-graph. For each node, instantiate the head
of X by its node number N and add InStrmas to the tail of Xp. (As a result, InStrms
becomes to the list of paths flowing inoto that node. The length may be infinite.)
(2) For an w-node whose node number is I, let L, be || and repeat the following (3).
(3) If € = {}, then stop with failure.
If JudgeStop = stop, then stop with answer *There exists an w-loop®.
Otherwise, assume that InStrms iz in the form of [[A|X]|Paths], then do (3)-1 and (3)-2 in
parallel.

(3)-1 If N = A, then set JudgeStop to "stap’.

If N3£A, then append [A] to Ln, extract a node from C.

(3)-2 Let InStrms be Paths and repeat (3).

If all the processes for the nodes stop with failure, then answer "The graph is w-loop free.”

check _omega_loop_freeness{JudgeStop,Graph) :-
check_omega_loop_freeness(JudgeStop,Graph,Graph) &
write_result{JudgeStop).

write_result(JudgeStop) -
prolog(var(JudgeStop)) |
prolog{pretty_print{"The graph iz omega-loop free’)).

write_result{stop) :-

35

prolog(pretty_print(*The graph is not omega-loop free’)).

check_omega_loop_freeness{JudgeStop,Graph, [N, Xn,INs,omegal|Gs]) :-

prolog{var{JudgeStop)) |

Xn=(N[Xa1],

Xnl1=INs,

find_omega_loop(JudgeStop,Graph,| |, N, Xn1),

check_omega_loop_freeness{JudgeStop,Graph,Gs).
check_omega_loop_freeness(JudgeStop,Graph,[[N,Xn,INs,not-omega)|Gs]) -

prolog{var{JudgeStop])] |

Xn=[N[Xnl],

Xnl=INs,

check _omega_loop_freeness(JudgeStop,Graph,Gs).
check_omega_loop_freeness(_, ,[]).
check_omega_loop_fresness(stap, _,_).

find_omega_loop{JudgeStop,[G|Graph],Ln,N A} -
prolog{var{JudgeStop)} |
nodel(JudgeStop, Graph, Lo, N A).

find_omega_loop(_,[J,_,_,.)-

find_omega_loop(step,_,_,_._).

nodel{JudgeStop,Graph, Lo, N,[A[X]) -
prolog(var(JudgeStop)) |
pode2(JudgeStop,Graph,Ln,N,A),
nodel({JudgeStop,Graph, Lo, N X).

nodel(_,_,_,_,[])-

nodel(stop,_,_,_,_).

node2(JudgeStop,Graph, Lo, N, [A[X]) :-

N=\=A,

member(A Ln,ne) |

append([A],Ln,NewLn) &

find_omega_loop(JudgeStop,Graph,NewLn, N, X).
node2(JudgeStop,_ Lo, N,[A]_]) :-

N=:=A,

prolog(var(JudgeStop)) |

JudgeStop="stap".

o o e P P

Figure 5.4. Parallel Cheek of w-Loop Freeness of w-Graphs
5.5. Parallel w-graphs Refutation Procedure

The paralle] w-graphs refutation procedure for checking the validity of the given formula
is implemented as follows.

prove(F) -

refute(not(F),JudgeStop) &
prolog{write_answer{JudgeStop,F]).

28

refute(F,JudgeStop) :-
compute_initial_node_formula{F F0,ES0),
construct_omega_graphs{JudgeStop,ES0,(F0,| |),Graph),
check_omega_loop_freeness(JudgeStop,Graph).

write_answer(stop F) :-
prolog(pretty_print{F)),
prolog{pretty_print{is valid’).

write_answer(JudgeStop,F) :-

prolog{pretty_print{F)),
prolog{pretty_print(’is not valid").

Figure 5.5. Parallel w Graphs Refutation In Prolog

Refute consists of three parallel processes compute_initial_node_formula, construet_omega_graphs
and check_omega_loop_freeness. Each process again consists of many parallel processes.
Note that construct_omega_graphs and check_omega_loop_freeness have a common vari-
able JudgeStop. It is set to "stop’ in order to terminate the graph construction if an w-loop
is found in the cheek_omega_loop_freeness process.

6. PARALLEL PROGRAMMING METHODOLOGY IN GHC

In this section, we discuss on parallel programming methodology in GHC.
6.1. General Principles for Enhancing Concurreney

First, we discuss on general principles for enhancing concurrency.

£.1.1. Early Publication

Information should be made public to other processes as soon as it is fixed in one process.

Example 6.1.1. Negation Normal Form
Consider the program of negation_nermal_form.

negation_normal_form(F,G) :-
remove_implication_and_equivalence(F,F0),
move_not_inwards{F0,G).

Compare the following two programs of remove_implication_and_squivalence.
[Program (A) |

remove_implication_and_equivalence(imply(F,G), Answer) :-
remove_jmplication_and_equivalence(F,F1},
remove_implication_and_equivalence(G,G1) | Answer=or{not(F1),G1).

[Program (B) |

remove_implication_and_equivalence(imply(F,G), Answer) :-
remove_implication_and_equivalence(F F1),
remove_implication_and_equivalence(G,G1),
Answer=or{not{F1),G1).

In program (A), the active part is not executed belore trust operation, that is, publi-
cation of Answer must wait until both remove_simplication_and_equivalence(F', F'1) and
remove_implication_and_equivalence(G, G1) succeed. As far a3 Answer is not yet instan-
tiated to a non-variable term, the head unification of move_not_fnwards is suspended.
Though program (A) is more suitable for debugging on sequential machines because of its
simplicity of computation trace, it is inefficient for parallel execution. move_nol_inwards
process must wait for all implications and equivalences to be eliminated from inside net in
order to proceed. On the other hand, in program (B), three processes can run in parallel so
that Answer is propagated as soon as Answer = or(not(F1), G1) is executed, which allows
the head unification of move_not_snwards. In spite of the complicated computation trace,
program (B) provides high concurrency. We should adopt program (B) after debugging.

£.1.2. Early Commitment

Each process should run independently as far as possible without being suspended by
the delay of another process, even if they share common variablea.

Example 6.1.2. Union

Compare the following two programs of union.
[Program (C) |

union([X[S1],52,8) :- member(X,52,yes) | union(51,52,5).
union(fX[51],52,8) :- member(X,52,n0) | S=[X|NewS], union(51,52, NewS).
union(S1,[X[52],5) :- member(X,51,yes) | union(S1,52,58).
upion(S1,{X[52],5) - member(X,51,n0) | S=[X|NewS|, union(S51,52,NewS).
union(f],52,5) - §=52.

union(S1,[],S) :- §=S51.

member(X,[Y]5],Answer) =« X===Y | Answer—ryes.
member(X,[Y[S],Answer) = X\=Y | member(X,5,Answer).
member(X,| |, Answer) :- Answer=no.

[Program (D) |

union([X|51],52,L1,L2,8) :- member(X,L2,yes) | union(S1,52,L.1L2,5).
union([X[51],52,L1,L2,5) - member(X,L2,n0) | S=[X|New5], union(51,52,[X|L1],L2,NewS).
union(51,[X|52],L1,L.2,5) :- member(X,L1,yes) | union(S1,52,L1,L.2,5).
unien(S1,[X[S2],L1,L2,5) :- member(X,L1,n0) | 8=[X|NewS5], union(S1,52,L1,[X|L2],NewsS).
union(]],52,L1,L2,5) - 5=52.

union(S1,[],L1,L2,S) - §=S1.

member(X,[Y|S],Answer) ;- X==Y | Answer=yes.
member(X,[Y|S],Answer) :- X\=Y | member(X,5, Answer).
member(X,| |,Answer) ;- Answer=no.

