(COT Technical Memarandum: TM-0141

TM-0141

GHC Process Fusion
by Program Transformation

33
K. Furekaws and k. Ueda

Oclober, [985

Less, 1007

Mita Kokusai Bldg, 21F ((3) 456-3101—5

“ :D | 4-28 Mita 1-Chome Telex ICOT 132964
Minato-ku Tokve 10& Japan

Institute for New Generation Computer Technology

GHC PROCESS FUSTON RY PROGRAM TRANSFORMAT ION

Felchi Furulawa, Eazunorl Ueda

Inatitute For MNew Gemeration Computer Technol ogy

hoprogram transfermation method for GHT process fusieon is presented, It 4is

lmzed on the fold/unfold method &y Burstall and Darlington. The methaod 4is=
applied to a almple logle edreuwit sioulation progras. Furthermore, the
importance of the progess fusicno in ddomisesed in the context of koW Led ga

representation as well as of podular progrsmoing.

1. Introdustion

In 2 atreap-criected computation
somputation activities are
processes posaibly communicating with i
arother. In gemeral, eack procesn £3 prefare
ably designed to compute a relatively sisple
2nd small taak {n order to keep IL understand=
aile. But the resulting prograss =ay geperabe
oo many tiny processes, Woach, A naively
impl emented, will cause extra computation For
interprocess compmunlication. Process fuzlen ia
aimed at redueing the number of jrocesses by

formal {mm,
<l stri buted among

fusing some commundecating processes, and this
ia amaleogows te loep fusion in procodural
languages. Such fusion may ot necesiarily
lzprove time efficléncy: Process fusion elght

decreaze efficiency in a higniy mrallel arcois
tecbure, and loop fusion might prevernt a
compiler to Myectorizen loops. Howaver, an
actul parallel procesasing maystes @ay well have
a fairly large gramdarity, and process fusion
can be used for adapting the graln size of each
procens te the granularity of the underlying
ay stam,

We use OHC (Guarded Hora Clauses) [Ueda 85] to
exprenn our progrems. In fack, we are intepr=
ested omly in the subelass of GHS which ullows
no user-defined goals in guardn, Our approach
T2 the process fusion 13 besed on the progrm
transformation methad by foldliog/uncol ding
firat proposed in [Burstall and Darlington 77]
and applied to logie prograeming 1o [Tamakd and
Sato 84]. However, since GHC hao imtroduced a
sausallty concept fnto Heorm clauses, the

correct transformaticn must conslder oausal ity
al 3o, Cur transfermation ecan be formally
Juatified only on the semantica of GHC which

deéscribes its causality concept, amd that
senantica will be obtaloed by extendlng the
formal semantics of mondetermimiatic dataflow
languages. In this paper, however, we Justify

our tranaformatien by inforpal arguments.

In the Following, we will informally atate a
oethod foar procsas fusion wsing a slople omm-
ple. The method 45 then applied to a sisple
logle clronit admplation program almulating a
sgries of two loverters to obtain a program
mimilating a simple delay oalrcult. Further-
mora, the isportance of the process fusion 415
dlasmunsed in the context of knowledge represen
taticn a= wall as of medul ar progesomlng.

2. Sketch of the frocess Fusion Method

i bthiz section, we will Briefly sketch the
proceis fusion method using a =imple exm=ple of
computing a sequence of partial sims of integer
fequeénces, The corigimal CHC program 12 as
Follows:

integerdums(I, N, Suma) := trus |
integersa(I,N,In}, mma(ls, Sums). {1}

intepers(I, N, Is) 1= I=<N |

J otz I+, Ta=[I|TI121,

integers(J, 4, I1a), (2}
integers(I N, I=s] := I | Is=[]. {3}

suma(la, Simal t= true | aumta(Ts,0,5ms). (&)

smla([],_,S5mls} := true | Sumis=[], (5}
sw1e([TiTa], Temp, Suma) = true |

NewTezp := [+Temp,

SiMe=HewTempiSu=tisl,

cmia(ls, NewTenp, Sumla)l. (&l

Two tail-recursive goals 'integers' and ' smls’
Will appear in the eomputation, which are
regarded as procesasss here, The other goala
could 8lag be called processes, but herse we do
ol regard them as processes zipce they are all
zhort-lived, Our objective iz to obtain a
Ume=process profran which computes the same
sequence, We start from Clause (1) conal sting
of tWo goals "intogera' and 'ammae', and unfold
or 'erecute! these body goala until we have the
o tall=recurzive goala:

integerSuzas(I, N, Sums) := true |
integera(I, N, I=), sumis(la,0,Sum=a), (T}

The correctoesg of this transfomation shoddd
D2 clear: The predicate 'aums' has only ome
clause with an empty guard, so Clause (4) Ia
always selectad.

