[COT Technical Memorandum: TM-0164

TM-Hed

Parttal Evaluaton of Prolog Programs
and 1ts Application to Meta Programming

by
A Takeucht and K. Furukaws

Seplember. 1986

D9ss, 1COT

Mita Kokusai Bidg 21F {03} 456-3191~5

|c :D'| 4-28 Mita 1-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

PARTIAL EVALUATION OF PROLOG PROGCRAMS
AND ITS APPLICATION TO META PROGRAMMING

Akikazn Takeuchi and Hoichi Purukaws

ICOT Research Center
Inseitute far New Generation Computer Technology
1-4-78, Mira, Minato-ku, Tokyo 108 Japan

Partial evaluation is an impertant technique in computer science. In this paper, we present 1) the method of partial
evaluation of Prolog programs, 2] its implementation o Profor aod 3) its appiicacion to meta programming. Meta
programming plays an importast role in Prolog application. because of its expressive power. However, efficiency
bas alwayz been a problem o meta programming, We will show that the efficiency problem can be solved by
specializing meta programs by partial evaiuation with reapect ta abject programs without losing the expressive
pawer of mets programming. Furthermore we propese a gew method for building inference systems. The new
method ir based oo meta programming and utilizes parcial evaluation as o bame tool. In a practical inference
gystem, it is mportaus that the system has the ability to acnuire inference mules incrementaily, We will show that
our new method s aleo applicable to evolviog systems by specifying the algorithm te specialize a meta wnterpreter
imcrementaily with respeet to an imeremencally generated object program.

1. INTRODUCTION

Logic programming has provided powerful concepts for
buliding expert systems. programming eovironments and
database management systems, A common feature in
these systems i that meta programs, especially meta in-
terpreters, play an important role. la fact, it is quite nat-
wrad te reakize shells af r:;:rri systems and MANIEETS af
database syatems as meta interprecers specialized to these
syatems. The wse of meta incerpreters bhas the following ad-
vantages. 1) One can clearly separate object-level comtrol
and meta-level control. 2) Because of 1], the system iz easy
ter understand and ey Lo |:r|||1i.i.f'l|r. e ;1rn]:-||.-:|:r|.. huwmr.
i that mierpresive execution of objeet programs by the
meta mterpreter makes the system quite slow, We have de-
veloped the partial evaluation program, PEVAL, and have
shown that the performance of the system can be improved
br P.‘-\rf.iﬂ,”'?’ #al unt;iur; the meta :i'uf.-l-r]'rrr!rr with reapect o
the specific objeet program {1}, PEVAL has been extended
to partially evaluate Prolog programs more Sexibly.

Several researchers have studied the partial evaluation of
Proiog programs. Komoroweki investipated partial evalua-
tion aa a part of a theory of loteractive, incremental pra-
sramming {2}, Kahn developed the partial evaduator of
Lisp programs i Prolog and sweeceeded im geperating the
compiler of his LM-Proleg {3}, Venken developed a partial
evaliator of Prolog in Prolog and investigated its applica-
tion tn query optimization {4}, Gallagher iovestigated the
transformation of logie programs by the partial evaluation
of imterpreters and appiied it to efficient implementation of
nou-gtandard control strategies {5},

In this paper, we will deseribe the method of partial eval-
uation of Prolog programs realized in PEVAL and explaio
the applieation of pariial evaluation to the specialization
of meta programs with respect to object programs. Based
oo the expeniments on specialization of meta programs, we
propose a mew methodology for building inference systems
which utilizes partial svaiuation as a kernel tool. Further-
mere, it will be shown that meta programs caa be ape.
cialized imerementaily with respect to an object program
constructed inerementally. This incremental speciaiization
matrhes ineremental rule acrusition o inference systema
and the open world assumption in programming eaviroo-
ments.

2. PARTIAL EVALUATION OF PROLOG PRO-
GRAMS

Partial evaluation of a program is generally done in or-
der to speciaiize an origioal general program to a special
efficient program using information abont the ron-time en-
vironment. The input data for a program is an important
part of such information. [the case of Prolog programs,
the foilowing two kinds of information can be regarded as
mpur data:

{1} Th:j: goal statement, especially values of argumenes of
goals
I:_?:| A set of clanses used as mput data

In partial evaluation of Prolog programas, it iz desirable to
be able to partiaiiy evaiuate 3 program with respect to
both kinds of input data. The basic principle of partial
evaliatinn is to evaluate parts of a program which do have
enough inpmt dats and te keep them s they are if the parts
do not bave epough data. Copcrete values of variabies in
an expresswon are usually necessary for evaluation o value
oriented lanmuages hie funeniopal programming fanpuages,
To evaluate an expression without enough values, some spe
eial evaluanion scheme such as lazy evalustion is required.
In the case of Prolog. the basic computation is based on
unification. thus oo special evaluation scheme is required
for partial evalueation. This 13 an important advancage of
FPiviog,