In program (C), if member in the passive part succeeds with an anwer ne, union does not
return the answer until all the elements of §2(S51) are checked. Therefore, if the stream
52(51) is partially instantiated, the unification of member in the passive part is suspended.
On the other hand, in program (D), the third and the fourth arguments in union, which
accumulate the set elements zlready output so far, are always completely instantiated to
lists. Hence, the unification of member in the passive part is never suspended, though these
additional arguments copsume additional memory space. In general,in order to realize early
commitment, predicates in the passive part should be written so that the clause is trusted
even if the shared variables are partially instantiated.

£.1.3. Decision Distribution

Decision should be done in the distributed manner as far as possible if it does not
increasze the overall communication cost excessively.

Example 6.1.3. Bounded Buffer
Consider the bounded buffer problem [Furukawa and Takeuchi 85],[Ueda 85].
[Program () |

bounded _buffer_communication :- produce(0,100,B), consume(B).

produce(N,Max,B) - N < Max | M=N, B=[M|NewB|, N1:=N+1, produce(N1,Max NewB).
produce(M ,Max B} :- N >=Mazx | M="EO5', B=[M|_].

consume([H|Strm]) - H\="EOS’ | write(H), consume{Strm).
consume([H|Strm]) :- H=="EOS’ | true.

[Program (F) |
bounded_buffer_communication :- produce(0,100,H}, buffer(N,H,T), consume(H,T).

produce(N ,Max,[M|L]) :- N < Max | M=N, N1:=N+1, produce(N1,Max,L).
produce(N Max,[M|_]) - N > == Max | M="EQS".

buffer(N,H,T) :- N>0 | H=[_[H1], N1:=N-1, buffer(N1,H1,T).
buffer(N H,B} :- N=:=0 | B=H.

consume([H|Hs|,B) - H\= "EO0S' | B=|_|{T3|, write(H), consume(Hs, Ts).
consume([H[Hs|,B) .- H=="E0S8' | B={|.

In program (E), produce generates a stream of integers and sends it to the buffer. When
an integer is generated, a slot in the buffer is created and the integer is putted. Consume
reads the value from the head of the buffer. In program (F)produce creates a stream of
intergers and puts the integer to the slot if there is a slot in the buffer. The process produce
itsell mever creates a slot. If the head of the buffer is instantiated, consume reads it and
makes a new tlot at the tail. The head and the tail of the stream are initially related by the
goal buf fer. These three processes run in parallel. In program (E), consume is suspended
until produce generates the value for some slot, and processing of the next slot alzo have to
wait. On the other hand, in program (F), buf fer only manages the relations of slots and
the values put to each slot is decided independently. This is a typical example which shows
the effectiveness of decision distribution by using difference lists.

ient unicatio etwo

Communication network connected by shared variables should be as simple as possible
if the cost of devising simple networks pays.

GHC uses streams lor process communication similarly to other concurrent program-
ming languages. Stream is dynamic Bow of an arbitrary data structure. The length of stream
it not fixed, while that of list is fixed. Parallel processes shares common stream variables
to communicate each other by sending messages by partially instantiating streams. When a
mes3age arrives at one process, the process computes with this message and proceeds to the
next stage. Process communication can be supported only by this mechanism and special
elements such as superviser or controller are unneccessary.

The communication takes various form depending on the problem, no communication,
one-way one-time communication, one-way stream communication, two-way siream com-
muanication, communication through a dedicated merge process for multiplexing streams to
shared resource,

Example 6.1.4. Merge

40

We show below two kinds of fair merge of streams in the communication between several
sender processes and one receiver process. The neccesity of internal merge in "communication
from multiple processes to one process” was also a problem in Concurrent Prolog [Shapiro
83]. Kusalik gave a solution to this problem [Kusalik 84].

| Program (G)]
merge_stteams - generate_streams([S1,52,...,Sn]), merge(51,52,...,S0,MrgdStrm).

merge([X|X1],X2,...,. X0, MrgdStrm) :-

MrgdStrm=[X|NewStrm|, merge(X2,..., X0, X1,NewStrm).
merge(X1,...,[X|Xi],... Xn,MrgdStrm) -

MregdStrm=[X|NewStrm|, merge{X1, . X; X4, XnXiNewStrm).
merge(X1,X2,...,[X[Xn],MrgdStrm) :-

MrgdStrm=[X|NewStrm], merge(X1,X2,.... Xn,NewStrm).

merge([|]|X1],X2,...Xn MrgdStrm) - merge(X2,...,.Xn).

merge(X1,... Xi,...,[| |[Xn],MrgdStrm) :- merge(X1,... Xa—1).
| Program (H) | multiplexer
merge_streams - generate_streams(StrmList), merge(StrmList MrgdStrm).

merge(StrmList,Mrg) :- wait_strm({StrmList,Out,CheckList) |
mergel{Out,CheckList Mrg).
merge(| LE) - E=[].

mergel([E|StrmList|,CheckList,Out) :- busy_wait{CheckList Mrg,NewStrmList, NewMrg) |
Out==[E|Mrg|, merge([StrmList[NewStrmList] NewMrg).

mergel(] |,CheckList,Out) :- busy_wait(CheckList Mrg,NewStrmList,NewMrg) |
Out=Mrg, merge(NewStrmList NewMrg).

buzy_wait([[E|Strm]|CheckList],Out, 5t NewMrg) :-
OQut=[E|Mrg], St=[Strm|NewStrmList],
busy_wait(CheckLizt Mrg NewStrmList NewMrg).
busy_wait([| ||CheckList], Mrg,NewStrmList, NewMrg) -
busy_wait(CheckList Mrg,NewStrmList, NewMrg).
busy_wait([Strm|CheckList] Mrg,5t,NewMrg) - prolog(var(Strm)) |
St=[Strm|NewStrmList), busy_wait{CheckList,Mrg,NewStrmList, NewMrg).
busy_wait([,Mrg,E,M) - E=[], M=Mrg.
busy_wait(Strms,Mrg,5t,NewMrg) - prolog(var(Strms)) |
St=>5trms, NewMrg=Mrg.

wait_strm{[[E|Strm[|StrmList],5¢t1,5t2) -
St1=|E|Strm], St2=StrmList.

wait_strm([] ||StrmList],5t1,5t2) -
Stl1=[], St2=StrmList.

wait_strm([Strm|StrmList],Active,5t) -

41

prolog(var(Strm)), wait_strm(StrmList, ActiveStrm, CheckStrms) |
Active=ActiveStrm, St=[S5trm|CheckStrms].

Program (G) shows the method of merging of n processes (n is fixed) by buildipg communica-
tion network specific to the problem. When a message it sent through the output stream
of a sender process, it is received by the receiver process and added to MrgdStrm, and the
priority of the sender process is lowered. On the other hand, program (H) shows the method
of merging by multiplexer based on the Kusalik's algorithm.

Multiplexer is used for fair merge of streams in communication from several sender
processes to one receiver process. Multiplexer manages a stream of stream variables, each
of which is output from each sender process. [t receives messages from the current sender
processes and return the merged stream to the receiver process. I the head of a stream
variable from a sender process is instantiated to a non-variable term, then it is eventually
received by the receiver process. Multiplexer has the following funetions :

1. receive(X, M, NewM) : A message X is received through the multiplexer M when the
message X was sent through some stream variable in multiplexer M before. M is updated
to a new multiplexer Newhf.

2. add(SV, M, NewM) : A new stream variable SV is added to the multiplexer M. M is
updated to NewM.

If some sender process generates some output, a merge process in his solution receives it,
makes the priority of this sender process lower and check other processes whether they have
generated output. If the merge process receives [] as a sign of end_of stream from rome
sender process, it aborts that process. Multiplexer is used to treat multipla node processes
in the construct_omega_graph procedura.

