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KNOWLEDGE-BASED EXPERT SYSTEM FOR HARDWARE LOGIC DESIGN

vamic Mano, Fumihiro Maruyama, Kazushi Hayashi, Taeko Kakuda,

Nobuaki Kawato, and Takao Uehara

FUJITSU LIMITED

Kawssaki, Japan

ABSTRACT

We have developed & knowledge-based expert system for
hardware logie design that designs CMOS circuits from a con-
current algorithms written in the OCCAM high-level programming
language. Thisz work was done 25 part of the activities of the
Fifth Generation Computer Systems (FGCS) Projest aof Japan.
Uur system aims at supporting the entire design process from a
specification to completed CMOS circuitz by incerporating the
designers' expertlse into the computer and utilizing it effec—
tively, Frolog was selected for the
implementation/knowledge-representation language., This paper
gives examples of the knowledge provided for this system, ep-
phasizing the functional design phase which is heavily depen-
dent on the designers' own expertise, This paper alsg ex-
plains how Prolog is used to express this knowledge, and how
the inference engine was created. While constructing this
system, we also evaluated Prolog for its effectiveness as an
implementation language for a new generation ef CAD systems.

1. INTRODUCTION

The FGCS Project has undertaken research on knowledge-based sys-
tems, We ohose hardware logic design as an application area for the
following three reasens. First, the applicztion must be in an area in
which human expertise plays a signifiecant role. At present, reliable
and eificient hardware logic design can only be done by skilled
designers. Therefore hardware logic design is suitable for the investi-
gation of the use of expert knowledge. Secondly, because hardware logic
design 13 syntheslis-oriented, which iz not similar to any suecessfully
developed analysis-oriented system such as MYCIN, there are many unknown

qualities to research, Lastly, since hardware logic design coversz a

wide range of considerations, many types of Knowledge are required.



The implementaticon language is Prolog, which is alse used a3 the

underlying knowledge-representation language. Knowledge representation
i= an important issue. A single multi-purpose framework for knowledge
representation would be simplest. However, as described above, hardware
logic design employs varicus kinds of knowledge, and design data must be
represented as well. In addition, human designers switeh from one
representation to ancther in the ecourse of their work. For these rea-
sons, we have not adopted any particular existing tool for knowledge

representation.

2. BYEZTEM OVERVIEW

Our system aims at supporting the entire design process from a
specification to completed CMOS eircuits by incorporating the designers®
expertise intc the computer[1][2][3]., This system designs CMOS circuits
that eonform to the input specification through the interaction with the
user 33 shown in Figure 1. The input specification is a concurrent al-
gorithm cdescribed in OQCCAMIY] which is a programming language character-
fzed by its treatment of concurrency. The input specification is based
on  software concepts, such as variables and procedure calls, and does
net contain hardware concepts, sueh as registers and clocks. There=
fore, with 0OCCAM, a designer can create a econcurrent algorithm without
being familiar with hardware details,

Given a concurrent algorithm, the system performs functional design
using expert knowledge and interaction with the user to determine the
hardware behavior. The hardware concepts, such as registers and clacks,
first emerge in this intermediate design stage. Next, the system
designs CMOS circuits to achieve the hardware behavior determined by'the
functional design process. The system outputs the CMOS basic eells and
CHOS luncticnal cells, and their connectipns. Another program should be

used for placement and routing of these cells on 2 chip.

Our system conszists of a functicnal design phase and a eirecuit



deslgn phase as shown in Figure 2, Because the system is divided into
these two rhuses, the system is able to flewxibly cope with different
semizonductor technelogies. The functional design phase, the first half
of the design process, determines the application of hardware econcepts
in implementing the concurrent algerithms in OCCAM, and produces the
finite-state machine deseription in DDL[5] using expert knowledge relat-
ed to the functional design for hardware. Lltheugh the hardwarc
behavior 15 determined at this step, it is independent {rom the semicon-
ducteor techneology emplayed. The circuit design phase, the latter half
of the design process, transforms the finite-state description into the
desired COMO3 eircuits. To execute this transformation, the translator
subsystem extracts and rearranges information required fer the eireuit
design from DDL. The functional cell design subsystem designs combina=-
tional circuits, and the functional block design subsystem allocates
cell libraries, sueh as flip-flops. In the circuit design phase, the

technology=-dependent knowledge related to circuit synthesis is used.

