ICOT Technical Memorandum: TM-0160

THO1 G0

O the Operational Semantics
of Guarded Horn Clauses

by
k. Lleda

April. 1986

C9ke, 1COT

Mty Kokusai Eldg, 21F t03) 456-3191 -5

|C DT 4-25 Mita i-Chome Telex ICOT 32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology



ON THE OPERATIONAL 3EMANTICS OF GUARDED HORN CLAUSES

Kazunori Ueda (- m 71 42)

Institute for New Generation Computer Technology, Tokye, Japan

Abostract: We consider the operationsl semantics of Guarded Horn
Clauses (CHC). The purpose is to clarify what should be regarded
aeg primitive coperaticms of GHC. Such consideration iz important
because the existing algerithms for unificaticn and rescluticn
have not been considered very well ip terms of parallel execution.
We begin by showing the operstional semantiecs of unifiecaticn. It
is aparchical in that termination is not guarantesd for a cguple
of reascns. Although we ©believe the anarchical semantica is
meaningful as it is, we also discuss how to reduce the possibility
of ncooterminaticn. Lastly, we give the cpersticnal semantica of
GHC by extending the semanties of unification.

1. INTRCDUCTION

The langusge Guarded Horn Clauses [Ueda B5] (hereafter abbreviated to
GHC) is intended to be the standard of logic programoing languages which
allows parallel executicn. GHC has introduced 4inte Horn clauses the
concept of guard 1ir order to express cauvsality (or the directien of
computation) and choice (don't-care) nondeterminism. Thisz additiopal
mechanism provided GHC with an ability to express important concepts in
parallel programming such as prooesses, compunication, and synchropization,
and thus augmented the expressive power of the original Horn-elause logic
to the level of & practical programming language. From a practical point
of view, GHC may lcok szimilar to Concurrent Prolog [Shapire B3] and FARLOG
[Clark and Gregory B4]. It has, however, the unique feature of simplicity:
GHC i= unique in that guard is the only syntactic construct added to Horn
clauses. GHC has no multiple enviromments or backtracking (= multiple
environments expanded in the time axis), g0 its semantica and
implementation should be simple compered with Concurrent Prolog and even
with =equential Prolog.



One may contend that GHC is not a logic programming language because
it has lost the completencss of the Hern-clause logic. However, GHC was
undoubtedly born from the investigation of logie programming. Moreover, we
have tc use choice nondeterminism to write a program which interfaces with
a real world, and ip such a case the completeness 12 rather a obatacle.
The only way to atay with completeness would be to deaign another
programming language based on ancther legic which is capable of hapndling
don't-care nondeterminism in its own framework.

Another view of GHC is to regard it as & generalization of
nondeterministic dataflew languages. Depending on available binding
informaticn, a goal reduces itself to a (possibly empty) set of other
goals, possibly generating additicnal binding information. GHC 1s =
generalization of nondeterministic dataflow languages in the sense that the
data structures it handles are not limited to streams and that incomplete
data structures can be handled. The capability of handling incomplete dats
structures enables us to express demand-driven cemputaticon naturally

without introducing new primitives.

In the fcllowing chapters, we first discuss three directiona to the
semantice of GHC. Then we introduce a nondeterministie unificaticn
algorithm which wmodels parallelisw of GHC better than previgus ones.
Lasatly, we describe the semantiecs of GQHC by extending the unification
algorithm we propose. This paper assumes familiarity with GHC; for wmore
infermel description and program examples, the readers are asked to refer
to [Ueda 85],

2. THREE DIRECTIONS TOWARDS THE SEMANTICS OF GHC
2.1. Declarative Semantics as a Logie Programming Language

The declarative semantics of a logic program which does not deal with
infinite computaticp is well studied in [van Emden and Kowalski 76] and
(Apt and van Emden 82]. [Hagiya &3] and [Lloyd E4] try to capture the
declarative semantics of infinite computaticn by the greatest fixpoint on
the extended Herbrand base which includes infinite atoms. This idea was

first menticned in [van Emden and de Lucena 82].
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Unfertunately, due to the don't-care nondeterminism resulting from the
copmitment cperator and the restriction of dataflow from guards, the
semantics alopg this lipe cannot capture all the aspects of GHC. Moreover,
it fails to show the causality among bindinges which iz often the central
matter of interest in parallel leogle programming. However, it may still be
useful for understending the sementics of & subelass of GHC programs which

doe not require den't-care nendeterminizm.