The computation of a Prolog program can be regarded as
depth-first and leflt-to-right teaversal of the AND-OR tree
corresponding to the program. Our partiai evaimacer, called
FEVAL. examinea this tree using the given partial data,
expands a goal by the body of a clause, the bhead of whizh
can be unified with the goal, and euts off branches mown
to fail. Several strategics are possible for traversing by the
partial evaluator such as top-down, bottom-up and middle
vut. PEVAL, like Prolog, uses top-down and left-to-right.
PEVAL starts the partial evaluation from the definition
of the top-level goal and goes down through those of ita
dezcendent goals. We call this kind of control of parcial
evaluation *goal-directed partial cvalontion”.

The basic algorithm for goal-directed pactial evaluation js
similar to that used in searching for all solutions for a given
goal. In fact, il an ongmnal program has a Anite AND-
OR tree, the extreme case of partial evaluation involves
gearching for all instances of the top-level goal. For partial
evaluation of a program with an mfinite AND-OR tree
there must be some mechanism to detect a loop of partial
evaluativa aod deal with it, PEVAL decects a loop when
the following condition i= satisfied:

peval _goal{Goal, inf_loop.Stack) :-
secand sccurence{fozl, Skack), !.
peval_goal(Goal, Newlef, K Stack):-
clmusan{Gonl,Cla), |,
herd_unif{Cle,Coal,Salacted),
peval_clauses(Selected, Nawlaf,
[GorliSsack]).

peval_clausen{[], fazl,)

peval_clauses{Clauses, Ans, Staci) .-
paval_clavaes!{Claunes, Temp-[], Stmck),
clone{Temp, Ans) .

peval_claumesl([cl(Hend Dona, [Coal |Reat])|
€la] , Ans, Svack) :- 1,
peval_goal(Goal,Subs, Stack),
unfald(Subs, c1(HBeand, Done, [Goal |Reat]d,
CCla-Clsl,
pevel_claousesl{CCle, Ana Stack).
peval_clauseni({[cl{Jend, Done.[])iC1ls],
[cl{Head,Done, [J3[NTail]-NT,
Staek) :- !,
peval_clausesi(Cla,NTasl-HT,3tack).

peval_claumesl{[] T7=-T,_J.

unfold(inf lecp,cl{Head,38=-[GIDT], [GIR]),
[cl{Head, DE=DT A)|Tail] <Tail)
unfold(fail, . Tail-Taal) := 1.
wfeld([], ., Tail=Tail) :- 1.
unfeld(lcl{Head.Sody, [1)15a],
Clzusa, [NclauseiT]-Tail)
expand(Clause, cl{Head, Bady, (1), Hecinuaa),
', unfold({Se,2lavnss, T-Taill.

expand (Clauee.cl(C,B-{]1,01),
cl({Head DH=NDT,C8)) :=
eopy(Claues, cl(Read, DE-OT, [CICu])),
append (B, NDT.DTJ.

hend_nnaf ([(H: =Body) |Cla] . Conl,
(c1(H.D-D,Blse) {Taill}:~

copylGomi, E), I,
and._to.liac{Hody, Blac),
head_unif(Cla,Goal, Tail),

bemd_unif([_{Cln]l.Goal.Tail) :=-
head, unif (C1a, Conl, Taill.

head unaf([],., [1]).

clome([],fril) == I,
cloes (X, X).

Fig. 1 Bagic algorithm of PEVAL

Let &' be u goal apprarmy as & sew goal to be partially
evaluated durning the partial evaluation of the clanse defin-
ing a goal (.

A loop is detected if
(1] & is a varfant of (7 or
{2) & is ap instance of 7

where a variant of a goal & is defined to be the same goal
a3 7 except the names of variables.

The frst case is elearly a loop. An infinike sequence af goals
where arguments of a goal are tocremencally instantiated to
infinite terms, & g {p(X1). p([alX2]), pi[s.alX2]],
. oo by is detected as a loop by the second case. It is mot
oecessary to hamdle a pencealizing sequence of goals, e
g {pila.n,niX1]}, pCle,aiX3]), pClalx3ll, <ok
since 1t has the mest general goal as a limit. The condition
i2) is too strong, and may regard a safe computation as
3 loop. When a loop s detected, PEVAL stops further
partial evaluation and returns a goal as the resuit of partial
evaluation.

