ICOT Technical Memorandum: TM-0136

TM-0130

On the Operational Semantice of
Guarded Horn Clauses
{ Preliminary drafi)
by
Kazunor: Ueda

October, [9R5

C985, 1COT

Mita Kokusai Bldg. 21F (03) 456-3191~5

IC: DT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

On the Operational Semantics of Guarded Forn Clauses
(preliminary draft)

Ooctober 1, 1985

Kazunori Ueda
Institute for liew Generation Computer Technol ogy

Erzct: An operalional senantics off Guarded Horn Clauses (2bbreviated to
' iz shoun. The purpose of this operaticnal semantiecs is to show what
primitive operations in GIIC and o show a guidelime for fully
distributed ioplesentation. The pmost important point is that we o longer
eonsider @ variable as a contralized entity. However, many problems remain
of the Torsalization of full parallelism.

1. Introduction

The lenguage Guarded Horn Clauses [Ueda 85] 1= intended to be the
Standard of logie programuing lanfuages which allows parallel exeecution.
it iz capable of expressing inportant concepts in parallel programming such
25 processes, communication, and synchronization., GHC shares this feature
witn Concurrent Prolog [Shapire £3] and PARLOG [Clark and Gregory 84], but
4L nay e undlque Feature of minplieity. Guard is the only syntactie
construct added to Horn clauses, and the semantics of the puard has
ftuziented the expressive power of the original Horn ol ause logia to the
level of 2 practical progroapming lenguage. OHC has no multiple
envirerments or backtraelkdng {4i,e., madtiple emvironments expanded in a
tine aidds), so its scwantics and implementation should be zimpl e
ccupared with Concurrent Prolog and even with sequential Prolog,

Une may contend that GHC is not a logic programning lanpuage because
it has lost the completencss of Horn clause logic. However, CHC was
undoubtedly born from the investigation of logie programming. Horeover, we
bave to use don't care nondeterminiss to write a progran which interfaces
with o real world, and in sueh a cese the coppl eteness is not only
unimportant but a obstacle. The orly way to stay with compl etensss would
b& L0 design apother programning languape based on another lopgle which is
capeile of handling don't care nondeterciniam in its own Cramesork,

fnother view of GIIC is to regard it as a generalization of
nondetersinistico dataflow languages. Depending on binding information
sveiloble, a goal genmerates additiomel binding information, and/or reduces
itself to a set of goals, GHC 15 a gereralization of nondeterministic
dataflow languapges in that the dzta structure it handles is not limited to
stroams, and 1t een handle incomplete deta structures. The capability of
hendl ing inconplete deta struetwe emables us o returally express
deSand-driven computation without introducing new primitives,

In the following chapters, we first discuss three ways to define the
semantics of CHC. Then we introduce 2 mondeterninistic unifieation
alporithn which models a parallelism of QHC better than previous ones.
Lastly, we deseribe the semantics of GHC by extending the wnificatioc
algorithn we propose. :

2. Three IMrections towards the Semantics of GEHC

2.1 Declarative Segantics as an Logle Progreamning Language

The declarative semantics of a2 logie program which does not deal with
infinite computztion 12 well studied in {van Emden and KowalskiT6)] and [Apt

/

z2nd van Emden 821, [Hagiya 8371 and [Lloyd BY] tries to capture the
decl arative szemantios of infinite computation by the greatest fixpoint
on the {extended) Herbrand bese.

Unfortunately, because of the don't-care nondeterminism of GHC which
results from the semantics of the trust operator, the =émanties along this
line cannot capture all the aspects of GHC. toreover, it fails to show the
causality of bindings which is of'ten the central matter of interest in
perellel loglc programming. Powever, it may still be useful for
uvnderstanding the semanties of 2 subelass of GHC programs in which mo
don' t=care mondeternini=m is imvol ved.

