ICOT Technical Memorandum: TM-0154

I %1-01 54

A Proof Constractor for Intenstonal
Logic -+ with 85 decision procedure ---

by
H. Sawamura { Fujitsu Lid.)

Januasy, 1986

980, 10T

Mita Kokusar Bldg. 218 (03) 456-3191 -5
Telex WAXT 32964

“ :D I 4-28 Mita 1-Chome
Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technbibgy

A Prool Constructor for Intensional Logic
— with 55 decision procedure —

By

Hajime Sawamura

International Institute for Advanced Study of Social Information
Science (IIAS-SIS), Fujitsu Ltd.,, Numazu, Shizuoka 410-03 JAPAN

Abstract

Much wark has been devoted to computer-aided reasoning systems for
extensional logic. This paper reparts a proofl constructor (PCIL) for the
intensional logic (IL) devised by R. Montague. It SuUpports interactive
construction of derivations of IL, as well as proof checking capabilicy. [e
also incorporates a decision procedure for S5 modal logic, which helps us
shorten lengthy and redious proof steps.

Prolog is employed as a logical svstem description language, and the
language and deductive system of IL are described in the relational
framework of Prolog. The relational representation of the axiom system of
IL has allowed us to easily implement PCIL with the heip of Prolog's
nondeterministic computational mechanism. Some utilizarions of PCIL are
demonstrated through practical examples, including proofs from PTQ and

combinatory logic.

1. Introduction

The main roies of logics in computer science and artificial intelligence are to
provide languages with high expressive power and reasoning (computational)
mechanism. In recent vears, nonclassical logics have been imported into a great
many areas of computer science and artificial inteiligence [1].

Monclassical logics generally concern various aspects of meaning of ahjects,
aother than those treated by classical logics. For example, as to truthhood of
propositions, they deal with time or situation-dependent truth, vague trurh,
constructive truth, etc.

The intensional logic [2,3] is a kind of modal logic built on the theory of
types, which was originally formalized for incorporating two aspects of a meaning,
intension and extension, into a formal system, and for logical analysis of linguistic
expressions. Due to the potential expressive power that was inherited from modal
logic and the theary of types, the intensional logic has provided the semantical
basis for wvarious areas in computer science. In fact, the relevance of rhe inrensional
logic to several applications can be seen in programming language semantics and
verification [4-T], darabase semantics [8] etc., as well as in computational linguistics
[al.

In spite of this significance of the intensional logic, there has been little work
in the area of checking or automating the proofs in the intensional logie, although
much work has been done on a proof checker for extensional logics [10-13]. This
paper is devoted to the construction of a reasoning system for the intensional logic.
It also incorporates a decision procedure for 55 modal logic [14], which helps us
shorten lengthy and tedious proof steps. In this paper, we exploit Prolog [15] both
as a logical system description language and as an implementation language. The
declarative and procedural semantics of Prolog allow us to deal with various
concepts of logics inm a single uniform framework, and hence easily realize it on a
computar. Also, recursive definitions ofren appearing in logic can be corresponded to
those in Prolog, in a straightforward manner.

The paper is organized as follows. Section 2 describes a slightly modified

version of the intensional logic formalized by Gallin [2], in the relarianal
framework of Prolog. This section also includes an outline of our decision procedure
for 55 modal logic which has been Incorporated into our Proof Constructor for
Intensional Logic (PCIL). PCIL is briefly described in Section 3, together with three

proof checking examples. The final section includes concluding remarks.

2 Intensional logic in Prolog

Gallin [2] introduced an axiom system for a tenseless version of Montague's
intensional logic [3]. It corresponds very closely to the axiomatization for the
theory of propositional types given in Henkin [16], as simplified in Andrews [17].
Henceforce, we will call Gallin's intensional logic IL. The language and the sryle
of the axiom system of IL are equational. Therefore, certain parts of equational
reasoning of IL may be effectively achieved by employing a term rewriting svstem
le.g. 211 It is also associated with possible worids {indexical) semantics,

In this section, we outline how intensional logic can be specified in the
relational framework of Prolog. Its detailed specification is given in [18, 19]. We
assume that the readers have some familiarity with the syntax and semanrtics of IL

and Prolog.