2.2+ Process-Oriented Semantics

ks we oatated belfore, GHC c¢an be regarded as a generalization of
nondeterministic dataflew langueges. A& GHC geal generates new bindings
between variables and termg depending opn, and peossibly after waiting for,
the bindings generated by cther geals. Hence, GHC geals can be regarded as
processes interacting with one apother by means of instantiation of
variables. The semantics of such processes could be given by modifying the
semantics of nondeterministic dataflew languages given in [Brock and

Ackermann 81] and [Staples and Nguyen 85], faor example.

This direction 1is promising because the obtained semantics will
capture in an abetract manpner all the aspects of GHC including causality
and don't-care nondeterminism. It should provide a thecretieal foundation
for every kind of mechanical snd menual handling of a program including

program transformation, verification, compilation and optimization.

2.3. OUpereticnel Semantics

h general purpose of operational semantiecs is to show the guideline
for implementation algorithmically. In the case of parallel languages this
iz especially dimpertant, sainece it shows what should be considered as
indivisitle or primitive cperations. However, operaticnal semantics bears
&8 general difficulty in its sbstractpess. If it 18 too specifie, it can
gerve cnly for a small range of implementaticons and one cannot distinguish
between ezsential and inessential matters. Features whose implementation
is npot eszsentizl for language definition should be deseribaed anly
functionelly: Exemples are arithmetics apd sccezs to array elements.

On the other hand, if the operaticnal semantics goes too abstract or
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functicnal, it may fail to serve as a guideline of any possible
impplementation. However, it seems that distinction betwean ezsential and
ineszsential matters can have cnly subjective eriteria, Being moderately
abstract i= especlally difficult for new languages and parallel languages,
since it is hard to assume in advance all good implementations that may

appear in the future.

The cperaticnal (or procedural) semantics of a logie programming
language is wvsually ddentificd with some proof procedure of a given
formula; in the case of a Horpn-clause language it is ideptified with a
refutation procedure. The semantics of GHC alsc cap be based on rescluticn
and it should be the cleanest way to oapture the aspect of GHC as a logic
programming language, but it must alsc eXpresg the semantica of the
additional construet, guard. Moreover, the semantics must olarify what can
be executed in parallel in order to s=erve for fully parallel
implementation. Such consideration is important because the existing
algorithme for upification and reseclution have not been considered very

well in terms= of parallel executicn,

We consider fully parallel execution as the standard and gerialization
of primitive cperaticns as optimization for the current hardware technol ogy
which [avers sequential computation. Thie view is the exact cpposite of
the usual wview of optimizaticn. The reasen why we do s8¢ i= that our
purpcge i= to find the smallest possible grapularity and to reveal every
Poszible parallelism. However, fully parallel executien may fall inte
anarchy and undesirsble situations such asz deadleck and gtarvation may
result. The anarchy could be avoided by controlling parallelism. It could
be achieved by

(1) employing larger units of data and larger uwit of operations to handle
them, and/cr

(2} introducing =eme apparatus for control.
Sequential execution of some primitive operaticns falls into Item (2).

Moreover, we allow apparently useless computation as long as it deoes
not change the intended semantica. In parallel computation, it may often
be the case that we can gain efficiency by deoing some computation in
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advance whoze result may possibly turn to be unnecessary af'terwards. Ta
disallow any useless computation would be very difficult and it would cause
sericus inefficiency in distributed computation. Hence it seems better to
show what can be allowed rather than to show exactly what is needed. This
will again be the cpposite of the usual marner which considers optimization

by means of backup computatien only as a consequence of the semantics.

3. THE NONDETERMINISTIC UNIFICATICN (SEMI-)ALGORITHM

The most important and delicate operation in GHC is unificetion. This
chapter showz the nondeterministic unification algorithm whieh will be
incorporated into the semantice of GHC. Precizely speaking, it is a
semi-algorithm since termination is pot guaranteed due tc deadlock and
other causes. However, we discuse poassible weys to guarantee termination

fer unifiable caszes in Section 3.5.