The basie algorithm of partial evaluation realized in PE-
VAL is shown in g 1. peval_goail{Gaal, NewDef,

- 2

Stack) is the relation which takes Conl and Staek a5 in.
put and teturns a specialized definition NewDet of the goal,
where Stack 15 4 stack bolding zoals being partially evain-
ated. The first clause specifies the ease in which the joop
detection condition above is satisfied. In this case, an
atem, ief_loop, is returned instead of a specialized def
inition. In the second clause, clauses, that ean be mmifiecd
wich the goai, are partiaily evaluates by paval_clauses.
peval_zlavses(Clauses, NewOlauses, Stack) is the re
lation taking Clauses and Stack as mpuk and returns the
result, NewClauses, of pastial evaluation of Clauses. The
first clanse of paval _clauses specifies the case in which
o clause can be unified with the goal. im which an atom,
fail. is returmed. The second clause specifies the pe-
mauimng caze, in which a body of each candidate clause
is partially evainaced by paval_cleusen! and £ail is re.
turned if the result of peral_clausest is empty, other-
wise the result of peval_clanmesl is returned as the re-
suit of peval_cluusesn. For each clause in the Brat ar-
gument, paval_clannesl pareially evaluates zoals in the
body from left to mght by peval.goal and expands the
goal with the new definition by wnfold and further par-
tially evalnates the remaining goals in the expasded clauges
by peval_clnuseal,

In actual implementation. POVAL is augmented at many
poiuts to enable user-contrel 3o that PEVAL can process
as maay kinds of programs as possible. PEVAL cag hagdle
the following types of programs.

= Frograms which inelude arbitrary syatem predicates ex-
cept cut (14 statement is available instead of cut).

» Programs which are open, that is, which bave undefned
predicatey,

Currently, PEVAL dues not handle the cut operator sinee
the cut is teo primitive ta handle. Relatively high control
comstiucts such as if and case are easy for PEVAL to
bandle. Thus, instead of directly hamiline ~ut tn PEVAL,
4 program nsing cut is Bese translated inte a Program Using
if and then it is partially evaluaced.

PEVAL provides several control primitives for a user to in-
struct PEVAL to totally evaluate some pares of a Program,
ta stop evaluation of other parts, to expand loops detected
by the second condition if necessary, to inhibit unfoiding of
pre-specified predicates and so on. PEVAL can safely ban-
dle open programs with rhese controls, and the user can
control the size of codes gemerated by PEVAL. A predicate
with an ineemplete {not empty) definition cannot be han-
dled by PEVAL, The treatment of such predicates will he
discwsaed in section 5. The new definitions genernted by
the partial evaluntion are stored in the internal database,
When a pew clanse is obtained, PEVAL checks whether the
new clanse i3 already in the database or not to enmurs that
the new program has no redundaney.

3. APPLICATION TO META PROGRAMMING

4.1 Meta progromming

Meta programming is & widely used programming technique
i logie programming. Meta programming can be deseribed
informally in the following way.

1) To handle a program as data

1) To handle data as 2 program asd to evaluate it

i) E:Ihmdle a result (auccess or fail) of 2 computation as
a

The best kmown example of meta programming is the demo
predicate of Bowen and Howalski {6). demo takes two ar
Fuments, a program aud A goal. Usiog this dema predicate,
Bowen and Kowalski desenibe ciul programmiuy exam-
ples amalgamating object and meta languages, Meta pre-
gramming is also powerful o problem solving, Bundy bas
snown efficient meta-level control of problem solving {7}

soive{smue, [10G1).
solval{{A B}, 2} -~

golve{A.X), wolve(B.Y), append(X. ¥ I}
soivel{mat{A), [CF)]) -

solve(A, [C]), € < 20, COF is 100-2,

solvel{h, [CF]) :-
=ulel{A,B,F) , salva(B.3), f(F,5,CF).

ef(X.¥.2) :-)
preduct(Y,100,¥Y¥), T is (X+YY}/100.
product([1, A A).
preducs([XIY). A XX} -
B is X+4/100, producs(Y.B.IX).

rale(A 3, F) - ((A:-B)<2F).
rale(A.cToe, F] - (A€»F).

(a) Meta Program

should_take(Persen, Drog) --
cemplaine_of (Persoz, Sympram],
suppresasa{frug, Symotom),
not(unsuitable(Dzug, Person)) <» T7O.

anpprenuufupu:’n, p.u.J L
suppressnn{logotil,diasrhoen) <> 5.

nneuitable(Drag, Person) @-
aggravates{frug, Jomdition},
suffers_fron(Peracn, Cendicion) <» BO.

aggravaten{anpirin, peptic_ulear]) <» TO.
aggravates{lomotil,
impaired liver_fanction) <> TO.