2.2 Functional Semantics

Az we stated before, COHC can be regarded as a pereralization of
nendeterministic dataflow lanpuapes. A GHC goal generates new binddngs
between veriables and other terms, depending on, and possibly after waiting
for, the bindings gven by other poals., In other words, CGHC goals are
processza interacting with ore z2nother by neans of variable instsntiation,
The zemantics of such processes could be given by modifying the semantics
of mondeterministic dataflow lanpuages given in [Brock and Ackermann 81)
and [Staples and Hguyen 85], for emnple.

This directien iz very promising because the obtained semanties will
capture the all aspects of GHC including ceusality and don't-care
nondeterninian in a fully abstract manner, Tt should provide 2 tneoretical
foundation for every kind of mechanical and senual handling of = progr ag
such as program transformation, verification, compilztion and optivization.

2.3 Operaticral Semantics

A pemoral purpose of operational semanties is to shew the ruideline
feor inplementation algorithmically. 1In the case of parallcl lanruase s,
this is especially Important, since it shows what sheuld be considered as
indivisible or primitive aperations., The operational semantics must be
moderately abstract: IF it iz too specific, it can =erve only for = =ell
range of Inpledentations and one cannot distinguish between essentisl cnd
inessential malters; if it is too abstract it cannot serve as a muidel ime
of any inplerentation.

However, beinp moderately abstract iz of course diffioult, because
thore are only subjective oriterion. This is especially difficult for rew
lanpuapes and parallel languages since it is hard to assime in advance =1l
good implementations that may appear irn the future.

The operaticnal (or procedural) semanties of a logic progracning .
language iz usually identified as a proof procedure of a given formula, and
in the case of a Horrclause lanpuage it is identified as a refutation
procedure, The semanties of GHC can alze be bmsed on resoluiion znd 1t
should be the clesnest way Lo capture the aspect of GHC as a logde
prograntiing language, but 1D nuot also expreas the sepantioz of the
additional construct, puard. [oreover, it must clarify whet can be
exoouted in parallel, in order teo serve for fully parsllel inplementztion.,

Ve consider fully parallel ecxccution as a standard and serizl ization
of prinitive operations as optimization for hardware which Cavors
saguentlal computalion. This view is Lthe examct opposite of the usual view
of optimization., loreover, we alleow apparently useless computation as long
83 it does not change the intended semanties. ITn parallel computation, it
may often be the case that computaticn or storape which is useless
furctionally may be useful rfor efficiency; to dieallow it wowld be horder
anc/or It would czuse nore serious inefficiency in a2 distributed
conputation, Therefore, we decided to siow what iz allowed rather tioe to
snow exactly what iz meeded. This will again be the opposite of the usuzl
manner which considers eoptimization by means of back-up computsetion orly as

Z

& cobzequence of the senantics.

2. 0 londeteruinistic Unification Al pordtho

e most important and delicate operation in GHC is wnification. This
shinpber shows the rondetermirdstic unification algerithm which will be
Ipccrporsted in the semanticz of GHC. The alpgorithm gves the szepanties of
» CHC prosran which cunprises only of & predefined unification predicate
'=' zno a2 predefined predicate for output. The point is that we no longer
copslder o complex term as an atomie entity nor we consider 3 variable as
ctouic, Thus the algorithn is nore nondeterminisiic that the
noncatorpinietie alporithe in [Hartelli and NMontanari B2]. The algorithn
aleo fries to express peralleliam, though it dees not fully address the
probl e of deadlock and starvation, while the algorithm in [lartelli and
Jontanari 802] is sequentizl.

2.1 The Alpordtho
Oupr formalizetion basically follows [ilartelli and Montanari B2].
Funeticn sywbols, variables, and terms are defined as usual. The only
differsnce is that a =at of variahles iz ordered.
The unification problem is a =t of eguations with a =et of
"observartion variabl ez of the form

S1=T1, veay Sn=Tn; Vi, ..., Vm.