The algoritbm gives the base of the semanties of the unification of
GHC. The peint i= that we no longer handle a complex term as an atamie
entity nor we copnsider a variasble as atomic. Thus the algorithm is more
nondeterministic than the nondeterministic algorithm in [Martelli and
Montanari 82). More impertantly, while the algorithm of Martelli and

Mentanari is sequentiel, ours allowz parallelism.

3.1. The Algorithm

Our formaliration basicelly follows [Martelli and Montanari 82].
Funotien symbols, wariables, terms, and substituticn are defined as usual.
In examples, we begin function eymbole with lowercase letters and variables
with uppercase letters. We underline these cbject-level symbols ta

distinguish them from metasymbols appearing elsewhere.
The upificaticen preblem i= a set of equationa of the followipg form

51:':1. -y SI]=TI'.I‘

where 51 and Ti are terms. A& solution of the wnification problem, called a

upifier; is any substitutiop that makes Siand Ti identical for all 1i's
aimul tanecusaly.
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Given & problem, the algorithm repeatedly performs any of the
follewing transformaticns. These transformations can be dome in parallel,
as long as they do not interfere, i.e., they do not rewrite any part of
currently 'chesen' entities. Unless stated otherwise, the chosen entities
become unchosen when the specified transformation 1= complete. We may
attach 'wmarks' to variables to prevent backward rewriting. The algorithm

terminates when no transformpation applies.

(a) Chocse any equation of the form S=T where & and T are not veriables.
If the two prineipal functicn symbols are different, unchcose this
equation and stop with failure. Otherwise, the egquaticn 1z of the form
£(8, «ouy S =Ty vy Tnl where f is some n(>=0)-ary function
aymbol and Si's and Ti'a are terms which are possibly marked variables,
and rewrite it to S =T1, ivap sn=Tn in any way but without erasing Ei's

1

and Ti's. When scme of S,'s and Ti‘a are marked, they are unmarked.
The condition "without erasing Si'a and Tiis“ means that Si's and Ti'a

must not disappear from the problem during rewriting.

(b) Choose any equation ef the form I:f[T1. ceay Tn} or f{T1, cany rn]=x
where [ i= scme n(>0)-ary function symbol, T,"s are terms that are not
parked variables and X is a2 wvariable, and rewrite it to I:f{11', anay
xn!}, I|=T1, waay xn=Tn in any way but without erasing X and Ti'a,
where xl’s are distinct variables which are different frem the
variables in the current problem. The origipal equatico sz{T1. sasy
Tnl ar fET1, Paag Tn}=1 becomes unchosen when 4t is rewritten to
x:r(x1-, -y In'J. Asterizks dencte marks, and they are attached to
the new variables to prevent backward rewriting toward the original
term.

(e} Chocse any equation of the form X=X where X is a variable, and epase
it.

(d) Choose any equation of the form X=Y where X and Y are distinot
variables, and one of the other occurrences of non-marked X. Then

replace that occurrence by Y.

(e) Choose any equaticn of the form K:f[I1', ceey In'] where f 1s an
n(»=0)=ary function symbol and X;#'s are parked variables, and one of
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the otker occurrences of unmarked X. Then replace that occurrence by
f{Ii, reey xnj.

3.2. Examples
The following examples illustrate scme subtle points in the algorithm.

(1) X=a, X=b. The first equation can rewrite the second i to 'a', and the
second equation can rewrite the fipst X to'b'. If the second I ie
rewritten firat, then the equaticon £=b is changed toc the equaticn a=b,
which causes failure. If the first E is rewritten first, the eguatien
X=3 1= changed to the equaticn b=a, which alsc causes failure.
Therefcre, the order of rewriting is independent of the result. When
the two equations try to rewrite the otherp gimul tanecusly, however,
deadlcck may cccur. The problem of deadlock will be discussed in
Section 3.5.

(2) X=a, X¥=a, X=b. This example shows why an equation being chosen must
nct be rewritten by other equations. Suppose that the fipst equation
and the second equation are simultanecusly chosen and each of them
reWwritez the cther to a@=a, Then the coriginal problem i1s rewritten to
‘a=a, a=a, X=b', and then to "X=b'. This is obvicusly an errcnegus
rewriting. If chosen equations are locked, thiz situation never
cocurs.