3, DESIGN EXAMPLE

Tnis section discusses how the system works, taking a pattern
matzcher proposed by M.J.Foster and H.T.Kungl6], as an example. Figure 3
and Filgure 4 show the cutline of the pattern matcher. This patiern
matcher checks whether a given pattern, which is a fixed length veetor
of characters, is embedded in a given text string, which is an endless
string of characters as shown in Figure 32,

Let us denote the input string stream as 505155 eee the input
finite pattern stream as pﬂﬂ1p2 coe Pyos and the output result stream as
TaTqls see - Characters in the two input streams may be compared for
equality, with the wild card character X matching any character in an
input stream. The cutput bit ri is te be zet to 1 if the substring
-+« S, matches the pattern, and 0 otherwise. For example, in

ik 1k
Figure 4 the pattern AXC matches the substrings 5459520 53%4%s» and



susgsﬁtﬂﬁc. AAC, and ACC, respectivelw).

3.7 Design Specifieation

The concurrent glgerithm of the pattern matcher, which is input  to
this system, is described in OCCAM, as shown in Figure 6.

The CQCCAM program consists of three decleration parts, (A),(B), and
{Cy, and = deseription of parallel prccesses, (D). The declaration
parts are as follows.

{A% daclares channel vectors. A channel vector i3 a set of chan=
nels., Channels are used for communication between concurrent processes.
Far example, pattern(S] means that there are six channels named pattern,
and they are numbered from O to 5, as shown in Figure 4.

(B} declares a single comparator process, PROC gives.the name Comp
to this process, and identifies five formal parameters, the internal
channels, pin, sin, pout, sout, and dout, as shown in Figure G, When
the named process 1is substituted for the subsequent process (D), the
formal parameters are replaced by the actual parameters, Process comp
iz a seguential progess, which consists of two processes, One 1z the
initialization (B=1), and the cther is an endless iterative process,
WHILE TRUE. The iterative process contains a sequential process, which
consists of two processes., The first two are output and input processes
(B=2). The last process compares the characters in the pattern with
those in the text string and ocutputs a Boolean value, TRUE or FALSE (B-
3.

{C) declares a single accumulator process. The process named ace
contains seven formal parameters, as shown in Figure 5, The variable d
stands for the current comparison result of the comparator, xnew and
¥ald for don't ecare bit, lnew and lold for end of pattern, rnew and rold
for final result af matching, and t for temporary result of matching.
Process acc 15 & segquential process, which consists of two processes,
One is the initialization of wvariables (C=1). The other is an iterative

process, similar to process comp. The iterative process includes a



sequential process, which consists of two processes. The first includes
gutput ance input processes (C-2)., The second is a conditional process
(C-2)., When the end of pattern reaches, an accumulator uses the value t
{2drrent temporary result) as the final result, and then resests t to
THUE. Otherwise, it maintains a temporary result t, whish is set by the
logical expression t iz t /% (xnew %/ d). /% and A/ stand for boolean
AND and CR, respectively. Thus il the current temporary result t is
TRUE, and xnew ar the current comparison result d i= TRUE, then the new
temparary result will ke =et to TRUE.

(D) indicates a 2x5 array of concurrent processes, gz shown in Fig-

ure 4, The cells at the top are the comparators; the pattern flows from

t

aft to right and the string flaws from right to left. The bottom

B

cells, acoumulators, receive the results of the comparison from above.
They maintain partial results, and shift completed results from right to
leflt, Twc bits associated with the pattern fleow through the accumula-
tors from left to right., One bit is the end of pattern, L . The cther is

the wild card character, ¥,

3.2 functional Deszign Phase

In the functicnal design phase, the finite-state machine descrip-
tion in DDL is produced {rom a given concurrent algerithm. Funectional
design can be thought of as the design phase that determines whieh
hardware concepts to apply in implementing the concurrent algorithm and
describes how the hardwsre compeonents should behave. This phase is  one
of the most knowledge-intensive parts, and its function depends heavily
on the knowledge which is used. This phase continues with the following
processing coperations through the interactlon with the user as shown in
Figure 7.
{1)Analyze the structure of the OCCAM specification. Taking the con-

current deseriptions into account, it analyzes the  OCCAM

construct (WHILE, SEQ, IF, etc.) and creates an cutline of the hardware



contrel mechanism (state transitiens).