In general, the less communication we have the more concurrency we can eojoy. But
each problem bas the lower bound of the amount of necessary communication specific to
the problem. We have to balance the burden to build communication network specific to
the problem and the burden to merge messages from sender processes the number of which
changes dynamically.

6.1.5. Equal Opportunity

Each proce:s should have independent and equal opportunity to decide whether it trusts
the selected clauses without being affected by the result of other OR-parallel process.
Example §.1.5. Member

Consider the following two programs.

[Program (I) |

union([X|51],52,5) :- member(X,52) | union({51,52,5).
42

union([¥]|51},52,5) :- otherwize | S=[X|New$]|, union(S1,52,NewS).
union(| |,52,5) - true | §=52.

member(3,[Y]|_]) - X==Y | true.
member(X,[Y|5]) - X\=7Y | member(X,5).

| Program (C) |

union([X]S1],52,5) - member(X,52,yes) | union(S1,52,5).
union(S1,[X|S2],5) - member(X,51,yes) | union(S1,52,8).
union{[X|51],52,8) :- member(X,52,n0) | B=[X|NewS], union(S1,52, New5).
unien(51,[X|52],S) :- member(X,51,n0) | S=[X|NewS$], union(51,52,NewS).
union([|,52,5) :- true | S=52.

union(S1,[],5) :- true | 53=51.

member(X,[Y|5],Answer) :- X==Y | Answer=jyes.
member(X,[Y|S],Answer) :- X\=Y | member(X,5,Answer).

member(X,[|, Answer) :- Answer=no,

Program (I} is a direct translation from Prolog version. The predicate otherwise succeeds
when the passive part of all other OR-parallel clauses have failed. Compare the definitions of
memdber in program (I) and that in program (C). In program (I), member has two arguments
and use otherwise, which is harmful since the execution depends on the passive part of
other clauses. On the other hand, program (C) realizes fair OR-parallel execution in the
passive part. Therefore, if we put a predicate like member in the passive part, we try to
use the predicate otherwise as less as possible since it is against the principles of parallal
programming. To avoid the use, we should write passive parts symmetrically, which is
reduced to the equal opportunity of decision, add an argument, which is seen in the definition
of member in previous section.

6.2. Programming Paradigms In GHC

Secondiy, we dizcuss on programming paradigms, i.e. ,the patterns of representing paral-
lel algorithms in GHC.

6.2.1. Synchronization in Passive Parts

It is an essential mechanizm of GHC that any piece of unification invoked in the
passive part of a clause cannot instantiate a variable appeaing in the caller. It gives
GHC a remarkable characteristic as a programming language. we should not violate this
synchronizationn mechanism when we apply some technique such as partial evaluation to

GHC programs.
Example £.2.1. Partial Evaluation

We consider an example of remove_implization_snd_equivalence again.
[Program (J) |

remove_implication_and_equivalence(imply{F G}, Answer) :-
remove_implication_and_equivalence{not(F),F1),

43

remove_implication_and_equivalence{G,G1)
Anzswer=or(F1,G1).

| Program (B) |

remove_implication_and_equivalence(imply(F,G), Answer) -
remove_implication_and_equivalence(F,F1),
remove_implication_and_equivalence(G,G1)
Answer==or{not(F1),G1).

In program (J), the definition is according to the fact that F O G is logically equivalent to
-F Y G
remove_implication_and_equivalence(F,F1) in this clause allows the commitment of other
remove_implication_and_equivalence process without instanciating F,F1. Therefore, we
can apply partial evaluation. Program (B) is the result, in which evaluation proceeds one
more step ahead than that in program (I).

On the other hand, the following is the GHC program of the problem of stream
communication discussed in [Brock and Ackerman 81).

[Program (K) |

t1{Inl,0ut) :- 51(Inl,In2 Out), plusl(Out,In2).
t2(In1,0ut) :- s2(Inl,In2,0ut), plusl(Out,In2).

31(In1,In2,0ut) :- duplicate(Inl,M1), duplicate(In2,M2}, merge(M1,M2,M), p1{M,Out).
s2(In1,In2,0ut) :- duplicate(Inl,M1), duplicate(In2,M2), merge(M1,M2,M), p2(M,Out).

pl{l],Out) :- Out=[].
pl{[X|Newln] Out) :- Qut=[X|NewOut| frst(Newln NewOut).
pl([X,Y|Newln],Qut) :- Out=[X,Y].

p2([],Out) :- Out=[].
p2([X,Y|Newln|,Out) :- Out=[X,Y].

first([Y|In],Out) - Out=[Y].

duplicate(]],Out) :- Out=]].
duplicate([X|_],0ut) - Out=[X,X].

merge(] |,In2,0ut) :- Out=In2.
merge{Inl,[],Out) - Qut=lal.
merge([X|In1],In2,0ut) :- Out=[X|NewOut|, merge(Inl,In2 NewOut).
merge{lnl,[X|In2],0ut) - Qut=[X|NewQut], merge{lnl,In2 NewOut).

plus1{[X|la],Out) - Y:=X+1, Out=[Y|Outl], plusi(In,Outl).
plusi{]],Out) :- Out=[].

Both of pl and p2 generate as output the first two values received from input streams.
However, pl can generate if it receives at least one value, while p2 waits until it receives two
values. sl and #2 generate as output the first two values received from the merged stream
of two input streams by using the processes pl and p2, respectively. At last, sl and 42

44

generate teh same output, but the difference of the behaviors of these two processes caunses
the difference between the outputs of £1 and £2. {1 and ¢2 show a kind of feedback system
in which the output value effects on the next value of input stream. In the process t1, 51
receives the first value from the stream I'nl, generates it and it calls the goal first. Then it
can receive the second value either from the stream Inl or In2. On the other hand, in the
process 12, the head unification of p2 suspends until 22 receives two values from the stream
Inl. therefore, t2 always generates as output the first two values received from Inl.

As for this program, we cannot apply partial evaluation by which we replace the goal
first in the second clause of pl by NewOut = [Y].

6.2.2. Communication through Shared Variables

In logic programming, communication though shared variables provides interseting pro-
gramming paradigms as was investigated by Shapire, though the mechanism of communica-
tion though shared variables itselfl is common to many parallel programming language. Here,
we show a problem encountered in our programming, termination-flag.

Example 6.2.2. Termination-Flag

Termination-flag JudgeStop is a shared variable among several processes. If it is
instaptiated to 'stop’ by some process, the message is propagated to the other processes
to stop them.

Although the introduction of JudgeStop forces each predicate to have an extra argument
and one extra clause for termination, it can make some kind of parallel programs efficient
because it releases the system {rom executing superfluous computations as soon as an answer
is found. Therefore it makes such a program effective that finds a solution among a lot of
candidates.

In the w-graphs refutation procedure, it makes the system very effective that
construct_omega_graph and check_omega_loop_freeness run in parallel with a common
variable JudgeStop. When the process check_omega_loop_Jfreeness finds an w-loop early in
the computation, it sets JudgeStop to ‘stop’, which terminates subprocessesin construct_omega_graph
with no more superfluous expansion of nodes.

For example, the complete w-graph of the example 4.3.2. (Apperndixz 2) consists of 9
nodes and 38 edges. If we execute two processes sequentially, such a large graph is treated
and the execution explodes with work-space-full. However,we can find an w-loop when 5§
nodes are created and only 2 nodes are expanded. Therefore, we can perform the whole
process without work-space-full by parallel execution.

6.2.3. Use of Partially Specified Data Structures

Fartially specified data structures are especially useful for utilising potential coneur-
rency.