The variable symbols and constant symbols, together with their syntactical
variables, will be specified when necessary. Besides, we use the special symbaols :
and, or, imp, not (logical connectives), all, some {quantifiers), int (intension), ext
(extension), = {equality), lambda (function abstraction), # {fuction application} (the
operator precedences and operator types of these symbols are defined using Prolog's
Gperator declaration.) In what follows, Prolog variables play the role of

metametavariables ranging over objects and metachjects of IL.

The syntax of types is defined as follows:
typelel.

type(th.

typel(X,Y)) :- type(X},type(Y).

typells, X)) - type(X).

typeT) = type_var(T).
where the last clause allows us to prove theorem schemas (or polymorphic
theorems) together with the metasymbols ranging over terms. {see [20] for the
usefuiness of type polymorphism in programming.) As type variables, we use the

symbols of the form of ti {i=0

A term A with type T is written as A:T. A few steps of the inductive
definition which specifies the set term{A. T} of rerms A:T in PCIL is as follows :
rermi{A # BS) - rerm{A T, S50, termiB, Th
term{all{}:5,A)) = variable{X:S), term(A,).
rermiint{Al, (s, TH = rerm{A,T)., etc.
A formula of IL is a term of tvpe r, that is,

formula(F} - termiF,tl,

in PCIL, zimple type inference is accomplished by unification, for consistently
manipulating terms of IL. This is easily done for [L, since a basic type is assigned
to every primitive symbols. For example,

type_inferencelextiA),exc(B:(s,T)) :- type_inference(A,T.

The axioms of [L are specified by the following six clauses :
axiom{axl, *g:{t,t} # *true:t and *g(t,t] # *falsert = all(*™xe,*g(e,t) # *x:n)
axiomiax2,*x:tl = *vitl imply *0cl,t) # ®=xtl = *¥0icl,e) # *yirlh
axiomiaxd,all{*xcl, *ficl,c2) # *xcl = *gicl,t2) # *xicl) = (*f:(cl,e2) = *glel,e2))N
axiomiax4, lambdalx:tl,a:t2) # hitl = c:t2) - substlazt2, x:el beel,coe2),
axiom{ax5,neclext(*f:(s,t1)) = ext(*g:(s,t1))) = (*f:(s,t1) = *gds,c1)).
axiom({ax6,extlint{a:t1)) = a:cll,
where symbols with * represent object symbols, symbeols without * represent meta
symbols, and subst(A,X,T,B} is assumed to be one of the primitive symbaol-
manipulating predicates, which means that B i1s a term obtained by substituting T

for variables X's occurring in A, Note that these axioms are identical with those of

IL, except the fourth axiom. The predicate subst is recursively defined so as to
satisfy the condition for the beta-conversion rule of IL. For example,
subst{int(A:S):(s,5),X:T,B: T,int(C:S): (5,500 - melB:T),subst(A:S, X T,B: T,C:8).

where mc{A) means that A is a modally closed term whose meaning is independent
of possible worlds.

The axiom axd is acrually defined in IL as

{lambda X ‘a‘b[xa”ﬁa = Ahlﬂa}
where Ab[xal denotes a term with type b involving the variable X with type a,
Ab{Eﬁa] comes from Ah{xa} by replacing all free occurrences of Xy by the term B‘_11
E'a iz free for X, in Ah[xal, and either no free occurrence of X, in Abtxaj lies
within the scope of int, or else Ba is modally closed,

The reason we have emploved the above definition for ax4 is due to the fact
that it is difficult to define, directly as a pattern for pattern matching, such a
metaterm as Ab{xa‘a. In this paper, the metaterm Ab{xa} is equivalently expressed in
terms of lambda abstraction and function application as

lambda(x:a,A:b) # x:a
S0, the metatheorem in [L, for example,
|- all x, Alx_) = |- A(B,), with the same proviso as rhe axiom axd,
i1y represented in PCIL as
|- alllx:a, lambda(x:a, Asb) # x:a) =» |- lambdalx:a, A:b) # Bea

Therciore, our definition has the advantage that the above conditions for substitution

can be implicitly absorbed into such a beta-conversion.