{2)Implement variables deseribed in OCCAM, using hardware
elements{regizters, terminals, etc.). Because the OCCAM specification
does not provide information about the number of required bits, the sys-
tem queries the user. However, the system automatically infers that the
number of bits for & variable iz one if all of its sources turn out &o
be Boplean wvalues ("THUE"™,"FALSE™, or the evaluation of a logical ex-
pression).
{3iCompress the operation sequences., This is an attempt to transform
same OQCCAM segquential processes inte DDL register transfer operations
executed in parallel, which impraves the performance of the generated
hardware,
{4)Determine what hardware resources are to be used for inter-procesasing
communiication in OCCAM, Basieally the communiecation is implemented as
hand shaking. 5ignal lines through which data is transferred and signal
lines used {or synchronous signals are provided.

After implementing OCCAM primitive operations as DODL hardware
gperations and generating partial DDL deseriptions, the system puts
these partial deseriptiens together ta complete the finmal DDL  desarip-

tion, as shown in Figure 8.

3.3 Circuit Design Phasze

The translator subsystem transforms the DDOL finite-state machine
descripticon into information for the eircuit design process. It gathers
and edits conditions faor terminal econnection, register transfer, and
state transition operations. Then the translator subsystem organizes
the data in frame-like structures, classified into twelve categories:
data about systems, clocks, automata, input signals, output signals,
terminals, memories, registers, states, decoders, arithmetiec expres-
sions, and 1lagieal expressions. Each logical expression ia given a
unique name, and the occurrences of each logical expression are counted,

to prevent their arbitrary duplication by the combinational eireuit,



The DDL code shown in Figure 8 econtains three register transfer
operations of register "r" in automaton "acc"., These operations provide
the follewing information:

1) i*® ace_init ¥| r <= 0.

2) 1% acc_idle & sendl ¥, r <= rin.

3} ¥ acc_statel & 1 ¥ r <= t.
where the states whose identifiers are modified by "ace" belong to the
automaton Mage", M"i#® ¥} " stands for an if-elause. Based on the
above information, the input eircuit of register "pt is designed, as
shown in Figure 9.

The automaton design subsystem implements automata having the ap~
propriate states using flip=-flops. It designs a control circuit around
these flip-flops acecerding to information on state transitions provided
by the translator subsysten. Figure 10 shows the resulting eircuit
design for & pabttern matcher that consists of a pair of the comparator
and the accumulator.

The szize of a combinatienal circuit that can be ereated using a
single CMO3 cell is limited by CMOS technology. Signal delay depends
mainly on the number of FETs inserted in series between the power supply
line and output line, Therefore, the circuit decomposition subsystem
decnmposes the combinational eircults so that the number of FETs in
series does not exceed the limit impased by signal delay considerations,
Ihe combinational eircuit around register "r" is decomposed inte four
parts as shown in Figure 9,

The funetional cell design subsystem implements the decomposed com-
binastional eircuits as functional CMOS eells. The optimal layouts of
the functional CMOS cells are obtained by a heuristie =slgorithm[7].
However, 1if the designer i3 required to use NAND or NOR gates, then the
partial combinatienal eircuit (iv) in Figure § results in medicerity as

shown in Figure 11(a), In this case, we take advantage of the property

of the CMO3 functionmal cell that physically adjacent gabes can be con=-



nected by a diffusion area. A3 a result, the aptimal layout is cbtained
as shown in Figure 11(b). MNote that the optimal array is smaller than
the hasie conventional array by zlmost S0%,

Components such as reglisters, memories, decoders, adders, and I/0
pinz are assembled from & cell litrary of basic cells, Since these
functional cells and library cells are of the same height and have the
Same power connections and standardized connection points, they can

readily be incorpeorated into existing automated layout systems.