Example 6.2.3. Check of w-Loop Freeness

As was described in 6.2.2, we can sometimes find an w-loop before the w-graph is
completely constructed. Therefore, we can check the w-loop freeness on the current par-
tial graph while constructing the w-graph. Two processes construct_omega_graph and
check_omega_loop_freeness have a shared variable Graph which is partially specified during
the computation. It is an important concept to write better programs together with that of
communication through shared varibales.

6.2 4 Usze of Decision Distributible Data Structures

45

Difference list is a typical data structure which is suited for decision distribution. Its
use provides us with poasibility to increase efficiency of GHC programs, though it might cost
much in some cases.

Example 6.2.4. Union with Difference Lists
[Program (L)]

union(d([X[H1),T1),d(H2,T2), d(H,T)) -
insert(X,d(H2,T2),d(H,1)), union(d(H1,T1),d(H2,T2),d(I,T)).
union(d(H1,T1),d([X|H2],T2), d(H,T)) :-
insert(X,d(H1,T1),d(H,I)), union(d(H1,T1),d(H2,T2),4(I,T)).
wnion(d([],[[), d(H2,T2),d(H,T)) - H=H2, T=T2.
wnion(d(H1,T1),d((,{]), d(H,T))- H=H1, T=T1.

insert(X d{[Y|H|,T), d(A,B)) - X==Y | A=B.
insert(X d{[Y[H],T), d(A,B)) - X0=7 | insert(X d(H,T),d(A, B)).
insert(X,d([|.[]),d(A,B)) - A=[X|B].

The above is another GHC program of union by using difference list. The process union
reads out the data X from the head of a stream and the process insert decides the output
data for X'. Theze two phases are done independently for each data X', Difference list enables
the processes to be distributed into each step and decide the output data independently.

6.2.5. Paradigms in Sequential Programming Revisited

Are the paradigms in sequential programming, such as devide and conquer,dynamic
programming and generate and test, completely of no use in parallel programming ! Or are
they still usefu! with some modification ?

Devide and conquer is a paradigm to divide the problem solve each subproblems in-
dependently and synthesize the subsoclutions to the solution of the whole problem. This
paradigm naturally takes the form of general recursion style. Since sequential programs in
general recursive style are almost directly tranlated to corrsponding GHC programs with
AND-parallel processes, this paradigm is suited for GHC programming, especially when the
syothesis from subsolutions works well for partially obtained subsolutions. We used this
paradigm in compute_initéial_node_formula procedure,

Example 6.2.5.1. Flatten and Mc-Flatten

When the synthesis from subsolutions does not work for partially specified data strue-
tures, direct parallelism in GHC might not enhance the concurrency as expected. In such
a case, program transformation technique for sequential programs are still useful. Consider
the following GHC program (M), which is a direct translation from the well-kmown flatten

in Prolog.
[Program (M} |

flatten(tip(A),Z) - Z=[A].
flatten(tree(L ,R),Z) :- flatten(L X) flatten(R,Y),append(X,Y,Z).

append([|,M,N) - M=N.
46

append((X|L] M,N) :- N=[X|N1],append(L,M,N1)

Because append does not work until its first argument is instantiated to a non-variable, the
subsolutions obtained in the children process are not returned back to the parent process
if some children processes are delayed, The program (N} below is a direct translation of
me-flatten, which can be obtained by transformation of flatten in sequential Prolog.

| Program (N) |

flatten{tip(A),Z) - Z=d([A|T],T).
fatten(tree(L,R),d(H,T)) :- flatten(L,d(H,I),fatten(R,d(I,T)).

append([| M,N) - M=N.
append([X|L],M,N} - N==[X|N1],append(L M,N1).

This GHC program works well without being blocked by other process's delay.

Dynamic programming is a technique used to convert non-tail-recursive programs with
redundant computation into tail-recursive ones with tables to store the results when they
are once computed. (Hence, this technique is called tabulation technique.) The converted
program computes the desired final result in the bottom-up manner by storing intermediate
results and consulting them if necessary. Though the converted program must have the
commeon table as an extra argument in general, we sometimes need just part of the table,
e.g., computation of Fibonacel sequence.

One might think that conversion to repetitive (tail-recursive) programs is the theme just
effective for sequential programs. However, no matter how much resource we can assume
in parallel computation, we should stil] avoid limitless redundant computation. In order to
utilize the results computed in one process before, we must pass the results either through
shared variables directly to other processes or through the common table accessible from
other processes. If we use shared variables, we peed to span the comminucation network
by the shared variables. The paradigm of dynamic programming help us to figuras out the
network. If the network is too complicated and we use common tables, multiplexer discussed
in 6.1.4. is a useful programming concept.

Example 6.2.5.2. Fibonacci Sequence and Common Table
[Program (0O) |

fibomacei(0,1).
fibonacci(l,1).
fiboraccifs(s(X)),F) :- fibonacei(X,F1),8bonacci(s(X),F2),2dd(F1,F2,F).

[Program (P) |

fibonacci{0,0,1).
fibonacei(1,1,1).
fibonacei(s(s(X)),F1,F) :- fibonaeci(s(X),F0,F1),add(F0,F1,F).

In program [Q), more than two processes with identical arguments are generated. For
example, in computing fibonacci(4,7), two fibonacci(2,2) processes compute the same
result twice. In program (F), the second argpuments corresponds to the table in dynamic
programming. But here, we need oniy one entry of the table, which is now a shared variable

47

for spanning the communication network.

Generate and test is a paradigm to find out a solution by enumerating candidates in
sequence and testing each candidate whether it is the desired one. When the generated
candidate solution is not the desired ome, the program must backtrack once and generate
another candidate. Because backtracking is not supported in GHC, the principle *if fail,
then reds,” should be changed to the principle "test all cadidates at the same time and
if one succeeds, then stop the whole processes™ The search of candidates should trace
all paths in a search tree from the root to leaves in parallel and fork at every branching
node. If there exists some succeeding path, the whole search terminates. However, we can
sometimes obtain a more efficient parallel program by totally changing the algorithm itself.
For example, some problems on graphs, such as finding connected components and searching
a path, can be solved more effectively by assigning processes to nodes of the graph.

Example 6.2.5.3. Check of w-Loop Freeness

The program of check_omega_loop_freeness is in typical backiracking style in Prolog.
We describe in some details how we reached the final GHC program afier several “try and
error”. We wrote three programs, following-message oricoted one, stream oriented one and
structure ariented one. Each algorithm has its advatage, but at last, we have adopted the
third one because of better parallelism and simpler behavior of processes [See 5.4). In all
these algorithms, each node is considered as a process sending messages each other.m

(a} Following-Message Oriented Algorithm
In the three algorithms following-message oriented algorithm iz most close to the algo-
rithm for sequential Prolog. Each w-node sends a message through each path and all the
paths are checked in parallel. The whole graph is represented as a list of triples
(NodeNmbr, Adjacent Nodes, NodeType).
Ve call the node which has an edge outgoing from the node N adjacent node of N.

Example 6.2.5.4. The graph shown in example 3.2. is represented by
Graph=[(0,[1,2],no0t-omega), (1,[1,2],omega), (2,[1,2] not-omega)].

The algorithm and program are shown below .

Each w-node sends the assoclated node number as a message and propagates it through all
the paths outgoing from that node. In the program, €, thows the number of nodes the
messzge zent initially from the w-node have visited. The process return_of the message
checks whether the message each w-node sent before is returned to itsell or not. The process
proceed_message_farther passes the message to its adjacent nodes that each w-node initially
sent. Each w-node sends the associated node pumber as a message and propagates it through
all the paths outgoing from that node. Each w-node checks whether the message it initially
zent is returned or mot. Every node passes the message to its adjacent nodes if the node
receives it.