Obzerveztion variabl es are used for observing the result of uniffication.
tlauzlly, the result of unificaticn is given az a =set of =ubstitutions after
it i= terminated, and wost Prolog systens follows Lhis convention.
Howover, this 15 1ike =zeeing a post-mortem dump and it iz not a usuwal way
of (mtting results in praoctical programming. An observation variable is a
werisble throupgh which to dymamiecally observe a result of computation of
interezt. This meodels stream-oriented input/output of GHC better,

Oiven a probles, the algorithm repeatedly performs amy of the
following transformations. These transformations can be done in parallel,
az longz as they do npot interfere, i.e., they do not rewrite any part of
currently selected equations nor atemieity of variable rewriting (in Steps
fed, (0) and (g)) is vielaled, Unless stated otherwise, the salected
equation becomes unselected when the required transformation is conpl ete,
g pay ettach 'marks' to variables to prevent ackward revriting.
Deistence or ponexistence of 2 mark is insipgnificant unl ess explicitly
specified, The algorithm terminztes if no transformation appl ies.

{2) Select any eguation of the form 5=T where 3 and T are not variahbles.
If the two prineipal fupotion gymbols are different, unselect this atom
and stop trith failure. Otherwise, the eguation is of the form f(S51,
eees Bn)=f{T1, ..., Tn}, and rewrite it fo 31=T1, ..., 3n=Tn in amy way
but without erasing 8i'= and Ti's, The condition "without erasing ...°'
means that 3i's and Ti'= must continue to appear in the problen during
rewriting.

(b) Select ary egquation of the form ¥=f(T1, ..., Tn) where f iz sone
n{>0)-ary function symbol, Ti's are non-marked terms and X i2 a
variable, and rewrite it te X=C(X1%, ..., ¥n#®}, ¥1=T1, ..., ¥n=Tn in
any way but without erasing ¥ and Ti's, where Xi's are distinct
veriables which are different froom the variables in the current
problen. The original equation ¥=f(T1, ..., Tn) becomes unselected
when it is rewritten to X=f{X1%, ..., ¥n#®)., Asterisks are called
marks, and they are attached to the new variables to prevent ba clward

3

fe)

(f]

(g)

(2)

(3}

reviriting toward the origimal term.

Select any cquation of the form £{T1, ..., Tn)=X where ' is some
n{>0)=ary functicn symbel, Ti's are ron-parked terns and X is a
variable, and rewrite it to X=f(X1®, ..., ¥in%), X1=T™, ..., ¥n=Tn in
any wey but without erasing ¥ and Ti's, where Yi's are distinet
variables which are different from the variables in the ocurrent
problem, The original eguatien £(T1, ..., Tn)s¥X becomes unsel ected
when it is rewritten to X=£{X1%, ..., EIn®),

Select any equation of the form ¥=X where ¥ is a variable, and erase
it,

Jelect any equation of the foro =Y where ¥ and Y are diztinet
variables and X > ¥ by the given ordering, and find one of the other
ocourrences of non-marked X and replsce it by Y with mo mark. If there
are ne other occurrences of mon-marked X thon erasze the selected

equa tion,

Select any eguation of the form Y=Y where ¥ and ¥ are distinet
variables and ¥ < X by the given ordering, and find one of the other
occurrences of mon-marked Y and replree it v ¥. If there are no other
occurrences of mon-narked Y then erase the selected equation,

Select any eguation of the form X={(X1%, ..., ¥n%) where £ i3 an
n{>=0}-ary function symhol and ¥i*'s are marled variables. Then find
one of the other occurrcnces of ummarked ¥ and reploce it b (X1, ...,
Inl. If there are no other occurrencos of ummarked ¥ then erase

the =eleected esgquotion,

Exampl es
The following exmoples illustrate sone subtle points in the algort thrn,

i=1, ¥=2. The first eguation cn terminate only after rewriting Lhe
second £ Lo 1, and the =econd equation can terminate only after
rewriting tioe first X to 2, Iff the second ¥ is rewritten first, then
the X=2 equaticn is changed to the 1=2 eguation, which causes Tailure.
If the first X is rewritten first, the ¥=1 equation is changed to the
2=1 equation, whiech also causes fallure. Therafore, the order of
regriting is independent of the reosult,