Then we introduce a mew clause for the fimal
alngle proceas by parezeterizing the asecond
arguzent of 'zwmls' and leaving the shared

variable "Ia' for comourication local. Thiz i3
the key atep which vapally needs heuwristies in
order to obtain a proper clause to aceompl ish
the process fusion, Io ow case, however, the
only heuristlics we pead ia to gemeralize param=
wtera and this can easlly be autozated. Let us
pame the npew predicate '"fused IntegerSuma’.

Toe resulting clause 13 as Followa:

fused _integerdusall, N, Temp, Sums) := trus |
integers(I, N, Is), aum?s{Is, Temp, Suma). [(a)

The second argusenst of "sumis’ ia gereralized
from a copstant 0 %o a varifable Temp, and 1t is

Included in the olause head., Now we try to
transform this cause to get a =mingle tail-
recurfive program. Toe obtain the expected

result, we want toc apply unfelding and then
folding. However, the goal 'aumia’ can be ex-
panded into itz body goals only when "integers'
has instantiated 'Ja', and ‘integers' can be
éxpanded only when the value of "IV apd N and

thedr ordering 13 known. This means %that
Clause (8) iz allowed to walt for and compare
the wvalues of 'I' and 'N' an behalf of

"integers'., So we split Qause (B) into two:

fuaed integerSwms(I,N, Temp, Suma) = I=<§ |

integer=(I,N,Ia}, sumia(la, Temp, Sumsa). (9)
Fused_integerSums{I, N, Temp, Sums) = L3N |
integers(I, N,Is), smis(la, Tezp, Sums). [1493}

The bodies of Caose (9) and (10) can azsume
that Is<N and I>N, reapectively, and now we& can
unfold 'ictegers’ and then ‘sumts' without
worrying about thelr guards:

fused integer3ums(I, N, Temp, Sums) 1= Isdl |
J i T+1, Is = [I]I18],
integara{J,N,I15],
R zumis([I|I1e],Temp, Suwms) */
NewTegp 15 I+ Temp,
Smz = [NewTempiSumia],
suzls(Ils, HewTe=p, Sumis), (11}
fused_integerdums(I, N, Temp; Sums) 1= IXN |
Is=[1,
M ogmis{[], Temp, Sums) ¥
Sumiz=[], 12}

By foidiog '"integera' and 'ounla’ by Clause (8]
and forgetting the intermediate variable 'Ia',
we gbtaln the follosing:

fused inteperSumms(I, N, Tenp, Sums) ;= Is<¥ |

J iz Is+1, HewTemp iz I+Temp,

Zwms =z [NewTeapl2umis],

fused integerSums(J, N, HewTesp, Sumis), (13}
fuzed_integer3uma{l,N, Tenp, Sumzs) := IM |

Sumis=[]. L1k

Folding oy ausa (&) has no problem, ainea 1t

has an e=pty guard and the swared varlable
"Ta' in @ause (11) 18 local to the wo goals
to be folded.

The remaiming task ia to express the original
predicate "integerSums' in terzs of the newly
introduced predicate 'fused integerSums’. Thia
can be easlly done by setting the parazmeter

introduced in Clause (B to the origlmal value:

integerSum=(I, N, Sums) = true |
fused_integerSwmafll, N,0,5umma), {15}

The resulting clawsea (13}, {14) and (15) give

tha mew delinltion of the "intagerSuma’ pro-
gram. This program contains only ome talls
recuralve process; thus we have fusad the

original two proceases into ome. Tha iInterzes
diate =tres= *Ia' bas been eliminated togethar

Witk the operations of componxing and decom-
Poming it. So the pmew program should be more
officient with respect to amy naive peasure
which counts every prizitive operations sapa=
rately. From a practical point of view, tha
compiled code for a sequential machipe ebtained
from the new program should be better than the
code obtained &y compiling the original two
tall-recursaive procedures separately.