(1) Set MAX to the pumber of nodes in the w-graph. For each w-node, initialize Count to 1.
For every w-node, send its node number Node N mbr a3 a message to its adjacent nodes,
(2) For each node whose node number is N, if it receives a message, then repeat the following
(3).
(3) f Count > MAX, then stop with failure.
If JudgeStop is instantiated to ‘stop’, then stop with the answer * There exists an
w-loop.”
Otherwise, do the following (4).
48

(4} If w-node receives the message it initially sent, then set JudgeStop to ‘stop’. Otherwise,
increment Count by 1 and send the message to itz adjacent nodes.

If all the processes for the paths stop with failure, then answer * The graph is w-loop free.”

This algorithm have much to do with sequential programming and it iz suitable for our
conventional thinking style. However, it is not appropriate for parallel programming. Then
we will introduce another algorithm more appropriate for parallel programming, in which
each node is taken as a process.

[Program (Q) |

check_omega_loop_freeness(MAX,Graph) :-
check_omega_loop_freeness(JudgeStop, MAX, Graph,Graph),
write_result{JudgeStop).

check_omega_loop_freeness{JudgeStop, MAX, [(N,Out,omega)|G|,Graph) :-
find_omega_loop(JudgeStop,N,Graph, Out MAX,1),
check_omega_loop_freeness(JudgeStop, MAX,G,Graph).
check_omega_loop_freeness(JudgeStop,MAX,[(N,Out,not-omega)|G],Graph) :»
check_omega_loop_{reeness{JudgeStop, MAX,G,Graph).
check_omega_loop_freeness(_,_,[],).

find_omega_loop(JudgeStop,W,Graph,[N|NodeList| MAX Count) :-
Count <MAX, prolog(var(JudgeStop)) |
return_of_the_message(JudgeStop, W,Graph, N, MAX,Count),
find_omega_loop(JudgeStop, W,Graph,NodeList, MAX, Count).

find_omega_loop(_,_,_,_,MAX Count) :- MAX=<Count | true.

find_omega_loop(_,_,_.[l._._).

return_of_the message(JudgeStop W, Graph N MAX Count) :- N==W |
JudgeStop="stop".

return_of_the_mes:sage(JudgeStop, W, ,Graph,N,MAX,Count) - N\=W |
Countl := Count + 1,
proceed_message_farther(JudgeStop,N,Graph,OutNodes),
find_omega_loop(JudgeStop, W,Graph,OutMNodes MAX, Count1).

proceed_message_farther(JudgeStop, N, [(M,Out, Type}|Graph),OutNodes) :- N==M |
OutNodes=0ut.

proceed_message_farther{JudgeStop,N,[(M,Out, Type)|Graph],OutNodes) - Ny=M |
proceed_message_[arther(JudgeStop, N,Graph,Qut Nodes).

proceed_message_farther(JudgeStop,N,| |,OutNodes) ;- OutNedes=[).

write_result(stop) - write("The graph is not omega-loop free’).
write_result{JudgeStop) :- prolog(var{JudgeStop)) |
write('The graph is omega-loop {ree’}.

(b) Stream Oriented Algorithm
We use a programming technique similar to one in [Shapiro 83]. Each node is considered
a3 a process which has some input chawnels and output channels.

49

A set of node numbers is sent as a message through output channel. Each node sends a
message and receives a set of messages at each time. A node does not send the same message
with the one it sent before. The whole graph is represented by a list of the quadruples

{NodeNmbr,OQutStream,InStreams, NodeType),
which is as same as the in case of structure oriented algorithm (See 5.4).

The algorithm and program are shown below.
In the program, variable L, is an incremental tet of node numbers that have been received
by the node whose associated number is N, NewMes is a current et of node numbers
received by that node and not included by Ln. Cn behaves as a counter. The process pickup
checks the current message.

(1) For each node, send the associated node number to its adjacent nodes.

{2) For each node whose node number is N, initialize C,, to the set of all nodes in the w-graph
and let L, be | |, repeat the following (3).

(3) If Cx = { }, then stop with failure.
If JudgeStop is instantiated to 'stop’, then stop with the answer ® There exists an
w-loop.”
Otherwise, if the node receives the message, then let NewMes be z set of received node
numbers which are not included by L, and for NewMes, do the following (4).

(4) I the node is an w-node and N is a member of NewMes, then set JudgeStop to ‘stop’.
Otberwise, extract a node from C, send NewMes to its adjacent podes and add
Newhes to L.

If all the processes for the nodes stop with failure, then answer * The graph is w-loop
free.” Note that if InStreams of a node is { }, then NewMes of that node is always [].

| Program (R) |

check_omega_loop_freeness(Graph) :-
check_omega_loop_freeness(JudgeStop,Graph,Graph) &
write_result{JudgeStop).

check_omega_loop_freeness(_, []).
check_omega_loop_f{reeness(JudgeStop,Cn,[(N,Xn,INs omega)|Gs]) -
Xn=([N]|X=ni], Ln={],
node(JudgeStop, N, Type,Cn Xnl INs L),
check_omega_loop_freeness(JudgeStop,Cn,Gs).

nﬂdﬂ{_;_._:-._:[]r_l—r—]'

node(JudgeStop, NodeNmbr, Type,[_|Cr],Xz,INs,Ln) -
prolog(var{JudgeStop)) |
recaive(JudgeStop,NodeNmbr, Type, Xn, Xn1,INs INsl Lo Lnl) &
node(JudgeStop,NedeNmbr, Type,Cn, Xnl INsl, Lnl).

receive(JudgeStop, NodeNmbr, Type, Xn, Xn1,INs,INs1,La Lnl) :-
prolog{var{JudgeStop)) |
pickup(INs,INsl Ln NewMes) & append(NewMes Ln,Lnl),
check_omega_member{JudgeStop, NodeNmbr, Type NewMes),
Xo=[NewMes|Xnl].

50

check_omega_member(JudgeStop,NedeNmbr,omega NewMes) -
member{NodeNmbr, Newhes yes) |
JudgeStop="stop".
check_omega_member(_,_,omegs,_) -
member(NodeNmbr, NewMes no) | true.
check_omega_member{ , not-omega,).

pickup([[A]Avar]|INs],NewINs,Ln, NewMes) :-
pickupl(A,Ln,New),
pickup(INs Avars Ln NewMesl) & NewINs=[Avar{Avars|,
union{New NewMeal NewMes).

pickup([|, NewINs,_ NewMes) - NewINs=[|, NewMes=] |.

pickupl([Al|An],Ln,New) :- member(Al,Ln,yes) | pickupl(An,Ln New).
pickupl{[Ai|An| Ln,New) :- member(Al,Ln,no) | New={Al|Newl], pickupl(An,Ln,Newl).
pickupi([|,_,New) :- New=][].

write_result(stop) :- write('The graph is not omega-loop free.”).
write_result{JudgeStop) :- prolog(var(JudgeStap)) |
write{'The graph is omega-loop free.”).

(¢) Structure Oriented Algorithm

This algorithm is almost same as the stream oriented one. However, in this case, each
node process propagates the structure of the graph by connecting the input stream to the
tail of the output stream and check the list whether or not it contains loops. It is an infinite
recursive list if the graph contains a loop. Intuitively, paths flowing into an w-node are
cheeked backwardly. The algorithm is expressed in section 5.4. This algorithm treats the
static data of a graph structure sent as a message, while stream oriented algorithm treats
the dynamic one of received message at every stage. It makes the behavior of processes in
thiz alzorithm easier to understand.

f.3. Programming Style in GHEC

Lastly, we discuss on programming style, i.e. the patterns of the activities in construct-
ing GHC programs. We ugually start GHC programming by conceiving a rough and still
vague parallel algorithm at an appropriate level of modules and develop it in two directions,
downwards (refine parallelism within each module) and upwards (adjust and modify inter-
module parallelism). In the process to reach the final GHC program, we need several tools
and environment devised for parallel programming.