X=Y, ¥=X, Z=1. This examnple shows why the ardering of veriahles in
inpartant. Ulthout ardering, the firset eguation nay rewrite the thiee
equation Lo ¥=1, and then the second equation may rewrite the third
equation back to =1, and o on, Tuls would not be reaisdied Wy a
Fairness assumption on the zelection of variables to be rewrittern,

=1, ¥=1, #=2. This exapple shows wiy an eguation being sclegted nust
not be rowritbtten by some other eguastion. Suppose that the Tirst
equation and the seccond cguation are simultaneously selected and each
of then rewrites the other to 1=1. Then the oripginal profloa is
rewritten to '1=1, 1=1, ¥=2', and then to '"¥32'. This is obwiously zn
erroneous reyriting, IS & sclected cguation iz locked, thiz =zituzaticn
never ccours., However, bthis locking may cause deadlock as i= evident
from this emanpl e--=The algorithn nay nave to be ealled a semi-zl poridths
in this sense. To avoid Lt wouwld roguire ordering the ccourronecs of
equations and variables in the problex, and then reordering of thes
would be necessary to aveid starvation. The probles of dezdleocl znd
starvation i= yet bto be ipvestipgmted. One rescorch direction would be

«

Lo vake souc of the primitive operations a 1ittle bit larzer,

fH) Z=1, =X, ¥=2. Thiz erxample shows another reason why an equation being
selected Gust et be rewritten, Suppose that the scecond gquation Y=
Lo melected and that ¥ > X, It rewrites the third equation to X=2.
Jerever, before this rewriting is completed, the first equation may (i)
oz gselocted, (ii) rewrite the second egquation to ¥Y=1, (iii) be selected
zomiv, (iv) Judge that there are mo other ocourrences of X, and (v)
ercse itseld. Then the origiral probles is reduced to ¥Y=1, ¥=2. This
shiorn togother with Dxample (3) that no variables on either side of the
colcobed egquation must be regritten.

1.5 Proof
to ik supplied)
3.4 ILuplieations and Hotivatiaons

Tue 2bove algorithn differs from that of [llartelli and lNoptanari 22)
i the following two points. One is that a mon-variable term with
frluacnis winich are not puzranteed to be nmew variables iz not trested as
ztazic. For exawple, the eguation

2= cen=(1, nil) sestd)

iz pot drectly used for substitution of X appearing in the problem, It is
Jivst rowrditten to

L= cons(A¥, D%), A= 1, B = ml ... [ii)

Wowre A% and BY are mew veriables, then the equation X=cons(A®, B#) is used
for instantiation. In goneral, only the equation of the form ¥ = T where T
iz & mest general term whose arpuments, if amy, are all ddstinet marked
viriables cin be used for instantiatien, This means that the primitive
operaticn for the instantiztion of (some cccurrence of) a variable is to
deteraine its prineipal functien symbol, This decision is motivated bty the
observation that Eguation (1) and (ii) are logically the same and Equation
(ii) bas asaller granularity.

Mo practical meaning of this is as follows, When we transait a larpe
data structure frow onc processor to another, we of'ten tranamit it bleck by
Bock. The algorithm explicitly sllows such transsission, and we can use
Lhe tranmiitted value before the transmission is complete,

The other ilvportant point is that we do net consider varlables as
coeptralized entities but as distributed cntities. This decision is
potiveted by the cbzervatieon that the probl e

a=1,X=2
can be considered asz shorthand of
21 =1, X1 = X2, X2 = 2,

The practical meaning of this is: that a variable need not be impl emented by
a msingle nenary eell. Tt is gquite likely that each progessor may have a
local eopy or a cache of some variable, The alpgorithm explicitly allows
ft, and it als=o =ays that these copies need not have the same value at the
same time, as long as they becowme identical fimally., A local copy may be
instantiated ly some other processor with potential delsy. Such freedom is
usually considered as a consegquence of Lhe striet semantics, but we took
the other way. '

4, An Operational Semantics of GHC

(Currently this chapter iz stated rather informally; the detail is yet to
be clarified.)