An inference rule can be given a procedural meaning like Prolog, when it is
viewed as a relation between antecedents and a conclusion. For example, the
universal instantiation rule,

all x pix}
———————————————— , where t Is free for x in plx),
can be literally described as

universal_instatiation_rulelall(X,P},X,T,Q) :- free_for(T,X,P),subst(P,X,T,Q).

in fact, the single inference rule in PCIL

where D:t is a formula obtained by replacing one occurrence of A:t (not
immediately preceded by lambdal in Civ by the term Bz, is procedurally defined as
follows:
inference_rule(A:T =Bur,Cit,Dir) - replace{A:T =B, Cie Dith
where replace is assumed to be another primitive symbol-manipulating operation
and is defined by the structural induction on formulas, For example, a few steps of
induction are as follows:
replace(A:T = B:T,(C:5R) # D:SkR,(C:(S,R) # E:S:R) :-
replace(A:T = B:T,D:S,E:5).
replace{A:T = BT, (CHS5,R) # DiSkR,(E:(SR)} # D:5ER) -
replace{A:T = BT, G5 R)LE(SRI.
Such a definition is best suited to the nondeterministic replacement by the inference
rule. [f needed, the nondeterministic replacement can be made deterministic by
means of a Prolog's cut symbal [22) Derived rules can be defined in the same
manner. For example, the rule of svmmetricity becomes

derived_rule{A:t = Bir,Bir = Asth

A proof is a sequence of formulas associared with justifications, which is

described in PCIL in the {ollowing form:

theorem | derived_rule <names., |- <formulas,
proof.
1 |- <formula= by <justifications.

2 |- <formulas by <justifications.
n |- <formula> by <justifications.
end.

where «<justifiction= represents one of the followings : as (assumption), ax {axiom), ir

linference rulel, dr (derived rule), th (theorem), def {definition), rw {rewrite), tppmi
{theorem prover for S5 modal logic), etc.

"rw" denotes a distinguished derived rule such that the right hand side of an
eguation A = B is rewritten by using an appropriate eguation, either of whose sides

matches B.

In IL, the modal operator nce can be defined as
neciAl = linclA) = int{true)].
Thus, nec is an 55 modal operator. In PCIL, the validity of an S5 propositional
modal formula is checked by calling tppml, the decision procedure for 55 modal
logic (actually, we can prove a formula in either of the systermm T, 54 ar 53.) The
underlving system for the decision procedurc is called Sequence Calculus [14), which
15 derived from Gentzen-style formal system for modal lugic. The construction of
Sequence Calculus depends on the fact that every formula of degree higher than
first is reducible in S5 to a first-degree formula [23] and for such a reduced
formula cut elimination theorem holds in 55 [24]. Then, it consists of the axiom

schema S5,A,T,not{A)},R and the following inference schemara :

5 S5.A
(Thinning) -—--—-—-- (notnot) =-=meecceaaoaooo
5,A S, notinor(A))
S,A S.B S,not(A},nat(B)
fand) ~-mmmmmee {notand) ==--c-ommmmmeao.
S5,A and B S.not(A and B)
notinec(S)}, nec{T),A S, nociA)
e B T T T —— {notnec] —ce-emmeaa .
not{nec{8}),nec(T),nec{A) S,notinec{A))

where a boldface letrer denotes a sequence of formulas, and a sequence of formulas
is identified with a set of formulas. It should be noted that our decision procedure
is derived from proof-theoretic considerations, in contrast with other methods based
on model-theoretic concepts [25-27),
Here is a proof example :
theorem s5. |- pos(necip:t}) imp nec{posip:t)).
procf.,

I |- pos(necip:t]} imp neclpos(p:t)l by tppmi.
end.

Actually, the corresponding first-degree formula nec{p:t) imp posz{p:t) turns our to be
proved, and then the proof tree is constructed as follows

not(p:t},p:t
------------------------------- [notnec)

------------------------------------- (notnot)
————————————————————————————————————— {notnec)
not{neci{p:c)}, notinecinoc({p:t)))
J. A proof constructor for intensional logic (PCIL)
3.1 Qutline of the syvstem PCIL
Based on the descriprtion of [L in Section 2, PCIL has been implemented an
Vax11/780 in CProlog. The structure of PCIL system is completely modularized as
depicted in Figure L. It shows that PCIL is a general purpose proof constructor in
the sense that the boxes defining the logical system of IL may be replaced by those
of other logical systems. See (3) below for such a wse of PCIL.
Ts$r

Lot

W
Definition of [<----- | Syntax Checker|----- >| Definition of
Syntax | Smmmmme e | Symbols
Database of == --»| Database of
Axiams f Theorems

I
Databasze of ’c- -==| Proof -==|->{| Database of
Inference Rules Constructor Cerived Rules
Dacabase of == -=:| Decisiaon i
Definicions FProcedure

Figure | : Structure of PCIL

The Input-Reader reads and analyses commands or proof lines from a user. A user

can either construct a proof line by line or check a proof at a rime.