1, More opn Unfoldl ng/Folding Trar=Ffarmation

In thiz section, we will show how we can deal
with a stream tranaformer whick may absorb socme
of the ipput elements. Such a transformer cap-
oot be handled in the Cramework of [Wadler 817,

evenSquare(Xs, ¥s) 1= trus |

evenseq (X, En), aguareseq(Es,Sa), [16)
evenseq{ [X!¥3l,¥s) - even(x) |

Te=(X|¥12], evenseq{Xs, ¥ia). (17}
evenseq | [XiXs],¥=) := odd(X) |

evenzmeq !Xz, Ya). [18)
squaraseq{[Uilal,Vas) = true | X:2072,

V=[XIVia], ayuareseq(Us,Via). (19]
In this example, the twg processes are asyn-
chropous in naturae, The 'Tevenseq' process

filtera out odd nuobers from the input aequence
Iz by (18), so it does not synohrondize with the
"muaressq' prooess in geperal. Anyway, let us

fipat aplit (Cauvse (16}, azs we did in the
finteperSuma' example.
evenSquare([(X{Xa],¥s) 1= even{X} |

evenseq([X|X=],Es), squareseq{Es, Sa). {20)
everSquare{[X|¥a],¥a) = edd{X} |
evenseq([%!X¥a],Ea), sguarezeq{Es,3s). (21)

When the head element "X" la even, it is passad
te the 'smuaresegq' proeess, Therefors, we
unfold both of the body goalas of Clausa {20)
apd get the following ol ause:

evenSquaral[X{Xs],Va) := evan{X) |
Ti=X"2,; Va=[Y|Viz], evendquare(Xsa,V1a), (22)

On the other hand, when the head element i=s
odd, no outpus iz gererated from the ‘evenseg'
roceas. 3o Wwe zust unfold only the 'evenaeq'

proceszs ta get i foldable pattern. The
unloldlng/folding steps are shown below:

evenSquare([X|Xa],¥s) 1= odd(X} |
ev-:naeq(lxilfs],Ea]I. squaraseq(Es, 5a). {21}

| wunfold "erepseqg'

v
evenSquare([XiXa],va) - odd(X) |
evenseq(Xz, Ya), squareseq(ias,val. {23)
|
| rold by Clause [16)
v
eversquaral(X|Xs],Va) := odd{X) |
evenSquare{ls,Va). [24)

The mame techmgque ecan be applied to the
following list coempacticn program to reduce the
nwnber of "remove' processes,

eompact{[1,2) :=- true | ¥a[]. (25)

compact {THIT, 2Y) 1= true |

Zi=falzl, remove(H, T, T1),

sompact (T, 2. (28]
remove(H, [1,X] - true | %=[]. (273
remsve H, [HIT],0) = tprue | remove(H, T,U). (28)
removel(H, [AIT],0) 1= Bzl |

UsLAiv], removelH, T, V). (z29)
We introduce a mew predicate 'dounl eRemove’
doubl sRemove(H! i#2,T1,T3) - true !

rmove(H,T1,12), remove(H2,T2,T3). {30}
and fuze every adjacent pair of 'remove' pro-

cezses. The resulting program iz as fellowa:

compact([],29) :- true | Zia[]. {312

compact ({57,017 :- trus | Zi=[H]. (32}

eempa et I[HT, H2T], 21) 1 Hishclm
=02, K2 2],

doubl eResmove HT B2,T, V1), eampact(V1,2). (37)
compa ot {[H1,H1IT], 21} = true |

compact ([HY {7],21). (34
doubl eRemovel BT ,02,[1, V1) &= tryue I vi=(1. (235}
doubl ehenove(H1, B2, [HY(T], V1) 1= trus i

doubl efemove(H1 52,7, V17, (35
doutl efemove{Hi 52, [H2!T],71) :=

Hishenz |

doublefiemove(H1 52,7, V1), (37}
doubl sRemove{H1, B2 [H3IT], V1) :-

Hi=\zH3, H2=\al3 | Vi=[®s[V2],

douldl eRemove(H1 102 T, 72, {38)

The "H1="=R?' check in Clayss {37} can further
be mmitted because this comdition is guaranteed
to held by Cause {33, Even without (0 ause
123}, this check can bo mftted beosune A anss
(37) car handle the "H1=HZ' case sorrestly,
Ste Lhinr the iptrodusticn of "doubl eFemove’ is
rather asiitrary in that we could fuze =ore
than two ' romovael Frocesses by introducing,
zay, '"tripleRemore’

Fle of Logle Simal ation

In thia sectlion, we apply aur technigue to a
logle simulstion program. The axEnple progras
simulates an cirouit of twe inverters connected
in series. The ailm of the Fusicn is ko trans=
fare the progrom into a s=mimple program with
orly ome cdeley pomponent. The oriplnal defini-
tion of s two-lnverter prograp fs as follows,

doutl elnverter (T, 1,00 := true |
twverter(T, 1,01}, imverter{(T,ol,o).