4, INFERENCE MECHANIZM AND KNOWLEDGE

The funetional design phase, which applies hardware concepts to a
given concurrent algorithm, is heavily dependent on the designers® own
expertise. It is difficult to automate the functional design by conven-
tional CAD techniques, We automated the funetional design by in cor-
porating the designers' exwpertiss into the computer.

This secticn discusses how the inference mechanisms were created
and gives examples of the expert knowledge provided for the functional
design phase, We alse evaluate Prolog for 1its effectiveness as  an
implementation/knowledge-representation language for & knowledge=hased

logis design system.

B.1 Characteristics of Functisral Design

We must take a few points into account in performing functional
design by the knowledge-based appreoach, Functional design usually in=
volves some design revisions befare the development of a satisfactory
design. In other words, functional design does not go straight from be-
ginning to end. Instead, the designer gradually refines the design while
checking the overszll specifications and clarifying the entire eircuit.
At each design step, the designer evaluates the situation and makes ap--
propriate decisions. Therefore, it is extremely important in design to

always have a good picture of the relationa among design objects, The



knowledge-representation framework should reflect &his fact. A good
method must Le provided for referring to the relations among design oh-
jects.

Design situations are frequently changed. Some changes caused by
design decisions affect the other design parts. The order in which the
decisions are made may significantly affect the design cost andsfor ihe
design quality. Therefore, controlling such decision orders, which re-
quires complicated operations, should be expressed withoutb any difficul-

ty.

4,2 Inference Mechanism
4.2.7 Forward chaining

Forward chaining is used as the basic inference mechanism. Logie
design iz a process of ineremental refinement., Incremental refinement.
comes from successive design decisions; every time a decision is made,
the current design development is changed. The process that the
designer gradually refines the design and clarifies the entire eireuit
while referring to the overall specifications can be obtained by causing
side effects and changing the design environment on the working memory.

Forward chaining seems to be able to simulate the incremental ra-
{inement design process, When the conditicns set farth by the premise
section of a forward chaining rule are satisfied, the conclusien section
is ectivated and the working memory is updated., Then another rule is
sctivated referring to the updated working memory. Processing continues
in  this manner. We use the  assertl{addition of fact) and
retracti{deletion of fact) functiens of Prolog for updating the working
memory.  The working memery consists of design information, which is
represented by about 40 types of Prolog fastz., Az the design process
continues, the working memory is graduslly filled with design informa-
tion.

Figure 12 shows the general format of the forward chaining rule,

When the conditions 1, ..., n are satizfied in the premise section, asc=



tiens 1, ..., m are activated in the conclusion sectlion. The working

memary is updated while causing side effects by the assert and/for re-

tract functions.

4.2.2 Backward chaining

Backward chaining is used for wvarious conditional checks. In
checking the conditicns set forth in the premise section of a forward
chaining rule, only the reference Lo the working memory is required im
sgme cases, In the other cases, several inference steps are required.
When a specified condition is checked, the backward chaining rule whose
conclusion section matches to the speciflied condition i2 fired, Then,
the various conditions set forth by the premise section of the fired
rule are chezked. In this way, checking can be efficiently performed by
selecting anly those rules whieh are related to the conditional check.
Bacgkward chaining 13 already implemented as the execution mechanism of
Prolog.

Figure 131 shows the generzl format of the backward chaining rule.
The head of the Prolog clause contains the conclusicn, while the body
contains the premise section. When conditions 1, ... 1 are satisfied
in the premise section, condition 0 is concluded. In backward chaining,

pravacation of rules dees net affect the working memory.