-7 -

3.2 Proof-checking examples

Here, we show three completed proofl examples. In the following, unknown

names appearing in the justificarions, such as th7, drl, etc., refer to the theorems

or derived rules which has already been proved elsewhere. Their referents, however,

could be inferred from the context.
(1) Universal generalization theorem schema in IL

- art =» |- allbetl, act)

derived _rule dri.

proof,
1 |- at by as
2 |- lair = *truest) = art by (th,th7).
3 |- at = (&t = *trueit) by (dr,dri,2).
4 [- ait = *true:t by (ir,3,1).
5 |- lambdalx:el,a:t}) = lambdalx:tl,a:t) by (th,ehl).
6 |- lambda(x:tl,a:t) = lambdalx:t], *true:t) by (ir,4,5).
T |= allix:tl,at) by def.

end.

{2} Reduction of a natural language sentence

Let us see the reduction of a natural language sentence in PCIL,

Montague's PTQ, the following English scntence
John believes that a fish walks.
is translated into an IL expression {omitting types)
lambda P some x [fishix) & P{x}])("lambda v believelj, "walk{v)))
This is further reduced to
some x [fish{x} & believe(j,"walkix))].
The correctness of such an reduction can be checked step by step as follows.

Theorem prq. |- some(*x:e (*fish:(e,t) # *x-e) and *believe:((s,t),le,t)) #
int{*walk:(e,t) # *xe) # *je).
proof.
1 [- lambda(*p:(s,(e,t)),some(*x:e, (*fish:(e.t) # *xe and
ext(*p:(s,(e,t}]) # *x:e))) #
intllambdai*y:e *believe:((s,t),(e,t)) #
int(*walk:(e,t] # *y:e) # *j:e)l by as.

2 |- lambda(*p:(s,(e,t}),some({*x:e, (*fish:(e,t) # *x:e and
ext(*pilslet))) # *xe))) #
int{lambdal*y:e, *belicve:{{s,t),{e,t)) #
int{*walk:{e,r) # *ye} # #*je)) =
somel(*x:e (*fish:le,t) # *xe and
ext(int(lambda{*y:e *believe:((s,e),(e,r)) #
mt(*walk:(e,t) # *y:e) # *je))} # *xe)) by (ax,axd).

3 |- extlint(lambdaf{*y:e, *belicve:((s,e),(e,t)) #
intl*walk:le,r) & *y:e) # *je)) =

-8 -

In

lambdal*y:e, *believe:((s,el (e, t)) #int(*walk:e,t) # *v:ie) # *j:e)
by {ax,axB).

4 |- lambda(*p:(s,(e,t)), some{*x:e,(*fish:{e,t) # *xe and
exti*p:s,le,tl)) & *xel)) #
int{lambdal*y:e, *believe:((s,t),(e,r)] #
int{*walk:{et) # *ye) # *je)) =
somel*xe, [*fishler) # *xe and
tambdal*v:e, *believe:{(s,e),le,t)) #
int(*walk:(e,t) # ®yie] # *pe) # *xiell by (ir,3,2)

5 |- lambdal*y:e, *believe:i(s,e),le,t) #
inti*walk:{e,t] # *vig)] & *je) # *xe =
*velieve:((s,el,le,t]) # int{*walk:le,t) # *xel # *je by (ax,axd).

6 |- lamhdal*p:is.le,t)),somel*x:e, (*fish:{e,t) # *xe and
ext{*p:s,le,t))) # *x:e))) #
int[lambdal*y:e,*believe:({s,t],{e,r)) #
int{*walk:(e,t) # *y:cl & *pe)) =
somel*x:e,{*fish:(e,t) # #*xe and
*oelieve:l(s,elle,t]) # intl*walk:(e,t) # *x:e} # *je)l by (ir,54)

7 |- somel*x:e,{*fish:(e,t) # *xe) and
*believe:d(s,el,le,t)) # int(*walk:(e,t) # *x:e) # *jie) by (ir,6,1).
end.