lnverter(T,I,0) := true !
BEielinlndtilov, T, 1,0},

SmietinInd t(Type, T, 11,0ut} - trus !
delayTime(Type, I},
initial Gut (L, Ouk,Ca),
E“1LH{T¥FE1-T|I1 03},

indtial Out(D, X, 0a) := D0 |
Ii[I]D'.IB], Dl = D=1,
inltial Out({D1,01a,08).
imttialOut (0,08, X) = true | ¥=fs,

4

gatelin(_,{1,_,0) - true | =[],

mtﬂinf:":.rpe,[_TT.::,],[:TII‘Ia_T.Dums} i~ true |
ﬂutz[E‘n‘ﬂuhTs],
truthValue(Type, It ,Ev},
mtelin(lype, Ts, I1s, Dutis),
delayTime{imv, X) := trus | ¥ = 1.
truthValue(im, 1,%) 1= trus | XT=a0,
trutaValue{iny,0,%) := trus | x =1,
EruthVelueiimv, x, X) := true | X = x.
The essentfisl part of the above progrem 1a thae
'@meelin(Type, T, 1,00 I ocedur e a tail-

recurzive procedure for g component of the type

"Trpe' with onme input "I' amd one cutput fof,
e second argumest o0 represents @ soguence
af elogk aignals. Tie "irdtdatOute procedure

ringz the delay of the inverter inte tha
cutput stream t0st, The fusion process is
lilustrated ip the follow ing stepsz.

Ster 1. Unfeld the !doubl elnvertert until
obtaimng twe tail recuraive goal 5.

doull elmverter (T, T, 0) e =rue !
li&la,}r:'::c{il:\f.ﬂﬂ', Inihiall:'ut{ﬂhf}‘l,l.‘.l‘ls'.l,
@mtelin{ige, T, I, M2,
delayTime{imv,D2), indtial Qut (D2, 0, @a),
gatelin{iowr, T,01,00.),
|

| unfold (exesute) 'del ayTima
P and "igd il Oun’
¥

doudl elmverter (T, T,0) 1= true l
Fatelin(im, T,T,01=1,
Gelx)02a],
Fateldniiov, T, [x0%s],00a).

Step 2. Unfold further to make the outpot of
the first 'gaoeliin' be equal o the
loput of the =essnd Tgateidin'.

i

)

| casg-aplit and

i unfold the second "gatelin
v

:r.uublelmurter{[_l'ra].:a,ﬂaj = true |
gatelin(imy,[_|Tal,Ts, 01a),
On={x|02s],

/Pzateiin{inv, [Te|Ta],[x 01a],008)0/
025=[Evi0uta],
truthValve{iav, x, Bv),
g@telin(inv, Ta,0la, Duts).

|

| execute "truthValue!
¥
doubl eloverter ([_|Ts],Is,00) 1= true |
gateiinidme, [_|Ts],Ia,012),
Oa=[x, x|0uta],
gatelin{inv, T2, 015, 0utal.

Step 3. Define a folding predicate by
mreralizing 'doull elnverter,

Tusedboubl eInverter (Ta, I3, Outs) = tege |
Brtelin(im, [_|Tal,Is,012),
gatalin{imv, Ts, 0z, Cuka),

Step 4. Express "doubl elmverter! im terma of
"fusedboutl eImverter! by folding,

doutl eImverter{[_ITs],Ia, 08) i= true |
Os=[x,x|0uka],

fusedboubl eInverter (Ts, Ia, Quta).

Gtep 5. Tramsform the "fuzedloubl elnverten!
into a tail recurszive progra.
1
| mase-split and
| cnfold two "gatelin's
¥
fusedboubl elnverter ([_|Ts],[TiIs],0uta) 1=
true |
Mgatelin(dmv, [_,_1Ts],[I|Ial, 0008y
01s=[Ev!Dut1=s],
truthValue(inv, I, Ev},
gatelin{imv,[_!Ts],Ta, Dutis},
fegatetin{iov, [_ITa],018, Cuts)
where 01s=[Evi0utis]®/
Out =[EvZ J0uti=],
truthValue(inv, Bv, Ev2],
gatelin(im, T3, Dutls, Out2s),

| fold by itselfl
v
fusedDoubl elnverter([_ |Ts],[I!Is),0uts) =
true |
truthValue(ime, T,Ev1),
Out==[Ev2 |Qut2a],
truthValue{ims, Ev1,Ev2),
fuzedboubl eIoverter (T, Is, OutZal.