6.3.1. Intentional Sequentialization

If we borrow the viewpoint by Kowalski, GHC programs alse consist of logic part and
control part. The control part in Prolog programs is not so burdensome that we can construct
Prolog programs taking the both parts into consideration simultaneously. Howewer, the
control part in GHC programs contains mare subtle problems and needs more concentration
of programmers. We usually would like to confirm the logic part as earlier as possible before
considering these subtle control problems in parallel programs. In refining the parallelism
within each module, we sometimes medify parallel GHC programs to sequential one and test
them first. The reason is two fold.

51

(1) Computation trace of GHC programs are, in general, so complicated that following the
traces is very tedious and hard (especially under the breadth-first search scheduling). We
can confirm the logic part of GHC programs more easily by following simpler computation
trace of the corresponding sequentialized one.

(2) Even very efficient parallel algorithms in GHC do not show high performance if they are
executed on the sequential machines (especially under the breadth-first search scheduling),
because the scheduler always check the goals even if the suspension of the goal is released in
long futuré. We can confirm the logic part of GHC programs in shorter time by executing
the corresponding sequentialized one.

Example 6.3.1. Compare the [ollowing two clauses where goals p and g have a shared variable
X.

[Program (S) |
h:-pg

[Program (T) |
h=plq

In program (S5), since the processes p and q run in parallel, the unification of the goals p and
g are scheduled in turo under the breadth-first search scheduling. Assume that the shared
variable X is instantiated in the 10th step of p and the unification of the goal g is enabled
by the propagation of the instantiation of the common variable X. Then g is checked
unnecessarily 10 times before the head unification of g succeeds. In program (T)however,
this check is not done at all, which malkes the execution fast.

6.3.2. Incremental Parallelization

In general, it is difficult to trace the computation procedure of parallel programs com-
pared with that of sequential programs, because it is difficult to know when variables are
instantiated or clanses are suspended. Although each process, if executed independently,
behaves as we expected, Lhe whole program might behaves quite diferently from our expec-
tation. The more increases the number of processes which run in parallel, the more serions
this problem becomes. However, it is important in programming to trace computation pro-
cedure and understand the behavior of programs.

As one of the solutions of this problem, we propose the programming by incremental
parallelization. First, we divide the whole problem inte meduleas in a proper size, and make
parallel programming in each module with an attention to interface between modules. Mext,
we try to accomplish parallelism at the upper level.

Example 6.3.2. Refute
We use this programming style in the upper level parallelism for making the w-graphs
refutation. On the top leve] of w-graphs refutation, at first we devide the process refute into
three modules compute_snitial_node_formula, construct_omega_graph and check_omega_loop_[freeness:
Next, we perform a parallel programming within each module. We have to ba careful for the
treatment of shared variable such as Graph and also for interface between modules in order
to perform a parallel computation of the three modules later, Each module may be divided
into some submodules, if necessary. For example, construct_omega_graph is divided into
three submodules of node_process, multiplerer, and graph_manager. Then we try to realize
an uper level parallelism.

52

£.3.3. Interpreter 4 Editor 4 Incremental Compiler 1

Since the current GHC system has neither interpreter mor incremental compiler, it
takes quite much time and energy for programming and debugging. Though the interpreter
of GHC might be szlow, it is convinienl for interactive programming and debugging with
screen editor like [edit in Lisp. As for the incremental compiler, we are not sure now
whether it is possible for parallel programming language. The KL1 (Kernel Language One),
which includes GHC as its core, is still under development. Further investigation of better
programming environment is needed.

6.3.4. YVisual Debugging Aids

Current GHC debugger is rather weak so that we can neither see the whole execution
tree, mor activate and trace process by process nor see output of each process separatedly
on the screen of terminals. 'We need betier human interface which at least has the following
functions.

(1) show the figure of the current execution tree and which process is now executed.

(2} activate the process designated interactively by the programmer.

{3) print out the output of each process to the designated place on the screen process by
process.

If the window system used widely now is adapted for debugging of parallel programs, eur
parallel programming would be much more comfortable. For example, one window always
shows the current execution tree and active process and accept the user’s direction about
which process is activated next, Other windows are assigned to each process dynamically in
order 1o show the trace of the process and print out the output of the process.

8.35. Performanece Measurement of Parallel Execution

In constructing GHC programs, we need to check whether the GHC program at hand
iz efficient enough for parallel execution. There are several measurements of performance
e.g.,CFPU time and space used and “parallelism”. We used the compiler developed an DEC10-
Prolog by Miyazaki[Miyazaki 85], which transiates GHC souree program to Prolog code and
compiles it by DEC10-Prolog Compiler. Because the compiler employs the breadth-first
scheduling, the system reports the number of cycles in the execution. We can take the
number of cycles as rough base for evaluation of parallelism. The less is the number of
cycles compared with a program size, the higher is the parallelism thought to be. What
measurement should we choose to judge whether a given GHC program is better or not ?

At first, we discuss on processing time and space.

Example 6.3.5. Consider union program again.
[Program (C) |

union([X|51],52,5) :» member(X,52,yes) | union(51,52,5).
union([X|51),52,5) :- member(X,52,n0) | S=[X|NewS5|, union(S1,52,New5).
union(81,[X|52],8) :- member(X,51,yes) [union(51,52,5).
union(S1,[X|S2],8) - member(X,51,n0) | S=[X|NewS], union(S1,52,NewS).
union([,52,5) - §=52.

union(51,[],5) - 5=S§1.

53

member(X,[Y|S|,Answer) :- X==7 | Answer=yes.
member(X,[Y[S],Answer) - X\=Y | member(X,S Answer).
member{X,| |, Answer) :- Answer=no.

[Program (U}]

union([X|S51],52,5) - S=[X|New5|,delete(X,52, New32), union{51,NewS2 New3).
union(S1,[X|S2],S) - S=[X|NewS|,delete(X,51,New51), union(NewS51,52,New§).
union([],52,5) :- 5=52.
union(S1,[],5) :- 5=51.

delete(X,[Y|5],T) - X==Y | T=5.
delete(X,[Y|5],T) - Xa= Y | T=[Y|NewT]|, delete(X,5,NewT).
delete(X,[|, T) - T=[].

Program (C) needs more processing time since member in the passive part may check all
the elements of the completely instantiated list before trust. On the other hand, in program
{U), another definition of union, delete in the passive part can succeeds when the head of
list is instantiated, and the trusted clause is executed in parallel. Therefore, it needs less
processing time. However, it consumes more space since delete must reconstruct some of
lists.

In genperal, we give higher priority to time efficiency than less space-consuming because
development of parallel execution machine for GHC such as Parallel Inference Machine(PIM)
in near future will solve the space problem.

Mext, we discuss about the time and parallelism.

[Program (V))
h:pa

[Program (V) |
he-p &g

In program (V), two processes of p and g run in parallel, while they run sequentially
in program (W). Therefore, (V) provides higher concurrency and needs less processing
time theoretically. But with the current compiler, most programs which previde higher
concurrency Deed more time because of the scheduler’s overhead. This problem will also be
resolved if the compiler is revised. Currently, we give parallelism a higher priority than time
efficiency as far as the program does not cost an extravagant time.

Example 6.3.5.2. Distribute And over Or
The following is a program of distribute_and_owver_or.