(3) Reduction of a typed combinarory term [28]

In order to show the generality of PCIL as a proof constructor, we will
construct a proof ol a theorem, SKK = [in typed combinatory logic, simply with
the following additional axioms :

(1} axiomiax?,i:(cl,cl) # %01 = xcl)
(2) axiom{ax8 k:(el,((e2,t3),t11 # xtl # yv:(t2,e3) = x:tl)
(3) axiom{ax9,s:{(t1,{(c2,e4),e3)), ({1, {r2,c4)),(c1,3))) &
fel,((e2,04),03)) # miel(e2,04)) # x:tl = f:(cl,((c2,edh,e3))
Bl # (gfol,(e2ed)) 2 xcl))

theorem cl. [- s:({el,((e2,e), e 1), (e], (e2, e 1)) (e 1,0 1)) #
keleLf(e2, el t1)) # kaltl,(e2,e1)) = #:{cl,0l)
proaf,
I |- xtl = xtl by {th,thi).
- xitl = iel,el) # xitl by (rw,1,ax7).
C-ontl,el) # xet o= xtl by (dr,drl,2).
= BlLLED) # xeel o= (kefed,({e2,el),cd)) # xotl) # (kefed,(c2,c10)
xrl]l by {rw,3,ax8).
5 - ifelel) # xtl =
st], ({e2, e 1), e L {(e,{e2,e 1)), (e L, 0 1))} #
ke(ed ({e2,e1),0 1)) # leltl(e2,e1)) # xiel by (rw,4,ax9),
6 |- sfeldfe2,el), e DL el (e2, e 1)), (01,0 1))) #
keh (2,00, elh) # kefel(e2,e1)) # xitl = B(tl,el) # x:tl by (dr,dr!,5).
T = allletls (e {(e2,e e DLHeL (2,00, (el e 1)) #
k(e ({e2,el),e)} # kelel(e2,01)) # xel = idf{el,el) # xtl)) by (dr,dr3,6).

e a2 BJ
]

-9 .

8 [- all{x:tl,st{{tt,((e2,ch),e0)) (e, (e2,e 1)), (e 1,c1))) #
kel ({e2,e0),e1)) # kel fe2,e1)) # xitl = icl,el) # xel))
= (sf{e L U2l e 0led (e2,0 1)), (e 1,010} #
ke LeZe 1) e # kool (e2,01) = i:(tl,cl)) by (ax,axd).
8 1= s{{en((e2, et e, ({en,e2,e 1)) (e 1,0 0))) #
kel ((e2,clhel)) # kel (c2,c1)) = isfel,el) by (ir,8,7).
end.
4, Concluding remarks

We have presented a proof construcror for the intensional logic and showed its
usefulness and generality through three prool examples., PCIL is expecred to
contribute to various areas requiring intensional analysis of objects, from an aspect
of reasoning mechanism, On the other hand, the underlying logics of FOL, LCF,
PL/CV, EKL, etc., are all extensional, and they provide us with the distinctive
apparatuses for formal reasoning, symbolic computation, program verification, ete.

Constructing proofs by analogy to existing proofs, extracting proof templates
by induction, powerful proof/formula editer for compurer-aided reasoning, etc., are
left as future research themes.

It should be observed that the method in this paper, which is to describe the
intensional logic, can be applied to other various logics as well. In fact, we have
convinced that Prolog is not only natural but also expressive as a logical system
description language. Furthermore, it suggests a realization of a metasystem which

could allow one to reason according to his awn logic, once he described it in terms

of a logical system description language such as Prolog.

Acknowledgements

The author would like to acknowledge the continuing guidance and
encouragement of Dr. T. Kitagawa, the president of his institute and Dr. H.
Enomoto, the director of his institute. The author would also like to thank Dr. M.
Toda, Mr. T. Minami for their helpful discussions and comments on computer-aided
reasoning systems including this work. This work is part of a major R & D project
of the Fifth Generation Computer, conducted under a program set up by the MITIL

References

[1) Turner, R. : Logics for artificial intelligence, Ellis Horwood Limited, 1984,

[2] Gallin, D. : Intensional and higher-order medal logic with applications to
Montague semantics, North-Holland mathematics studies 19, 1975,

[3] Tomason, R. H. {ed.) : Formal philosophy - selected papers of R. Montague,

- 10 -

Yale Univ, Press, 1977,

4] Janssen, T. M. V. and Boas, P. van Emde : On the proper treatment of
referencing, dereferencing and assignment, Lect. Notes in Comp. Sci. 52, pp. 282-
300, 1977,

[5] Janssen, T. M. V. and Boas, P. van Emde : The expressive power of intensional
logic in the semanrics of programming languages, Lect. Notes in Comp. Sei. 53, pp.
J03-311, 1977.