4,1 Syntax of GHC [Ueda 85]

A GHC program is a finite set of guerded Horn e¢lauses of the following
form:

Hi=Gly vov, Om | B1, ..., Bn {w »= 0, n »=0).

where H, Ci's, and Bi's are atopic formulas. H is called a clause head,
Gi's are called pguard goals, and Di's are called body goals, The operator
“I' is ealled a trust operator., The part of 2 clause before *!' is called
& guard, and the part after "|' is called & body, Hote that a ol suse head
is included in a guard., A goal is a call either to the predefined
unifiication predicate '=' ar to =onme other predicate which should be
usar-defined,

A poal clause has the follawing Forw:

i- 51, ..., Bn. (n »= 0},

This can be regarded as a puarded Horn clause with an enpty pusrd., A gozl
eleuse is called an enpty clause when n is egual to O,

4.2 Semantics of GHC

To solve a poal clause, we repestedly perform any of the fallewing
transformnati on.

{a) Select any user-def'ired goal (i.e., a call to some predicate other than
the pradefined unification goal '=') A and any prograz clzuse of the
Fort H := 6 | B, Then make 2 variant H' := G' | B' of the selected
elause by using variables greater {in the given ordering) than those in
the current gozl clause, Then superimpose on A a guarded set of fosl:
of the form (A=H', O | B'). This i= dome by first making a akelcten
{1 Jona rew layer superiunposed on A and then by inerementally
filling its left hand side with "4sH, G' and ils right hand side with
B. Buperimposing makes the origiral mosl partly multi-layered, ac
deplioted by the Following diagraa:

+—{A43=H2, 2 | A2}~z

1
+=(A1=H1, Gi | Bil-=+ +=(A3=013, G2 | B3)=-+
1 1 I]
I I 1 [

Y 1 [T Y ST T €5 O T —

Each leyer shares the other pmrit of the goel. Sooe layer of the
multi-layered part may further become partly wul ti-layered,

(b} Select any unification goal of the fore 5=T, and perform the
appropriate transformation stated'in Chapter 3 zccording to the {orus
of 3 and T, The alpgorithm of Chapter 3 must be modified as followa:

(1) One restriction iz added: The restriction is that a8 wnificalion

goal (i.e., an equation) appearing 1n the lef't hand side L ol tae
form (L | B) cannot rewrite a variable ocutside this form, and &

'3

unification gpoal appearing in the right hand zide B of the form (L

| 81 cunnot redrite 2 variable in L or outside this forn.

{2) The judgpent of whether there are any other occurrences of a
veriable ¥ is now dome a3 follows, For a user-defined goal with
superinposed leyers mone of which has been trusted (see below), we
Hy that a variable T does not appear if ¥ does not appear in any
of the laycrs. including the leyer of the ariginel goal; for &
user-dafined posl with 2 superimposed layer which has been
trusted, we say that 2 varizble ¥ doss not appear if ¥ does not
appaar in that layer,

o
Ll
st

ir additional rule exdsts for the eguation E of the form V=r(X1%,
seay sn®) where Ji¥'s are all parked variables, If it appears in
Lhe left nand side L of the construet (L | B) and there are mo
cveurrences of V except in i and E itself, then move E to the ripnt
aand sioc B, This is for making (L] B) trusted il the only
rezaining task is to instantizte R,

o) Select any layer of the form (L | R) where L iz enpty. Then confirm if
ne otheor livers has been trusted. If confirmed, this lazyer is trusted
indivicibly. Then rewrite this layer to R by removing (|) possibly
irerasentally; that is, restriction of instantiation due to the
cosstruct (|) is rasoved possibly incrementally (This need further
feraelization).