(b} Object Program
Fig. 2 Mata Interpreter and Objeet Program

Meta programming is alsc important in building program-
ming eovironments. The algorithmic program debugging
system developed by Shapio {B} uses meta programming
extenaively.

3.2 Partial evaluation of 2 mesa program

It has been saxd that the mets programming 13 a useful
approach becanse of its expressive power, however it is in-
efficient hecanse of the layers of interpretations. We clamm
that partial evaluation cam solve the ineficiency problem
of meta programming. [t is possible to transiate a meta
program nto an eficient program by partial evaluation. In
fact, since an object program cao be regarded as imput data
from a meta program, the meta program can be specialized
by partial evaluation with respeet to the object program,
so that the layers of interpretations disappears. Thas aig-
nificantly improves the eficiency of the program and en-
courages users to wiilize fully the expressive power of meta
PIOCIAMMinE.

We demonstente this claim on the Horn clause meta inter-
preter bandling cerainty factom originally deviced by (8}
Fig. 2 |aj shows the meta interpreter. The aalve predicats
ia a binary relation, the Brse argnment of wiich 15 a con-
junction of goals to be selved and the second argnment of
which is the list of certainey factors of the goals when they
are solved. Fig. 2 (b} abows an object program, which is
a set of rules used to recommend a drug to a patient. <>
¥* attached to each clause. indicates the certancy factor of
that clawse |inference mule).

Fig. I shows the result of partial evaluation. In cootrast
with the original meta program which iz general, the pro-
gram in fig. 3 is specific to the object program (&g, 2 (b))
By comparing the resuiting program with the origizal ob-
ject program, the specialized program can be regarded as
that obtained by augmenting the object program to bao-
dle certainty factors. Note that the resulting program has
the same structure as the object program. It i possible

Table 1 Comparison of exeeution time

(CPU Time)
|| P2 | pa |
Interpretive Execution 1674 1157 301
Compiled Execution 110 46 U

p1: Meta + Objest program (fig. 2)
pz: The specialized program (fig. 3)
pa: The specialized program |fig. 4)

to partially evaluate the resuiting program forther. Fig, 4
shows the new specialized program. In the resnlting pro-
gram. ail the object goal invocations exeepr ahould_saka.
complainn_of and suffers_?rem are expanded. As a re-
anit, this program s a little more eficient than the program
im he. 3.

solve(should_sake(k, B}, [C]} :-
solve{ccaplains_of (4.0).E},
solva{suppreases (B, D), F),
solve(unsuitabla(B 4), [G]),
G<30,8 1s 100-GC.append(F, [H].IJ,
appecd(E. I, J},e£(70,2,C).
solve{suppreases(aepirin, prin), [80]),
soive{suppreases(lomotil, diarchoma), [AE]]) .
solve{unauitablelA. B}, [C]) -
solve(aggravacen(d, D) E],
solve(auffers_f=za={B,0),F),
append(E,F,C), cf (BO,G,C0).
solvel{aggravaten{rapirin,
peptic_zleer}, [TO]J.
molve(aggrarates(lonocil,
impaired.liver.functienl}. [T0O]).

Fig. 3 Result of Partial Evaluation

solve(should_take(A,anpirin), [B]] :=
solve{conplains_of (A, pain) .C},
solve{sulfers_from(A, peptic.ulear) D),
ef (B0, [TOID].E), E<20,F is 100-E,
appand(C, [60,F] G}, cf(70,6.B),

goive(sbould take{A lomezil),[Bl) -
solve(complaina_of (A, diarrhoen),C),
solva(suifers_froalA,

impaired_liver_fumctien),D}.

cf (80, [TOID].E).E<20,F is 100-E,
append (3, (BB, F}, 00, <4(70,6,0).

Fig. 4 Another Resultal Partial Evaluation

Table | shows the comparison of exacution times of variows
PrOgrams,

4. PARTIAL EVALITATION AS A BASIC TOOL
FOR BUILDING INFERENCE SYSTEMS

It has been said that Prolog is o good base language for
bwiding inference systema for the following reasons,

(1) Unification: Computation based on umifieation 1=
maore powerful than the pattern matehing and pattern
drven computation of conventional Al languages,

(2) Backtracking search: FProlog provides automatic
backtracking search essential in an inference system

o —

However, the fact that Pralog is a zood base language does
not suggest any special method for bullding inference sys-
tems. Maoy methods have been proposed so far. In the
following we summarize these methods so far. clariiy the
pmblem: a.nd propose 3 new method |1.':'i|1_t; pu.rt:ia.] e"r‘Ju_;.-

tion as a bagic tool.