3.3. Properties of the Algorithm

Eince the sbove algorithm does not guarantee termination, what we can

show at best is

(1} that when the algorithm terminates, the criginal problem he= & unifier
which is evident from the obtailned feorm, and

(2) that when the algorithm stops with failure, the criginal problem has no
unifiers.

We give some thecrems (proofs omitted) which together show that our
algorithm "computes' the most general unifier of the criginal problem when
it terminates.
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Theorem 1. When the algerithm terminates, the obtained set of equaticns
has the form

Y (k»=0, m>=0)

Xy=T k+m m

4=
where

=Y, lillI

TR KI{:Tk, xk+1 1

1’

(a) Xyp «eey X oare distinet variables,
(b) The =sets {li} and {Yi} are disjoint, and

(e} Ti's are of the lform fExi1', nay Kilil where f is an n(>=0)-ary
funetion symbel &nd all xij'a are distinct varisbles and {Ii} ineludes
{Iij]-

{end of Theorem 1)}.

We say that 2 variable Y is irmediastely under a variable X ip the

obtaired set iff for some i (i=1, ..., k), X=X;and Y appears in T and

1!
that a varisble Y 4s under a variable X iff ¥ is immediately under X or
there exists a variable Z such that Y is under Z and Z is ipmediately under

X. Then we can prove the following thecrem.

Thecrem 2, The above set of equaticns has no eyeles, that is, none of 31.
. xk iz under iteself (end of Thecrem 2).

We define an equivalence relation between two substituticns, We say
that substitutions 's' and 't' are equivalent with respect to a =et of
variables U iff =(V)=t(V) for &1l V's in U. The equivalence relation ie
denoted by '-U*.

Thecrem 3. Every transformatien shown ir Section 3.1, if successful,
preserves the quotient set of all uwpifiers by the relation ‘:u', where U is
@ pset of wvariables appearing in the original problem. If the
transformation stops with failure in Step (a), then the set of equations is

ununifiable {end of Theorem 3).

We take an equivalenmce class because Rule (b) introduces new
variables. Those variables, which could take arbitrary values before the
tranaformation, are unified with some terms, and so the set of all unifiers
is reduced. However, taking the quotient set ‘'forgets' the differences

amopg unifiers in thos=e new variables.

-8 -



Thecrem 4. Assupe the algorithm terminates and the following set of
equaticns 1= abtained:

2,=T ¥

1709 oo X

k:'I'lcr Ik-d-‘l;!i'.l' e X

Let & substituticn "g' be defined as

glX) = Ty if X=X, for some iz1, ..., k
glX) = L ir I=}1k+1 for some i=1, ..., m
EfX) = X ctherwise

and by gn we wmean the application of g repeated b times. Then,
gnzgn+1:gn+2=... for scme n which dees not exceed k+1, and g" i= the most
general unifier of the obtained equation (end of Theorem 4).

Thecrems 1 to 3 together state that when cur algerithm terminates, the
original set of equations is unifiable with the most gereral unifier almest
evident from the final set of equations, and that when it stops with
failure, the original set of equaticns i= ununifiable. In fact, by adding
Some conditicns we can guarantee terminaticn in the case where the original
problem has a unifier, as will be discussed in Section 3.5.

3.4, Motivations and Implicaticns

We make scme remarks on the abeve algorithm to clarify the underlying

metivations and implicationa.

Qur algorithm differs from that of [Martelli and Montanari 82] in the
following three points. One is that a non-variable term with arguments
which are not guaranteed tec be new variables is not treated as atomic. For

example, the eguation

E:Ennﬂ.{ﬂ,ﬂil} III[i}

———— =

i= not directly used for substituticn of X appearing in the problem. It is

First rewritten toc
X=cons(A®,B%), A=a, B=nil o (i)

where A% and E‘ are new variables, and then the eguation !zﬂﬂgﬁ{ﬂ" E®) 1is
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used for instantiation. In general, only an equation of the form X=T where
£ is a variable and T is the most general term with some principal functicon
gymbol whose arguments, if any, are all distinet marked variables ecan be
uged for instantiatien. This means that the primitive aperaticn for the
instantiaticn of scme occurrence of a variable is to determine d4ts
prineipal function symbol. This decision was motivated by the observation
that Equaticns (i) and (i1) are logically the same while Equation (ii)} has
smaller granularity. We regard Equation (i) as an abbreviation of Egquaticon

(11).