{6] Sawamura, H. : A logic of sequential programs based on Montague's intensional
logic, Information Processing, Vol. 22, No. 3, IPS], pp. 216-224, 1981, {in Japanese).

[7] Sawamura, H.: Intensional logic as a basis of algorithmic logic, IIAS R. R. No.
13, 1931,

[8] Clifford,]. and Warren, D. 5. - Formal semantics for rime in databases, ACM
Trans, on Database Systems, Vol. 8, MNo.2, pp. 214-254, 1983,

[9] Hobbs, J. R. : Making computational sense of Maontague's intensional logic,
Artificial Intefligence, Vol. 9, pp. 287-306, 1978,

[10] Wevhrauch, R. : FOL: A proofl checker for first-order logic, AIM-235, Stanford
University, [977.

[11] Gordon, M.]., Milner, A,]. and Wadsworth, C. P. : Edinburgh LCF - A
mechanized logic of cumputation, Lect. Notes in Comp. Sci. 78, 1974.

{12] Constable, R. L., Johnson, S. D. and Eichenlaub, C. D. : An introduction to the
PL/CV2 programming logic, Lect. Notes in Comp. Sci. 135, 1981.

[13] Ketonen, J. and Weening, J. S. : EKL - An interactive proofl checker, User's
manual, Dept. of Comp. Sci., Stanford University, 1983,

[14] Sawamura, H. : Axiomatization of computer-oriented modal logic and deeision
procedure, Bulletin of Informatics and Cybernetics, Vaol. 21, Na. 3-4, pp. 37-66,
1985,

[15] Bowen, D. L. : Dec system-10 PROLOG USER'S MANUAL, version 3.43, Dept.
of Artificial Intelligence, Univ. of Edinburgh, 1983.

[16] Henkin, L. : A theory of propositional types, Fundamenta Mathematicae, Vol.
51, pp.323-344, 1963,

[17] Andrews, P, : A reducrion of the axioms for the theory of propositional types,
ibid., pp.345-350, 1963.

[18] Sawamura, H. : A proof checker for intensional logic, Research Association for
Logical Grammar, 1985, (in Japanese).

[19] Sawamura, H : A preof constructor for intensional logic, 1IAS R. R., 1985, (in
preparation).

[20] Milner, R. : A theory of type polymorphism in programming, JACM, Vaol. 17,
pp. J48-375, 1974

[21] Sawamura, H., T. Takeshima and A. Kato : Towards a descriptive language
based on many-sorted equational logic, HAS R. R., No, 42, 1983,

- 11 -

[22] Sawamura, H. and T. Takeshima : Recursive unsolvability of determinacy,
solvahle cases of determinacy and their applications to Prolog optimization, Proc, of
the Symposium on Logic Programming, Boston, Ma., IEEE Computer Society, 1985.

[23] Hughes, G. E. and Cresswell, M. J. : An introduction to modal logic, Methuen
and Co. Lrd., 1968,

[24] Ohnishi, M. and Matsumoto, K. @ Gentzen method in modal caleculi, I, II, Osaka
Journal of Mathemartics, Vol, 9, pp. 113-130, 1957, and Vol, Il, pp. 115-120, 1959,

[25] Siaght, R. L. : Modal tree constructions, Notre Dame J. of Formal Logic, Val.
18, No. 4, pp. 317-526, 1977.

{26] Firting, M. : Tableau methods of proof for modal logics, ibid., Vol. 8, No. 2,
pp. 237-247, 1472,

[27] Wrightson, G. : A proof procedure for higher-order moadal logic, Proc. 4th
Workshop on Automared Deduction, pp. 145-154, 1879,

[28] Hindley, J. R., Lercher, B. and Seldin, J. P.: Introduction to combinatory logic,
Cambridge Univ. Press, 1972

- 17 -