Conceptuaily, inference systems eonsist of twe componsats:
derence rules and an inference engine, [nferemce rules
are domain specific knowledge, In contrast, the inference
comnes are domaia independent and pedorm inferences
using some stratery based on the inferemce rules. Meta-
level contral is implemented in the inference samine,

There are two typical methods for building an inferenee
sratem @ Prolog.

(1) To implement the inference ensine as an interprecsr of
inference mues
(2} To translate inference ruies into an sxecutable program

APES {10} and the meea incerpeeter bandling certalnty
factors of Shapiro are exomples of syatem usioe the firr
methed, In APES infereace rules are represented by Horn
cianses and the infercnce sngine is implemented as 2 meta
interpreter including a facility for tenemne the histary of
infereaces. Examples of systems using the second approach
are the expert system developed by Clack er al, {11} and
the production system of Tamaka {12}, Parsing sysrems
such as DOCG and BUP {13} are other sxampies of such
systems in which inference rules are transfaced into Prolog
programs and executed directly by the underiying Proiog
processor.

Az mestioned i seecion 3, the St method makes it quee
ensy to understand the detals of indereace and easv to mod.
ify the inference strategy, while its slow cfficiency is a seri-
ous disadvactage. In contrast, the second method s very
efficient since inferesce = performed by direct exccution
of the translated Prolog program, bus it is dificuit to un.
derstand beeh the translation progrun and the teansiated
program. This is because the trausiation proegram insludes
a [ot that are irrelevaut to inference such as syntax analysis
aud 1/ 0. and the transiated prograi is too speciiie, making
it diffienlt to understand the basic inference strotemy.

Thus the two methods have the complementary advaneazes
anil disadvantages. This reflects the trade-off hetween the
eficiensy of the specialized prosrams and the geacrality
of the interpretive approach. We propose a new approach
amalgamating both methods overcoming the trade-off by
partial evaluation. Our method imcorporates the advan-
tages while avoiding the disadvantages of both merhods.
The system 13 ot cosiructed as a combication of an infer-
ence engine and inference rles. Then the inference engiue
i partinlly evaluated with reapect to the inference rujes,
and the sesulting speeialized pregram is exvented, [n the
firar stage, the inferemce engine is descoibed as a general
meea mterpreter, which makes it easy o undesstand and
modify the engine, and easy to impicment meta-levs] con-
trol in the engioe. On the other band, since mference is
periormed by direct exeeution of the specialized prugram,
high eficiency can be achieved. as demonstensted in see-
tion 3. Partial evaluation plays a rentral role 1 this gew
method, combining efficient mferenee and the penepaiiey,
underataudilnlity and mamramebility of the inference eo-
gine.

Several experiments were performed to vesmiy the new
method. Takewaki ~ al, applied partial evaluation to their
algebraic mampuiation system implemented in Prolog us-
g meta programming extensively {14}, [their system,
rewriting rules for expressivny are clustenized with respect
to their application conditions and stored in object level,
Strategic control mies which select an appropriate rule set
for an expression are deseribed in meca level. They reported
that the specialized program runs on an averags five times

faster than the orivinal prosram. We deseribe the axper-
imeze oo BUP {Bottom.up Parsing) {13} here. BUP is
o bottarm-up parser of context free srammars [CFG) and
¢an be regarded as an mference system, Usually a BUP
is conseracted by the second method, that i, OFG mles
are translated into a Prolos pregram by the BUP trans.
lator and parsing is periormed by direct exeeution of the
translated program. As mentioned abeve, however, un-
derstandability and maintainability are problems in this
methed. We demonsirate that the pew method is appli-
cable 1o bottom-np parsing and will achiere high ¢fciency,
understandability and maincainabilicy simuitaneousiy. Fig.
& shiows the Dottom-up interpreter for OFG rules (fg. &
{al}, CFG rules (fic. 5 (b)) and the sorresponding program
generated by the BUP transiator (fir. 5 (e]). In comtrasi
with the BTUP translator, the bottom-up interprecer is quite
cumpact and it Is easy to understand its bottom-up strat
ey It b alse tasy to modify the strategy. Fig. & shows
the result of the partiai evaluation. The speeialized pro-
gram has the same structure as the transiated Program
Compared to the translated propram. the efficiency of the
result of partial evaluation = in oo way inferior to that
of the translated program. This proves that our methnd
provides a new general approach for building inference a¥s-
tems, in which uoderstandability, maintainability and high
cfficiency are ail achieved simultansonaly