The practical mesning of this is as follows. When we tranamit a large
data structure from ome processer to another, we often transmit it block by
block. Our algerithm explicitly states that a large data structure is not
an stomic entity but can be transmitted little by little, possibly on
demand, with untransmitted parts indicated by uninstantiated variables.
Moreocver, the consumer e¢an use the transmitted value before the

transmizaion is complete.

The second point di= that we do not consider 3 variable as a
centralized entity but as a distributed entity. This deciszien was
metivated by the observation that the problem

X=a, X=b
can be regarded as an abbreviation of
Xisa, X1=X2, X2=b.

The practical meaning of this is that a variable need not be implemented by
a single memory eell. Tt is quite likely that each processor has a local
cache for variables. The algorithm explicitly allews it, and it alseo Bays
that local coples of a variable need not have the =ame value at the same
time (assuming that we have scme noticn of glebal time), as long as they
become identical finally. To put it differently, communication by shared

veriables may have a potential delay.

The third point in which our algorithm is different from [Martelli and
Montanari B2] is that we bhave omitted the so=called 'occur check'; see

Seotion 3.5.3 for more detail.
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3.5. Termination

The algorithm shown in  Seectien 3.1 may fail to terminate feor the

fellowing reasons:

(1) lack of & mechanism for controlling mutual exclusien,
(2) lack of the fairness assumpticn, and

{3} lack cf the cccur check.

The first +twec peints are particularly important because they may cause
nenterminaticn in unifiable cases. In the fellowing, we discuss each of

the above problems.

3.5.1. Contrelling Mutual Exclusicn

The algorithm states that the entities currently chosen by some
transformation should not be rewritten by cther transformations. This is
the rule of mutual exclusion. Hewever, as a result of regarding a variable
85 a8 non-atomic, distributed entity, we must lock twe resources, an
equation and an cccurrence of a variable, when we apply Rules (d) and (e).
A= zeen in Seetion 3.2, when we rewrite some occcurrence of = variable X,
there should be a moment when both that cccurrence and the equaticn being

chosen are locked or protected against rewriting by other equaticns.

The problem is that locking twe rescurces may generally cauvse deadlock
if we wait wuntil ape of thew is available, lock it, and wait until the
cther rescurce 1is aveilable, One way to aveld deadlock in such an
incremental locking scheme is to  introduce an grdering to the ¢ocurrences
of equations and varisbles and to leck the entity lewer in that ordering
first. The only significant fact abeut the ordering is that twe entities
to be locked are crdered; it does not matter how they are crdered and a
newly crested entity may have an arbitrary order.

Ordering aveids deadlock., That is, if we can guarantee that the algo-
ritho terminates when each transformaticon is performed nendeterministically
but sequentially, we can guarantee termination al=a whepn we allow

parallelism.
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3.5.2. Fairness

However, crdering of entities alone does not gusrantee termination

even in unifiable cases. Consider the following example:
X=1, Y=X, =z

The firat egquaticn E:E may rewrite the third equation to E:g, and then the
secend equaticn mey rewrite the third equaticn back to Xsa. We must
disallow such a sequence of rewWwriting to be exclusively performed

infinitely many times by introducing some notion of fairness.

One possible definition of fairness i= aa follows. We first oconsider
a ron-directed graph © formed by 2 =et & of equaticns whose left- and
right-hand sides are both variables. G has a node V corresponding to each
variable V in 5, and ap erc (Vl, V2) correspending to each ocourrence of
an equation Vi=V2, The graph may have lcoops, and we assign to each arc the

size of the largest loop it lorms. For example, the set of equaticns
Y=Y, ¥=%, Xehy A<D, BeY, XeG, Cel

forme the fcllowing graph:

m§ i{uJ
i

S " J—

(5) = (5)

e
un
L

| [ s QS -

The number assigned to each arc shows the size of the largest loop it

forms.