Tnis transfornation terninates when the original goal clesuse is
reduced to the aipty clause. [llere, a trusted layer is assimed to represent
wig nulti=layered part it belongs, that is, a non-trusted layer is ipnored
Jorothe judgnent of terminztion if and only if some sibling layer has been
trusted.

hie above semantices darifies that a resolution operation can be
separited iolo two partsz: pgoal rewriting and hend unification. 4&nd the
lattsr can be executed in parallel with the correspondl ng puard goals, A
oozl can Do executed (i.e., rewritten) even before it is known what
recicate it I1s calling. A zeb of gosls can be =aid to terminate even if
zoig untrusted clauvse is still being executed, Stopplng unnecessary
conputation is considered an optimization,

The above semantics Is based on parellel term rewriting. However, the
rey notion, superimposing, has been introduced to express or-parallel
ciecutlon of candidate clauses, Since GHC is & singl e-enviroment language
Lilwe PARLOG, ezch candideate clause can share its ocuter world.

Taie above algorithm h=s at lecst the fellowing probleis to be
resglved:

{1) Tt requires that the variables in o renamed clause oreated in Step (a)
be reater Lthan those in the current goal clause. The purpose of this
requiresent i1z to ensure that the wiification of & mew variable and an
outer variahle executed in some puzrd may not suspend: If the rew
varizble is greater, then it meed not replace the outer variable,
However, this requirement may cause serialization in the allocation of
npew variazbles, A more sophisticated rule may be necessary.

(2) The ecurrent deseription of Step (¢) is awlward. Protection against
instantiating outer variables can be abolished incrementally, but this
is hard to express. One solution may be to introduce the system for
manzging the mesting of gusrds.

5, Concluzions

He have desoribed an operaticonal semantics of Guarded HEorn Clauses
which tries to preserve parallelism icherent in GHC as much as possible.
The semantics iz still preliminary in that it does not satisfectorily deal
with the problos of deadlock and starvation, as well as in that a plobal
notion such as 'z greatest variable' remains, lotational problems remain
slso, It is very important to give a solution to these problems: It may
show the limitation of exploiting perallelism and freedom in a GHC propgram,
which saould be of interest both theoretically and practically.

References

[Apt and ven Emden 82)] Apt E.R. and van #Snden !LH., contributions to the
Theory of Logic Programming, J. AQY, Vol.29, No.Z2, pp. 841-862, 1982,

[Erock and Ackermann B1] Brock J.D. and Ackeraann, W.B,, Scerarios: L lodel
of Nondetermipate Computation, In Formalizotion of Programming Concepts, J.
Diaz and I. Pamos (Bdz.), Lecturc Hotes in Computer Science, Vel.107,
Sprincer-Verlag, Hew York, pp.252-259, 1681,

[Clark and Gregory 84]

Clark L. L, and Gregory 5., PARLOG: Parallel Prograuning in Logle, Research
Report DOC B4/Y4, Dept of Computing, Imperial College, Londan, 14984,

[van Buden and Kowalsld 76)] van Baden ILH, and Yowzlskd R. A, The Semantioes
of Predicate Logic as & Programming Lanpuage, J.28CH, Vel.23, Ho. b,
pp.733-742, 1976,

[Bapiyz 83] Waglya, M., On Lazy Unification and Infinile Trees, Proc. Logic
Programuning Conference '83, 1983 (in Japanese).

[liartelli and Montorari 82] lartelldi, A, and lontamari, U., An Efficient
Unification Algoritho, ACH Trans., Prog. Lang. Syst., Vol.4, [o.2,

pp, 258-282, 1902,

[Shapiro 83] Shapiro E.Y., A 3ubset of Coneurrent Prolog and Its
Interpreter, ICOT Techn. Report TR-C03, Institute for Hew Gereraticon
Computer Technology, 1983,

[5taples and Nguycen 85) Staples J. and liguyen V.L., & Flxpoint Semantlcs
for Hondeterministie Data Flow, J. ARCH, Vol.3Z, Ho.2, pp-U1t-b4L, 1085,
[Ceda B5] Ueda, K., Cuarded Horn Clauses, ICOT Tech Report TH-103,
Institute for lew Ceneration Computer Tecanology, 1985. MAlso irn Proe. Logic
Progranuing Conference '05, TCOT, pPp.225-230.