5. INCREMENTAL SPECIALIZATION oF
META INTERPRETER

A pure Prolog proyram comsists of a set of Horn elauses,
The structure of a program i3 quite Bexitle since oo mean
Ing is attached to the order of clauses and the scope of a
vagiable ia clased in a clause. Like rufe-hased programming
lansuages, it is easy to comstrurt a program imcrementally.
Incrementad programmine is important when ome hojlds an
imference system. It ie generally dificult t& extract all the
expert knowledge ac once, Systems are developed incre-
mentally as expert knowledge is extrucred incrementaily. It
ia this aspect of expert systems that makes Prolog and ather
rule-baeed lasguages so suizable for their inference systems,
In the previous section we proposed a new methodolopy far
somstructing infercnce systems, In this section we show that
the key idea of the new methodoloey, that is, specializs.
tion of the meta interpreter, is alas applicable to the case
s witich am ebject program is copstructed incremencally.
We Hrat summarize the properties of PEVAL, following tha
theory of partial evaluation {15}, Then we derive the al
gorithm winich specializes a meta interprezer incrementally
wiltlh respect to an objoct program constructed incremen.
tally.

dinee PEVAL is written in Proloe, it is natural ta repregent
it as a relation, peval,

pevall Program, Data, Specialized Program)

peval represents & relation whish says that

Fpeciulized Program is a result of the pareial evaluation of
Progrum with respect to Dota. Given a ternary relation
Rla. v, w], the result of partial evaluation of 7 with respent
to the first argumene « iz depated by fBylv,w)l. From the
definition of partial evaluation, the lellowing formutae boid.

Rlu, v, w) = Ryfv, w) (L

peval{ R, u, R,). (2)

Representing the relation obtained by the partial evalua-
tion of peval in the formula (2] with respect to some R
by pevalp{u, R,), the following formulae are obtained as
spreial cases of (1) and (2).

pevail B, u, R} = pevalpiu, R,

pevadgiu, B}, (3}

goal{({P,Q) 50,3} :-
goal(F . 50.51). goml{d,51,5).
geal(C,5,51) :~
diet(F,5.52) link(F, 0},
derivelF.521.C,51).
derival(F 5.F, 5).
derive(F 52 C,81) :-
rulelf{(Lesmn <= (F Reat))},
link{Lem=n,J}, goal(Rest 52.53),
derive{lemna,53,0,51).
derivalF,52.0,81) :=
muleZ{{Lemma <= F}), link{lemma, C},
derive{Lemma 52,C,51).

liz=x(C.C).
link(F.Q} :-

ralel({Lemms %= (F,_J))),lick(Lezmn,C}.
liak(F. C} :-

rulalf{Lezmn <= F}), link(Lemma, C).
dict(F,[X158].5) :- ralel((F <= [X]]].
rulei((A <= (B.C})) := rulel(A <= (B,C})).
ralel((h <= B} :-

rule{(A <= B)),\+(B=(_,.1),

\+(B=[.1).

(a) BUP interpreter

rule{(a<=(np,vpl)). rule((zop<=(dec,z)]).
rule({vpomvild) . relel(vpemive,apll).
rule(ne=(bay]l). rule{{n<=[girl]}).

rulal(vic=[walks]}). rule{{vc<a{likeai)].
rale({dec<=[a]}}. rele{{dec<=ithe])).

{b) CFG rules

di:t(n.[].{bur]l].ﬁ}. lini(X.XJ.
diet(n, [], [girllA].A). link(det,np).
diet{vi, []1, [wvalksld] A). link(vt,.vp).
dice{vt, [], [1ikes|A] A). link(vi,vp).
dicz(det, [T, [nlA] . A). 11:1{::1:_3.
dict{det, [], [the |A] A} link{det.s).
veive, X, 7.Y, X0, viivi X, Y. 07,50,
det(des.X.¥.Y.X}. nin,I.¥.7.X}.
apinp. K. 7.Y.X). wplvp X Y.Y.X).
wip 1. 7.7.X2.
ap(B.(].C.D.E) :~-
link{s B}, geal{wp, [],C.F},
eanll{a(B, [I.F.0.E)).
deti{B,[].C.D,E} :=
link(ap B), genl(n [].C.F).
enll{np(E, [1.F.0.5]].
vi(B,[].C,0,E} '~
link(vp,8), ealllvp(B, [].C.0,E}).
v&(B.[].C.D.E} :-
limk(vp.B}, geal(mp,[].C.F).
ealllvp(B,. (], F.D,E]).
goal({CurGaal Arg,S50,8) :-
dies{ft Argl, 50,51), link(Nt, CurGsal),
tunctor{Pred, Nt ,5)
argll.Pred,CarGoal). erg(2.Pred. Argl),
arg(d,Pred,51), argld,.Pred.5),
argis, Pred Arg}, call(Pred).