Now we can define feirness. We first consider nondeterministic but
gserialized execution to keep the above npoticn of leops meaningful. Let L
be the sum of the values assigned te the arcs of the graph G formed by S.
A fair executicn must not repeatedly choose the transformation rule (d)
Without reducing L. ©Speaking more precisely, when Rule (d) is repeatedly
chozen, L must be reduced to L' after fipitely many transformations and it

must pever exceed L' thereafter, or elze other rules must be chosen after
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finitely many tranaformaticna. MNontermination illustrated in the beginning
of this subsection is pow disallowed, s=inee L 12 initially 4 and each

transformation never reduces it.

Fairness of parallel executicn iz easily defined in terms of falr
serislized executicon: Every fair parallel execution is obtained from some
fair serialized executicn by allowing overlapping of transformations under

the rule of mutual exclusicn.

3.5.3. Occur Check

Fer a set of equaticns for which usual upification algorithms detect a
cycle and steps with failure, our algorithm indefinitely computes the

values of infinite terms. For example, an equation

iz rewritten ass follows:

X=£(X1%), X1:X by Rule (b)
X=£(X1%), X1=£(X1) by Rule {e)
X=£(X1%), X1=£(X2%), X2=X1 by Fule (b)

However, since the executicn does net terminate, we cannot get any result
in the above framework. One way to observe the value of X is te introduce

the notion of ‘'observetion verisbles®. We s=pecify cbservation variables
W1, ceer W in the unificaticn problem as followa:

5,=T

=Ty e SET 5 Vo ey Y

K
These varisbles are rewritten acecordimg to FRules {d) and {(e). Then if we
gilve the above equaticn as

X=£(X);

the cbservation wvariable X will be indefinitely instantiated to f£(¥1),
£(f(X2)), and =0 on. The notion of observaticn variables well models

stream-oriented output of GHC. Observaticn variables can be used alsc for
cbgerving the result of terminating unificaticn; we can prove that when the
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algorithm terminates, an observation variable ¥ is instantiated to mgu(X)_
where mgu is the most general unifier.

When we take infinite computation into account, however, we need a
rather different notion of fairnmess from that introduced in Sectien 3.5.2.
For example, it seems undesirsble to continue to compute the value of X
without ecomputing the wvalue of 1 in the following problem:

X=£(X), ¥=g(1); X Y.

However, thiz problem is cut of the scope of this paper and we do npot
discuszs it any further.

4. THE OPERATIONAL SEMANTICS OF GHC

In thie chapter, we define the cperational semantics of GHC by
extending the cperaticnal semantics of unificaticn defined in Chapter 3.

4.1. Syntax of GHC
A GHC program is a set of guarded Horn clauses of the following form:

E :=- GI, - way Gn I B1, amay Bn- {IIII ’= D, n 2= D:Iv

where H, Girs, and Ei‘s are atomic formulas. H is called a clause head,
Gi's are called guard goals, and Biis are called body goala. The operator
"' is called a commitment operator. The part of a clause before '|' is
called a guard, and the part after '|' is called a body. MNote that a
clause head is inecluded 4in a guard. 4 goal is a call either to the
predefined unification predicate '=' or to socme other predicate which
should be user-defined.

A geal clause has the follewing form:

t= By +eey B (o >s 0).

The predefined predicate '=' is used for unifying two terms. 4 call
to the predicate '=' was called an equation in Chapter 3. This predicate
should be considered as predefined, since it cannot be defined in the
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language merely for syntactical reascons.

uiEi

Sepantics of GHC

Tc sclve a goal clause, we repeatedly perform any of the following

tranalformetions.