[Program (X) |

distribute_and_over_or{or(P,Q) A) :-
distribute_and_over_or(P,P1), distribute_and_over_or{Q,Q1),
A=0or(P1,Q1).
distribute_and_over_or{and(P,Q),A) -
distribute_and_over_ar{P,P1), distribute_and_over_or(Q,Q1)} |
distribute_andor{and(P1,Q1),A).
B4

distribute_and_over_or(not{P),A) - A=not(F).
distribute_and_over_or(always(P),A) - A=always(P).
distribute_and_over_or{eventually{P),A) :- A=eventually(P).
distribute_and_over_or{m_eventually(P),A) - A=m_eventually(P).
distribute_and_over_or{next(P),A) :- A=next(P).
distribute_and_over_or(P,A) :- atomic(P) | A=P.

distribute_andor{and(R,or{P,Q)),A) -
distribute_and_over_ot{and(R,P),Al), distribute_and_over_or(and(R,Q),A2)},
A=or{Al,A2).

distribute_andor{and(er(P,Q),R),A) -
distribute_and_over_or{and(P,R),Al), distribute_and_over_or(and(Q,R),A2),
A=or(Al,A2).

distribute_andoer{and(P,Q),A) :-
P\=or(P1,P2), Q\=0r(Q1,Q2) |
A=and(P,Q).

Pay attention to the trust operator ‘|’ in the second clause of distribute_ond_over_or.
Theaoretically, a faster parallel execution is possible without this *|". In fact, this is not
always true depending on data. We show below an example.

Assume that computation is executed under the breadth-first search scheduling. Suppose
this *|" is eliminated. If the goal

(0) distribute_and_over_or(and{and(and(f1,f2),£3),4),Answer)
is called, then the head of the second clause is unified and it forks the following three
subprocesses.

(1) distribute_and_over_or{ and(and(f1,12),13), Al)

(2) distribute_and_over_or(f4,A2)

(3) distribute_andor(Al,A2 Answer)
On the first eycle, although (2) returns f4 as the value of A2 immediately, Al still TEmains a3
a variable. Therefore, the clause called by (3) is suspended. On the second cycle, (1) invokes
the follewing three subprocesses again.

(1-1) distribute_and_over_or(and(f1,f2), All)

(1-2) distribute_and _over_or([3,A12)

(1-3) distribute_andor(A11,A12,A1)
In this case, since All remains as a variable, Al is not instantiated yet. Therefore, the
clause called by (3) is still suspended. It is suspended until the unification invoked by the
calls

(1-1-1) distribute_and_over_or{ f1, A111)

(1-1-2) distribute_and_over_or{ {2, A112)
succeed, which means that both calls (1) and (2) succeed. Therefore, even if the trust
operator is eliminated, it does not give a better program. What is worse, it makes the
program worse inefficient by burdening the scheduler with constant check of the superfious
process (3). Thus, it is prudent to use ‘[’(trust operator) and ‘&'(sequential AND) for the
essentially sequential problem or the clause including an independent process which costs
much time.

Our program of w-graphs refutation procedure in GHC consists of about 500 lines. The
result of execution of some examples is shown in Appendix 3. Some of the performance
measurements are shown below. (The CPU time required for the execution of the Prolog
version is 144,395 3087,1147 and 2763 ms for ex1,ex2,ex3,ex4 and ex5, respectively.)

55

Table 8.3.5. Evaluation of the Execution of Examples

formula CPU time{ms) global stack cycle
exl =& p BTEO 13380 as
ex2 o-p V Op 63758 19985 102
exd Cop 2 ¢00qg 15541 22684 49
exd ¢O-p VY Oop 125387 16564 147
ex5 Oop 2 o0Op 108688 39947 125

56

7. CONCLUDING REMARKS

We have shown our experience in programming of a proof procedure of temporal iogic in
GHC and discussed the parallel programming methodology in GHC. Through the experience,
we have found a lot of interesting facts and encountered some difficulties due to the difference
of the thinking style in GHC from that in sequential programming. Further research on the
parallel programming methodology and accumulation of experiences are needed to be done
simultanecusly with the development of the GHC system itself and parallel machiges for
execution of GHC.

ACKNOWLEDGMENTS

This research was done as one of the subprojects of the Fifth Generation Computer
Systems (FGCS) project. Authors would like to thank Dr.K.Fuchi, Director of ICOT, for
the chance of this research and Dr.K.Furukawa, Chief of the 1st Laboratory of ICOT, for
hiz advice and encouragement.

57

REFERENCES

[Brock and Ackerman 81| Brock,J.D. and W.B.Ackerman, “Acenarios : A Model of Noxn-
Deterministic Computation,” pp.252-259,Lecture Note in Computer Science,Vol.107,Springer-
Verlag,1981.

[Clark and Gregery 84] Clark K.L. and §.Gregory, "FARLOG: Parallel Programming in
Logic,” Research Report DOC 81/16 Imperial Colledge of Science and Technology,1984.

[Fusaoka and Takahashi 85] Fusaoka,A. and K.Takshashi, *On QFTL and the Refutation
Procedure on w-graphs,” a paper of Technical Group on Automata and Languages,

Pp.43-54 TGALS5-31,IECE Japan,1985.

[Hughes and Cresswell 68] Hughes,G.E. and Cresswell M.J., * An Introduction to Modal
Logic,” Methuen and Co. Ltd, 1968.

[Kusalik 84] Kusalik,A.J., "Bounded-Wait Merge in Shapiro’s Concurrent Prolog,” New
Generation Computing,pp.157-168,Val.2,No.2,1984.

[Kripke 69] Kripke,S.A., “A Completeness Theorem in Modal Logie,” The Journal of Symbolic
Logic,¥Vol.24,No.1,March 1989.

[Manna and Poueli 81] Manna 7. and A .Pnueli, “Verification of Concurrent Programs, Partl:
The Temporal Framework,” Stanford TR 81-826,1981.

[Manna 81] Manna,Z., * Verification of Sequential Programs: Temporal Axiomatization,”
Stanford TR 81-877,1981.

[Miyazaki 85) Miyazaki,T., "Guarded Horn Clause Compiler User’s Guide,” unpublizhed,
1985.

[Shapiro 83) Shapiro,E.Y., “A Subset of Concurrent Prolog and Its Interpreter,* ICOT TR-
003,1983.

[Shapire 84| Shapire,E.Y., *Systems Programming in Concurrent Prolog,” Proc.11th Annual
ACM Symposium on Principles of Programming Languages, pp.93-105,1984,

[Takeuchi and Furukawa 83] Takauchi A. and K.Furukawa, “Interprocess Communication in
Concurrent Prolog,” Proc. of Logic Programming Workshop 83,Universidade nova de
Lisboa,1983.

[Ueda 85] Ueda K., “Guarded Horn Clauses,” ICOT TR-103,1985.

[Wand 80 Wand, M., “Continuation-Based Program Transformation Strategies,” JACM,Vol.27,No.1,pp.164
180,1880.

[Wolper 81] Wolper,P L., “Temporal Logic Can Be More Expressive,” Proc.22nd [EEE
Symposium on Foundation of Computer Science, pp.340-348,1981.

58

Appendix 1.