(e} Code generated by BUP translator
Fog. 5 Bottom-up Paraer

Let wa consider the relation I
I[Program, Goal, Reault)

I represents & meta interpreter taking two inputs. an object
program Program and a goal Geal, and returning true to
Result if Goad ran be derived from Program, otherwise it
returns falae. By replacing B aod w in formula (3) by [and
a specific program P respectively,

pevalp (P Ip). (4)

is obtaiged, In the theory of partial evaluation, pevalr i3
kmown as the compiler corresponding to the interpreter [
and fp as the vbject code of P geoerated by the compiler
peualy,

die={dat, [a|A] A} Limic(A.A).
dies{det, [the 4] A). linitCdet mp).
diet(n, [boylAl, A). link{des u).
dictin, [girllal A). link{np.a).
diet{vi, [wanlkaiA] A). link{vi,wp).
dict(vt, [1ikea[A], A). link{ve,wvp).

derive(A.B,.A,B).
dariva{des A0 CY .-
lizk{op,.B), goal(n, 4, D},
derive(np,D 2, ,C).
derivelap,A, B, C} :-
link{s,B), genl{vp A, D),
derive(s, D B, C}.
derive(vt A,B,C) ;-
link(vp,B8), goallmp.A. D),
derivalvp.0.B,0).
derive{vi, A.B,C) ;-
link{vp.B), derive(wp.A 8,00
geal((A B}, C.D) ;-
goal(A.C.E). goal(B . E.DJ.
goal(A B.C) -
dice(D,2,E). link(D.a),
derive(D,E A, G).

Fig. 6 Partial Evaluation of BUP interpretar

Hepiacmg £ and u in the formula (3} by peval and I re-
apectively, we have

.I?Wﬂ-fnui': I, FE"“':F]- {SJ

pevily e 18 kDOWD a3 a compiler-compifer which assoriates
the mterpreter [and its compiler pevsl;. The derivation of
(1} to [5) prowides a brief overview of the theory of partial
svaluation. In the fﬂﬂl’.llfl'i:l.l.g, we consider the method for
incrementaily specializing 2 meta interpreter with respect
to an object program constructed inerementally,

Suppaose that an object program P oconsists of n clauses,

Loreendipp:e
P=APR

i
M and I* are defined as follows.

M = the program of the meta interpreter [

I* = the relation, whose program is A + ,ﬁ"

1l Pi"
where M +.|""|.+=: I denotes the prugram amalgamating M

and .ﬁ:-l P, and I" is defined to be I. ™ represents a
partial syscem that can prove theorems derivable only from

|'III|-:'L=-I. .
By setting J and P o (4) to * and Q respectively,
peval Q) .i's) (&)

1 obtained. Suppose that Gisequalto AT, Fi. I3 in the
relation I* specialized with respees to Q. Inother words, I}
is obtained by the partial evaluation of the program M +
I|"l:=l F; with AT, | P added. Therefore, the following
formuda hoids,

Belr

Substituting for Q and If in (6), we have

F
peoalnl N P Ip). (1)
stk
pevalgs ia the partially specialized compiler based on the in-
terpreter [which, when the remainiog program A7, P

i3 given, generates the object eode Jo of P, Let us consider
the following formula:

pevaliperalpe, Poypy, 5).

e

| p:ultﬂ e

f pevalpess |

I
_

pettdiran, |

==l

Fig. T Incremental Specialization

From the formuia (7), given A7, P, the selation § gen-
erates Ip. Thus, the relation § is nothing but pevaljus.,
amvd

pcvui{pcvﬂf;., P*+;1pﬂ.l‘ﬂf:-t|}. 0 = k s n—1 {3}
Partial evaluation of peoalp with Pio, given naing this
formula proves that peesiss, will be sbtaned. pevalpe i3
called the partial compiler. Formula {8} indicates the sya-
tematic method for grnerating the partial compiler (Fg. T).
Ls this scheme. we can evolve a partial compiler as succes-
sive preces of the object program are obtainsd. The partial
evalpution of the interpreter with respect to I is doue only
once in the conatruction of pevalys from pevalyi-., while it
iz done repeatedly in all the stages after the k-th atage if in
each stage a new partial compiler is generated from serazeh.
Thes impiies that our scheme can remarkably improve the
computational complexity for geaeration of partial compil-
ers by avoiding repeated computatioss. The partial com-
plier of the arbitrary stage can be used pruperiy as & com-
pifer. If a set of clowses is given to the partiai compiier, it
geacrates the object code of the conjunction of the set of
clauses and the partial object progeam sbtained up to that
point.