(1)

(2}

Choose any user-defined goal (i.e., a call te scme predicate other thanp
the predefined predicate "=') A and any program clause of the form H ;-
G | B where G and B are sets of geals. Then make a variant H' := G' !
B' of the chcsen clause, and superimpose on A a guarded set of goals of
the boxed form [A=RE', G" [B']]. These twec operations can be done in
any manner, a2 long as each goal iz not placed before the box directly
surrcunding the geal has been created. Here, @ box [ ] has @
zemantical role of restricting dataflow, as will be stated below. Ve
say that each goal imn "A=H', G'" belongs tc the cuter box, and each
geal in B' belonge to the inmer box. Superimposing makes the original
goal clavse partly multi-layered, as depicted by the fellewing diagram:

Tﬂ[AE=Hé| G [35]]'T
1=0a =y, Gf [B311-1 ftaghy, o [53*11-11
S Y RN y— - xey - wmmeeeed- 1)

—————— 4

3

Each layer shares the other parts of the goal clause. Some layer of
the multi-layered part may further beccme partly multi-layered. Note
that for uniformity, we assume two nested boxes between which the
original set of goals is initially placed.

Choosge any unification goal of the ferm S=T, and perform an appropriate
tranasformation stated in Chapter 3 according to the forme of S and T.
The algorithm of Chapter 3 must be modified as follows:

(2-1) Twe general restrictions are added. Firstly, a unification goal

(i.e., an equation) belonging to some box (say O) cannot rewrite a
variable cutside 0. Such a goal, however, can rewrite varisbles
within ¢ (inecluding the variables appearing in some other boxes
within 0), and alsc it can be rewritten by other goals except those
belonging to scme boxes within 0. Secondly, when a unification
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gpal belenging to a box O is rewritten to & s=et of other
unification goals, they are also placed in, and belong to, O.

(2=2) Rule (2} of Chapter 3 is modified. Even when the both sides of the
equaticn have different prineipal fupcticon symbols, we de not step
the computation with failure ©but merely leave the equaticn az it
is.

(2=3) An additional rule exists. Choose any unificaticn goal (equatien)
E

(i) which appears in the guard G of the conatruect [G [B]], and
(ii) which i=
o of the form x:f(x1', . In'] where ¥ i= & variable not
occurring anywhere except in B and E itself, f is some

n{>s0)-ary function symbol, and xi"s are all marked

variables, or

o of the form X=Y where ¥ and Y are distinct variables and X
does not ocour anywhere except in B and E itself.

Then move E to the body B.

(2-4) There is another additional rule. Choose any equation which
belongs to a box O and which iz eof the form X=Y where X and ¥ are
distinct variables, and one of the other cecurrences of non-marked
X outside 0. Then replace X=Y by ¥Y=X,

(2-5) The judgment of whether there are any cccurrences of a variable
¥ in scme pulti-layered part (say F) of & goal clause is now made
a8 follows. Let G be the goal on the ground layer of P for which
new layers have been superimpossed. G must be a user-def'ined gosl
because a unificaticn goal never creates superimposed layers. If G
has not yet been committed (see below) to amy of the layers, we say
that & varieble X appears in P iff X appears in any of the layers
including the layer of the criginal goal G; if G has already been
comritted to some superimposed layer, we say that a variable X
appeara in P iff X appears in that layer.

{2) (The rule of commitment) Choose any layer (=ay L) of the form [[B]] of
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some multi-layered part, that is, a layer wheose head unification and
guard have Deen reduced to an 'empty' set of goals (see below for
enptiness). Then confirm that the original goal (say G) on the ground
layer has been committed to no other layers. If confirmed, G i=
indivisibly committed to the layer L. Then, the outer box is simply
deleted since now it does not impose semantical restriction on any
goals, and the inner bex is enlarged and amelgamated to the innermost
box containing it by taking ir all the symbols between these twa boxes
in any menper. If the original goal has already been committed to any

cther layer, do ncthing.

An 'empty' set of geals ie a set of goals consisting only of 'empty!'
multi-layered parts. A multi-layered part is said to be 'empty' iff the
eriginal goal G in the ground layer has been committed to some other layer

L and L denotes an 'empty' set of goals.

The coriginal goal eclause betweer the imitial two boxes is regarded as
solved when it ie reduced to the 'empty' elau=e or an 'empty' zet of goals,
whether the above transformaticn procedure terminates or not. Here, the
inper box of the initial nested boxes need not be empty but may contain a
set of unification geals (moved by Rule (2-3)) of the form

x'I:TI' wauy J{h=Tk

where Kl’ vy Hk are distinct varlables. This set of gosls has no eycles
(see Section 3.3), and the most gepersl answer substituticn is given by

g%, where g is defined as follows:

n
-1

N ir x=xi for seme i=1, ..., k

otherwize

g(X}
glX)

L]
=

The final set of eguaticna in the inmner box is slightly different frem the
final form cbtained by the unificaticn algorithm of Chapter 3. This i=s
because we used the concept of being sclved whieh jis different from being

terminated.