4.3 Knowledge Heprezentation

In this section, specific knowledge examples of the funetional
design phase are presented to show how Prolog is used to express expert
knowledge of designera'. Funetional design can be regarded as the pro-
cess  that determines hardware concepts according to software specifica=
tions in OCCAM, Thus, the knowledge used in this process primarily as=

sociates software specifications with hardware concepts,

4.3.1 Knowledge for implementing a variable with hardware elements

Figure 14 shows the knowledge used to implement a variable in OCCAM



with hardware elements. This rule isg 3 forward chaining one for imple-
menting a OJZAM variable Var and states that :
IF:
{1302} All sources input from the external processes through the
channel are all Boolean values,
(3)(4) and all sources assigned to the Var are all Boolean values,
(5} and other conditions are satisfied,
THEN:
(&) Store in the working memory the information that. the variakle
Var is to be implemented as a 1 bit register.
When z predicate implement_variable 1s called with the OCCAM variable as
the first argument, the clause shown in Figure 1§ is activated. IFf all
conditions(1)-(5) are satisfied, the determination(6) that Var must be
implemented as a 1 bit register iz written into the working memary,
This rule is used to implement, for example, variasble t im the specifi-
cation af the pattern matcher.
input_sourese(Var, Input_sources) is a procedure call. what it
means &ccording to the declarative reading of Proleg clauses, becomes

clearer; It reads "input source gof Var is Input sources",

4.3.2 Enowledge for compressing sequential aperations

Figure 15 shows the knowledge used to check whether the software
Sequential operations can be transformed into hardware operations exe-
cuted in parallel, which would increase the perfarmance level of the
generated hardware. This rule 1is a3 backward chalning one and states
that :

Ir:

(1)(2) Both are store-type operations such as assignment processes,

{3} and they are processed one after anothers,

(&) and the variables into which the sources are to be stored are

different,

(5)(6) and both variables are going to be implemented as registers,



(7} and the variable in the first operation is not referred to in
the source of the second operation,
THEN :

two operations in a sequence are compatible, or can be executed

simultanecusly.
When =z predicate compatible i3 ecalled with two operaticons as the argu-
ments, the alause shown in Figure 15 is astivated., Backward chalning is
performed as follows. The conditional check store_operation and imple-
mentation are aonly resolved by referring to the warking memory, but the
referred to check activates other rules. When all conditions (1)-(T)
are satisfied, the compatibility check is successful,

Using this rule, an OCCAM sequential process within the dashed boy
in Figure 6 is compressed into DDL register transfer operations, which
are executed in parallel, shawn within the dashed box in Figure 8.
Here, the variables rold and rnew are implemented as a single register
r, using the knowledge about merging two registers into one.

The rule "compatible" expresses the relation betwsen two cperaticons
and Prolog provides a natural means of expressing such relations. It is
convenient to represent essential relations, or hardware concepts, with

predicates of Prolog.

4.3.3 Knowladge involving local control

Figure 16 illustrates another forward chaining rule for implement-
ing an OCCAM wvariable wsing hardware elements, In particular, this
rule changes the order of inference locally. The ideas of the predicate
implement variable is as follows; when no clues are provided regarding
the number of bits for a variable, and a “similar™ variable exists, try
to determine the number of bits for the similar one first and use the
result. Ta prevent falling intc a loop while a decisicn about a speeif-
ic wvariable iz postponed, the list of all postponed variables is stored

as the second argument of the predicate, implement_variable. This rule



states that
IF:
(1) There exists a variable which looks szimilar to Var,
{2} and the implementation eof Ancther var has not been postponed,
{3) and Var is added to +the list of postponed wariables and
Another_var is implemented first,
(4} and the number of bits, Bit_width is confirmed,

(=1 and other conditions are satisfied,

{6) Store in the working memory the information that the wvariable
Var is to be implemented as a Bit width bit register.

Here, a similar veriable is defined &5 a wariable thal storss  the same
type of data. The knowledge that if data of the same tvpe are stored in
different variables, it is possible to implement these variables with
the same number of bits is precisely expressed in the previous rule.
For example, this rule is applicable to variables pnew and snew which
gppear  in  PROC comp in Figure 6, As shown in Figure 7, the system at-
tempts to implement the variable pnew first, but the decision 1is post-
poned because there are no clues te the number of bits., Next, the sys-
tem tries to implement the similar variable snew, In this case, there
are alse ne eclues to the number of bits for the variable snew. There=-
fore, the system asks the user. After the variable snew i3 implemented,
the system infers that pnew should have the same number of bits a3 snew,
and requests the user's consent to implement variable pnew, In this
way, the regular flow of econtrol iz altered by changing the order of

tavks locally.

L4 Effectiveness of Prolog

We evaluated the effectiveness of Prolog as an
implementation/knowledge-representation language for a new generation of
CAD systems.