8. SUMMARY

In this paper, the Prolog implementation of a partial eval-
uator for Prolog programs and its application to meta pro-
gramming was described. Meta programming plays an im-
portant role in Prolog programming because of its expres-
sive power. Partial evaluation will make mets program-
ming more practical by improviug the efficiency of meta
programs. We also descnibed a new methedalogy for buiid-
ing inferzuce syastems and established its validity on several
examples. It was also shown that the new method will en-

the weremental specialization of 3 meta interpreter
with respert to an object program constructed incremen-
tally. This feature matches the incremental acquisition of
riles in the infercace syatem.

ACEKNOWLEDCEMENT

We wish to express our thanks to Kazuhirg Fuchi, Directar
of ICOT Research Center. who provided us wiek the op-
portunity to pursue this research in the Fifth Generation
Computer Systems Project at [COT. We would also like to
thank Hiroyasu Kendo, Masam Obki. Hajime Kitakami and
ather [COT resrarchers who participated in discussions,

REFERLRENCES

I A. Takenehi, K. Kondo, M. Obki and K, Furukawa, An

Application of Partial Computation to Meta Program-

ming, W3 memo £5-5F-13, Japan Information Process-

ing Society, Juae, 1983, 9-16. |in Japanese|

J. Komorowski, A Specification of Ahstract Prolog Ma-

chine and Itr Application to Partial Evaluation, Linkop-

ing 3tndies in Science and Teehnolegy Dissertations. no.

63, Software Systems Research Center, Linkeping Uni-

veraity, 1031,

3 K. Kahn, A Partial Evaiiatar of Lisp Written in a Pro-
layr Written in Lisp [ntended to be Appiied to the Prolog
and Itself which in turn is Intended to be Civen to Ieself
Tozether with the Prolog to Produce a Prolog Compiier,
UPMAIL. Dept. of Computing Science, Uppaala Uni-
versity, 1582,

4 R Vewken, A Prolog Meta-Interpreter for Partial Evali-
ation nod Its Application to Souree to Source Transfor-
mation aed Query-Opeimisation, In Proc. of ECALS4,
North- Holland, 1084, 31-100,

@ J. Gallegher, Transforming Logie Programs by Special
ising [aterpreters, Depe, of Computer Science, Trinity
College, Universiry of Dublin, 1084,

6 K. Bowen and B, Kownalaki, Amalgamating Language
and Metalanguape i Logic Programming, In Logic Pre-
gramming, K. Clark and 5. Twmiund [ed. }, Academic
Press, 1943, 153-172.

7 A Dundy aud B Welbam, Using Meta-leve] Inference
for Selective Application of Multiple Rewrite Rules m
Algebraic Mamipulation, Artifieind Inteiligence, vol. 16,
L1981, 18D.213,

8 E. Shapire, Algorithmic Program Debugesing, The MIT
Preas. 1983,

9 E. Shapiru, Logic Programs with Uncertainties: A Tool

for Implemepting Rule-based Systems, In Proc, [JOAL

82, 1983, 529-527,

P. Hammoud and M. Serpoe, apes: Auvgmented Prolog

for Expert Systems. Logic Dased Systems Led. , 1984,

K. Clark and F. McCabe, Prolos A Lavgrage for Im-

plementing Expert Svatems, In Machine Intefligence, D.

Michie and Y. H. Pao (ed.), wol. 10, 1932,

H. Tanaka, Rule based Knowledge Representation in

Prolog awd its Application, IECE of Japan, W3 mome

ALS§4-48, 1984, 85-35. (in Japanese)

Y. Matsumoto, H. Tanaka, H. Hirakaws, H, Miyoshi and

H. Yasukawa, BUP: A Bottom-Up Parmser Embedded in

Prolog, New (Geperation Cowmputing, weol, I, no. 2, 1083,

145-§54.

T. Takewaki, A. Taksuehi 3, Kunifuji and K. Purukawa,

Application of Partial Evaluation to the Algebraic Ma.

mipuiatinn Syatem and its Evaiuation, [COT Tech, Rea-

sport TR-148, Lastitute for New Generation Computer

Technology, 1085,

¥. Putamura, Pactial Computation of Frogramas, Jaur

oal of JECE Gfl.':;m.n_ vol. 66, no. 2, 1083, 157-165.

10

1

lﬂ'

13

Ia