The construction of w-graph of 0O4FP A 00Q. (See example 4.3.1)

Unezpanded = {Ng}

Ng : [oeFP A DOoQ|p
—_— Q M

PA
P A
QA

W
WV
v
Unezpanded = { Ny, N2, N3, N4}

Ny : [coP A D2Qlir.q)
= (PAQA

v (PA
W { @A
v (

Unezpanded = [N3, N3, Ny}

Nz : [OoP A ©*'@ A 00Q(r)
== (PAQA

v { PA
v (@A
v (

Unezpanded = {N3, N4, N5, Na}

Ni: [OlP A OoP A UGQ]{Q}
= (PAQA
v {(PA
v (@A
v (

olooP A 0oQl(r.q))

olgoP A o*Q A OoQlry)
ole*P A OoP A DoQig))
ofe*P ATQoP A o*Q AToQly)

clooP A 0o@l(r.q))

D[I:I'DP Aot A DGQ]{F} }

G[O'P A DeP A UGQI{Q}]
o[e*P ADSP A 0'Q ADoQ|y)

o[ooF A 0oQlr,qy)

clooP A 0°Q A OoQpy)
ole*FP A OoFP A EOQ]{P.Q})
of¢*P ADoP A o'Q ADeQ|py)

olaeP A ToRler.q))
o[OoP A ©*Q A 0oQlir,qy)
o[e*P A OoP A UOQI{Q} }

O[¢"P A QP A 0°Q A D0Qlgy)

Unezpanded = { Ny, Ns, Ny, N7, N3}

Ny:[¢"P AOSP A '@ A Do@(y

v { PA

vV { @A

v (
Ul’lﬂ:;]ﬁl‘ldl:d= {Nj.N‘,NT,HB}

Ny : {GIF A DOSP A UQQ]{F_Q}
= { PAQA
v { PA
\' { @A
v (

Unezpanded = { Ny, N7, Ng}

o[oeP A oeQlirqy)

clogeP A 2*°@ A DQQI{F})
o[¢*P A OoP A 0o@Qlg))
ofe*P ADeP A o"Q A DGQ]{})

o[ooP A ooQlir.qy)

c[oeP A ¢*Q ADoQlpy)
ole*P A toP A ooQliqr)
ole*PAOOP A O'Q ADOQ|p)

59

: Ny
:N.;
: Ny

Ng:[o*P ADOOP A o*Q A 00Ql(r)
—. (PAQA o[oeP AooQlrqy)

v { PA oloeP A ©*Q AoeQ|ry)
v (@A o[f¢*P AooP ADoQlr,q) }
vV (Ol¢*P ADoP A 0'Q ADoQley)

Unezpanded = { N7, N3}

N::[oeP A ¢°Q A oeQlir.q)

==t { PAQA olgeP AooQlrqy)
v (PA o[0eP A ¢*Q A DoQlry)
v (@A o[o*P A Q0P A 0oQl(qy)
v (ole*P ADeP A o'Q ADeQ|y)

Unezpanded = {Ng}

Ny : [¢'P ADOSP A '@ A UQQIIQ}
= (PAQA olooP AooQle.qy)

Vv (PA ofpeP A o*'@ A OoQlp,q))
\4 (@A ofe"P AooP A ooQlugy)
W { ofe*P ADeP A 0'Q A coQligy)

Unezpanded = {}

Figure Al. w-Graph of O0P A D0Q

80

Appendix 1.
The construction of w-graph of OoP A ¢0-P. (See example 4.3.2 and 4.4.2)

Unerpanded = {Ng}

Ng : [0eP A oOPlp

= (PA o[goP Ao'0-Plr) : Ny
v { =P A D[O'P A DoP A UHPI{D-'F}] : Ny
V (o[¢*P A OOP A o*O~Plg) : Ny

Unezpanded = { Ny, Nz, Na}

Ny @ [ooP A o*0-P|ipy

= E P A D[UOP M G'E'IFI{F} } : Ny
A4 (=PA ofe*PADOPA O-Plp,0-py) Ny
W { ol¢*P ool A o*0~Plpy) : Ng

Unezpanded = {Na, N3, Ny, Ns)

Nz :[o*P A OoP A 0-Plio-r)
= (~P A o[c*P AOoP AD-Plg-py) : Na

Unezpanded = {Na, Ny, Nu}

Ny :[o*P A DoP A o*~P A O-Ply

— ([PA oloeP A Q'ElﬂP]{p}) 1N,
v (~P A of¢"FP AOoP AO-Plig-py) : Ny
v { ole*P A DOP A o*'o=Flg) : Na

Unezpanded = {Ny, N5}

Ny:[e*"PADOoP A o0-Plip,0-p}
= (~PA o[e"P AOoP AD-Plo-py) : Ng

Unezpanded = {Ng}

Ns:[e*PADOP A @ 0~ Pl(p)

= (PA o[ooP A o*0Pley) : Ny
v (=P A o[e"P AOOF AO-F|(po-p}) : Ny
v { ofe"P A OoP A o*'0-P|(py) : Ng

Unezpanded = {}

61

Appendix 2.

Execution Examples of Parallel w-Graph: Refutatiecn Procedure.

Example 3.

| 7- ghe ex3.

Given formula is [J<>p => <[%q
== Negation normal form iz —
O<wp & [D<q

Eventuality set is [g, p]

A

= A new nocde is created.
{ O<>p £ O<>q, [p. gl)
= A new node is created. =
(Oop & <o*qt g, [p])
+ Path (0-1) was found.

=—— A new node is created. =
(<owpx Jop & O<wq, [gl)
== The node already exists.
(Oopk[leg, [p.ql)
+ Path (1-1) was found.

tit A loop was found. 1!!

== The node already exists.
(O<p & O<wq, [p.gl)
+ Path (1-1) was found.

= The ncde already exists.
(ODop it gl O<wq, [pl)

111 A loop was found. 11!

The graph is not omega-locp free.

0 (O<wp & O<q, 00)

1 (0opeOwg [p.ql)

2 (0O<xpa<*+g& O<q. [pl)
3(<owp s 0wpk g [ql)

82

Given formula is [J<p => <>[17g
Eventuality set is [q, p]
Given formula is not walid.

F—>2
/ -
/ I
/ i/l
/ i/ 1
0= »le—
\
A\
\
\
\-23

Example 4.

| ?- ghc ex4.

Given formula is <>[]7p V [J<p
== MNegation pormal form is ==
O<p & <207p

Eventuality set is [[17p. p]
== A pew node is created. ===
(O<wpe<osdp, [pl)

== A new pode is created. ==

(O<p 2 ox[J7p & o+p, O0)
== A new node iz created. =
(Ope Owpk<ep, [I7p])
= The node already exists. ==
(Qopeo«J7p, [pl)

=— A new node is created, =

(Owp &2 <o+[07p & <#p, [pl)
== The noede already exists. =
(OwoprosQp, [pl)

== A new node ig created. —
(ODOpe0oprosp, [p. O0pl)
+ Path (1-5) was found.

== The node already exists. =
(Owp & O«[07p & o*p, 1)

+ Path (0-1-5) was found.

== The node already exists. =
(O pe{looprosp, [[I7p])
+ Path (2-1-5) was found.

+ Path (0-2-1-5) was found.
== The node already exists. ==
(OpxOoprosp, [Ipl)
== The node already exists. =—
(Owpe<w+«0p,. [p]1)

+ Path (4-1-5) was found.

== The ncde already exists, =
(Ooptos0peosp, [pl)
== The node already exists. =
(Opa Owpeowp, [p,. Opl)
+ Path (4-5) was found.

== The node already existe. ==
(OpeDOoptosp [Op])
+ Path (1-4-5) was found.

+ Path (0-1-4-5) was found.

+ Path (2-1-4-5) was found.

+ Path (0-2-1-4-5) was found.
== Termipate graph constructiom.
The graph is omega-loop free.

(O<p 2 <07p. O)
(O<xp&<o«0p [pl)
(O<wp & o« pto*+p, O0)

o W = O

(O pexOopro+wp, [Opl)
(OQoptosODptosp, [pl)
(Ope&Neprosp, [p, Opl)

64

Given formula is <>[07p ¥V O <p
Eventuality set is [0%p, p I
Given formula is wvalid.

I/

N—21— >4 ¢—
P N
/| N