While ceonstructing this system, we confirmed that the following



characteristics af Proeleg are wuseful for the construction of a
knowledge-based expert system for logic design.

(1) The "predicate represents inter-object relationship" characteris-
tic of Prolog is very efficient for expressing hardware concepts,
software concepts, and other high=level concapts.

(2) The characteristic that Prolog code can be declaratively read s
suitable for representing the simulation of human inference in
design process,

(3) Controlling design orders, which requires complex operations for
@ conventional programming language, is facilitated by using the

Prolog execution mechanism.

5. SYSTEM IMPLEMENTATION AND PERFORMANCE

This system was developed using C-Frolog and runs on  the VAX-
11/780., The C=Prolog interpreter of the VAX-11/TBC runz at approximate-
ly 1 kKLIPS. Table 1 lists the program sizes of variocus subsystems and
the execution time of the two hardware design examples (CPU time of
VAX=11/T80), Design example 1 applies to the pattern matcher. Design
example 2 applies to the simple microprocessor. The input OCCAM specif-
ications were about U0 and 50 lines, respectively., The funetional
design phase tocok 37 seconds of CPU time to generate the DDL deseription
of the pattern matcher and tock 13 seconds for the microprocessor, The
circuit design phase created the CMOS circuit of the pattern mateher in
11.5 minutes and that of the microprocesscr in 13.3 minutes., These cir-
euits correspond to approximately 350 gates for the pattern matcher and

1000 gates for the microprocessor.

£, CONCLUSIONS
We discussed the knowledge-based expert system for hardware logic
design implemented in Praleg, with an emphasis on the inference mechan-

iam and knowledge representation of the functional design phase,



Areas for further research are as follows,

First, the working memory needs to be appropriately structured.
The working memory currently used in this system is & flat-type that
consists only of Proleg faects. All operating procsdures for the working
memory  (Prolog's assert and retract functions are used to update the
data) are contained in rules. As a result, it is complicated to manipu-
late the dats in the working memory that may vary with time. The use of
ESP is a solution to the problem of structuring the working memory.
ESPI8] provides us with time-dependent states and a frame-like structure
while retaining esszential logie programming language features,

Secondly, the current system does not have a rule-interpreter aon
Froleg. As previously menticned, the local econtrol flew can be modified
by chapging the local task sequence. Global control, howsver, is mueh
more difficult. Global inference cannot be controlled without develop-
ing a Meta-rule interpreter,

Lastly, expert system capability largely depends on the amount of
stored Kknowledge. Te improve it, expert knowledge must be repeatedly
extracted and restored in the knowledge-bhase. Fer this reassn, we be-

lieve it is necessary to research on knowledge acquisition.
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implement_variable(var, )=

input_source{vear, Input_sources), ——=={1}
truth_velue(inpul_sources), -———(2}
gzsigned_source(vVar Assigned_sources), ====(3}
truthovelue{Assigned_sources), ====(d}

--—-{5}

assert{implementation{Var, | register, . 3} ==<=(8)

Figure 14 Knowledge for implementing a variable with
herdware elemants
(Forward chaining rule)

compatible{Operation!, Operationz -

store_operation{Operationt Varl assign,Saurcel, ... ) -—=(1)
store_operationiOperation2,Var2,gssign,Source?, ) -—={(2}
follawed by{Operation! Operation), =-—==={3}
Varl Swas Var? ===={d}
implementation{varl, _, register, . J, -==-{3)
implementation{var2, -, register, ... .}, -==={G}
notirefered tolWarl Sourcell) {7}
Figure IS Knowledge for compressing sequential cperations
{Backward chaining ruiel
implement_variablel ¥ar, Tase_list)=
looks_simitarivar, Another_varl, ====s i
notimember{ Another_var, Task_listy, = —--==-= {2}
implement_variablel Another_var, [Var | Task_list]), ----={3]
implementation{ another_var, Bit.owidth, . .), ===== {1t
----- =y
assertlimplementationivar, Bit_width, register, .. J). -——---{£]

Figure |6, Kngwlede invelving local control
{Forward chaiming ruie)
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