L.3. Motivaticns and Implications

Some explanation will be necessary to clarify the motivations and the
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implications of the above =semantics.

First of all, the above semantiecs eclarifies that a rescluticn
operation can be wseparated 4intc two parts: goal rewriting and head
enification. Moreover, the latter can be executed in parallel with the
corresponding guard goals. Spawning new layers also can be  done
incrementally and in parallel with the execution of already generated
goals. A set of goals iz regarded as sclved even when some clause not
selected for commitment iz still being executed. Stopping unnecessary

pomputatien is considered ap cptimization in cur framework.

The above semantics is based on parallel term rewriting. However, the
new notion, superimposing, has been introduced to express OR-parallel
execution of candidate clauses. Sinece GHC 18 a single-environment language
like PAFLOG, candidate clasuses can share 1its outer world. On the other
hand, the cperaticnal semantics of the CRE-parallel executioen of a wusual
Horn-clause program wculd have to express some mechanisms for multiple

environments.

Boxes are used for reztricting dinfermaticon flow caused by
upification. The restriction is stated 4in Rule (2-1). Although the main
purpose of the introducticn of boxes is to express the restriction imposed
on guards, it is wused also for atating what can be done with the c¢lausa
body before commitment. That iz, the semantics allows the body B of a
elavse C to be executed before C is selected for commitment, as long as the
executien of B never affects the execution of any goals outaide B. This 1is
a kind of backup computation, since the execution of B need not start

bafore C is selected for commitment.

Rule {2-2) has been added because the failure detected in scme guard
does not mesr the failupe of the whole system. This rule makesa the
treatment ¢f the failure of upificatiopn similar to suspension due to the

detaflow restriction.

The purpese of Rule (2-3) is to make a candidate clause selected for
copmitment when the goala recalning in the guard bave nothing to do other
than to inatantiate the body. Such gosls po longer rewrite other goals
except those 1in  the bedy. Morecver, such goals themselves &are Dever

rewritten to other goals that may cause failure, =since the conditions cof

- 18 -



Rule (2-3) guarantees that the variables on the left-hand sides of those
goals (of the form K:f[11'. R HH'J or X=Y¥) are npever rewritten.

Therefore, they can be moved to the clause body.

The purpose of Rule (2-4) is to make the upificaticn of twe variables
X and Y proceed unless beth X and Y appear cutside the beox to which the
unifiecation geal belangs. Suppose that X appears cuteide the box and ¥
does not. Then the goal X=Y cannct rewrite all the otber occurrences of X,
while the logically eguivalent geal Y=¥ can rewrite all the other
cecurrences of Y. So ip order to let the wnification proceed, we have to
exchange the lef't- and the right-hand =ides. However, we do 20 only when
the lef't-hand side verisble appear cutaide the box, because arbitrary
exchange would make the terminaticon condition (not discussed in this paper)
unnecessarily complex. Even under this restriction, Fule (2-4) may cause

'bugy waiting' when both X end Y appears cutside the box,

Fule (3) says that the dateflow restricticn imposed on the body of &
clause iz removed when that clavse is selected for commitment, but that it
need not be removed instantanecusly. Morecover, the removal of dataflow
restriction i= not an indivisible part of the commitment operation. It can
be dope in parallel with the executicn of the clause body.

Mote that zlthough the snswer substituticns are put in the inner box
of the initial nested boxes, we can also observe the result by means of

observation varisbles.

5. CONCLUSIONS

We have described the operaticnal semantice of Guarded Hornm Clauses
which tries to preserve parallelism icherent in GHC a2 much a= possible.
The given semantics i= anarchical and sllows anything which iz bharmless.
However, we have also discussed how to guarantee termination when the goal
clause consists only of wpification goals and it has a solution. It should
be interesting to consider whether we can further refine the glven
semantica without changing the intended informal semantics behind it.
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