By further unfolding the above twe *truth-
Valuea', it iz weaszily shown that the *fused-
Doublelnverter! becomes a =imple twe-unit delay
edroulb,

'fusedboubl

ints
woul d
alalifs s

It i1a possible to gerspalize the
Inverter' by changing the constant "imy'
variahbl es, The rezulting procedurs

correspond to a4 gpemaral cascade af two

nents with one Lnput. Wo alas succeeded in
transforming & [lip=flop represented by two
HAND gates into a mingle process procedure, In
this caze, two 'gatelin' procedures were fused
instead of two 'gatelin'a in the above examile.

e Copcluding Reparks

We hive dexcostrated how ta apply program
transformation techmgue to achieve GHC process
fusion. In thiz szection, we show the
izmportance of stresm-criented programming and
process fusion wWith rogpect bto kmowledge
repressntation and progranzing methodel ogy.

As the logic simul ator exAmpl e show 3,
process 1a appropriate for representing a
dymamic object. Furthermore, OHEC allows ome to
define a larger procoss v =meana of subpr o=
ofzae s, For example, tintegerSums' i3 a
cempound object with an integer mererator apd a
aumnmation machine; the 'doubl elmverter! is a
sompounic object with twe imoverters copnested
gerlally. Thua a GHC eclause opanm represent
part-whele relationship,

a (GHC

Part-whele relationship 12 ome of the certral
lssues for lnowledge repressntatisn. The
difficult prollom 13 how to capture the whole
as itas own exstence. Slnce & whole ¢onalasts
of a set of parts, it is patural to thimk Ehat
atomiec parts are the only things that actually
exist and the whole 1s only a conceptual thing,
A GHC program behaves just like this; when the

Froceas representing B whale in called, it is
repeatedly replaced by the processes represante
ing 1ts parts until the only active P ome Sse o
are tall-recuradve parts.

Frocezs fusion in this context means to rebulld
2 whole system by means of sheet-lived primi=-
Hves and alngle tall-recursion te rodypse
cverhead caused by using higher-level stapdard
parts. Thia method will increase the efficlen
cy of the gystem without changing 1ts funection.
Process fusion is a ldnd of meta-level activi-
ties in the sense that it manipulates [ogr am

finitions themszel vea, Therefore ft ig
natural to be integrated into knowledge repre-
sentation/programming systems auch as Manpdala
(Furukewa et al. 84].

From the viedpoint of programming methodology,
streaz-criented programming encourages modul ar

programming. That ia, streas-driented progrmm-
ming allmws us to construct a program by
connecting its mart processes by shared

variables, In the integer swemation exampl e,
the entire progree oonaists of two partsa,
"integersz' and " aums' . Each of them i3 a

feperal part whick ocan be uwsed alsze in other
Frograms. I the progrem were written as a
mngle process from the Flrgk, 4t would have
ie3s reusablity. Process fusion will ensour-
2ge modul ar programming based on the reuse of
parts, sinoe It rmoves ppasiblae inafficd eney
caused by the extengive use of mall parta,

Az for the process fusien mechaniam, o
reszearch dlrectlon Lia to imvestipgate process
structures and to clazslfy the pattern of the
posalble transformation In terms of them. Thia
Will clarify the ahbilities and limits of ouwr
mothod,

Acknowledmenta: We acknowledge i kazu
Takeucni, Jire Tarala, and the other research-
ers of the [irst loboratory of I0OT Ressarch
ferter for thelr helpful suggestionz and
comments. We also acknowledge ¥asunori MNoda,
Tetaue Einoshita, Akdlea Qkuzmura and others freo
Oki EHlectrie Company who developed & fparallel
logie simulatar. ‘Thelr programs helped very
much te examine owr ideas. We alsce thank to
Eazubire Fuchi, the [drector of ICOT ERessarch
Center, for providing the opportunlty to ocon-
duct this research and also for encowaglng us.

Befercnces

[Burstall and Darlington 77] A Trapsformation
System Cor developing Recursive Programa,
JADM Vel.24, Ma.1.

[Ferukawa et al. 84] Mardala: A Logle Based
Enowledge Progremeing System, Proc. FOOS 'AY4,

[Tamaid and Sato 84] Unfald/Fold Transformation
of Logle Proprama, Proe, 2nd Int. Logle Pro-
Famning Conf, , Uppsala.

[Ueda 85] Guarded Horn (lauses, ICOT Tech.
Repert TR=103.
[Wadler B1] Applicative Style Programming,

Frogrem Transformation, and List Operatora,
Proc, 1987 Conf. on Functiomsl Prograoming
Languages and Computer Architecture, ACH.

