ICOT Technical Memaorandum: TM-0131

TM-0131
A New Parallel Inference Mechanism

Bascd on Sequential Processing

by
Y. Sohma. K. Satoh, K. Kumon,
H. Masuzawa and A. ltashiki
{ Fujitsu Ltd.)

July, 1985

988, 1COT

Mita Kokusai Bldg, 21F (03 456-3191—5

IG DT 1-28 Mita 1-Chame Telex ICOT]32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A NEW PARALLEL INFERENCE MECHANISM BASED
ON SEQUENTIAL PROCESSING

Yukio Sochma, Ken Satoh, Koichi Kumon,
Hideo Masuzawa, Akihiro Ttashiki
(Fujitsu Laboratories Limited)

We propose a new parallel inference mechanism which
we call the KABU-WAKE method. In this method, an
inference is made by a depth-first search in a proces-
s0r element. However, if reguested by another proces-
sor, a job is split up between PEs for OR parallel
inference.

Thus, the overhead in each processcor and for communi-
cation between processors can be minimired.

Through our experimental system, we found that fhe
KABU-WAKE method was partiecularly effective for the
application with large search tree.

1. INTRODUCTION

This paper discusses a new parallel inference method,
and gives an evaluation of this method using our experimen-
tal system.

We nave been researching the feasibility of realizing a
high-speed inference machine that uses parallel processing.
We propose a new parallel inference mechanism baszed on the
idea of seguential inference, but extended further to
inelude parallel inference. Chapter 2 describes our basic
concept for parallel dinference. Then Chapier 3 describas
the fzatures and cperating principles of the KASU-WAKE

asthod. In Chapter 4, an exparinsntz? svystem dedicasasd o
the EAREU-WARE method is explained. Charter 5 surnarizes +ha
resulits of sxpsriments using this svstam,

2. OUR APFROACH TO FARALLEL INFERENCE

The inference speed can be improved by operating a
number of identical processing elements (PE) in parallel.
However, each PE must provide outstanding performance. Con-
cerning a single PE i.e. sequential inference, technological
accumulation is abundant. And there are already a number of
speed-up techniques available. As for technologiecal
progress, it is usually gradual. And, technological advance-
ment of slow and steady is necessary, especially in such

difficult Tesearch as paralile: inference, Then we decided
to proceed along the "graceful growth" spirit, and take a
bParallel inference method based & sequential inference
machine,

3. THE KABU-WAKE METHOD

The KABU-WAKE method is one of the paralie; inference
mechanizms far current Fifth Generation Computer Project.

3.1 Features
The KABU-WAKE metheod has the following features:

= Each PE Seguentially processes g Search tree by a depth-
first search.

- Fach PE splits its current tree for OR parallel
Processing only when Teguested by an..-er pE.

These features have the following advantages:

- Low overhead in each PE
In a PE, Processing is the same a8 for seguential
inference -- no special Drocessing is necessary for
parallel inference. Therefore, each PR works at the
Zame speoad as for Seguential inference,

= Littie communication between Fig :
A job ds split ana given only whan Tequested by
another PE, yhich Teducas the amount of Teguired com-
munication. In addition, since a job is split near the
oot of the search tres, Granularity of the job ean be
made as big as possible,

= Suitable numker ¢f OR proczszses
finne the number - CE srocesses g limited +5 the
o dang &l unexpectsgd

' - -
Sy - T] . - ;e
P e-1 e o kg E b

—ASTihEzs In the numcers 2= JF

3.2 PFoinziples of Cpezat

The CP2ating prirciplazs ef the KasU-pars method are
explained here with semz reference figures, Figure 1-a ig
an example of a da+a base and inguiry written in Prolog. We
will omit arguments of the predicate to simplify the eXpla=-
nation. The arrow shoys the ordinary filew of sequential
inference. Figure 1-b shows the operating Principles of the
KABU-WAKE method, The part encloseqd by thick 1lines shows
the Processing of a certain pr and corresponds to the pro-
cessing indicated by the arrow in Figure 1-g, namely,
Sequential inference.

1f a job request is made by another FE, the job is split

Z

at the branch closest to the root of the search tree and one
half is given to the PE. If another request comes, the job
is split again at the branch next closest to the reoot of the
tree and one Lalf is given to the second PE. The job can be
further split up among other PEs.

4. EXPERIMENTAL SYSTEM

We built an experimental system of parallel inference
machine to test the effectiveness of the KABU-WAKE method
guantitatively. We developed a hardware suitable for our
method and 4installed the KABU-WAKE interpreter on that
hardware.

4.1 System Configuration

Figure 2 shows the hardware system configuration. The
system consists of 16 PEs (one PE for input/output) which
care connected by two kinds of exclusive networks depending
on their functions.

The svstem components are as follows:

- PE:

Thi=s iz a processing element on which is installed a
parallel inferencve interpreter based on the KABU-WAKE
method., If a PE receives a reguest from another PE
during inference, +the FE spliis its current job and
gives one half to the other PE.

- CONT network:

This is a communication route for reguesting job. PE
status information, whether a PE is procassing or not,
is circulated on the network. A FE which 4is docing
inference can check the status information to give a
free PEa part of iis Job.

= DATA networl:
This is & comnunicaileon routs for transfezrring a
split job{XA3WU).

lementation
cllowings &re key points tehen €

o
£
.

oF

& BIUTSTam.

r3
H
M
in
b4
(X!
%]
il
-t

{1} Unbinding of wvariables

When splitting a search tree, the variakbles contained
in the split tree part must be changed to a status as
if all the processes located left below of the split
position had failed and backtracked. .

To speed up this operation, we prepared an area for
each wariahle which mamorize the time it was bound.
Fach time a subgoal is made, new level npumber (which
corresponds to the depth of subgoal) is assigned. And,
for wvariables bound during the processing of that
subgeoal, the same level number with the subgoal is

3

tagged. When a tree is split, we can determine whether
binding should be released or not by comparing the
level of subgoal to be split and the wvariable's level
numbear.

In this method, the time requircd to release wvari-
ables for splitting is prportional to the number of
variables in the subgoal +to he split. To use trailing
stack will be another alternative, but we think it
would take more time.

{2) Use of rule numbers

When a tree 1is split and Llransferred, it is
transferred in the form of a subgoal. However, since a
part of several definiticns for that subgoal is already
being processed, the other PEs must start from a subse-
quent definition. Therefore, we adopted a methoed in
which a special predicate called a rule number is
prepared and attached to the subgoal before transfer to
indicate the position from which {0 start execution.

(3) Control of request

Soma jobs cannot be split even when a reqguest is
rTeceived Ifrom another PE. If thig happens frequently,
FF performance will deteriorate.
To prevent this, we used a request reception flag to
indicate whether a job can bhe spilit. 7This enables a PE
to concentrate on its job without being disturbed by
other PEs.

5. RESULTS OF THE EXPERIMENT AND THEIR EVALUATION

Data is still being collected from the experimental
system, Although it is too early to make a proper evalua-
tion, we would like to report so far and our preliminary
evaluation.

n

[y

Degree of Total Performance Improvemant

Figure 3 shows the relationship bztween the rumber of PEs
znd erscution tine using an n-guesn problem as a banchmark
progzam. The valuaes were oblained by averaging several o-
several tens of measured values. For the problem with lurge
s@arch tree (such as §,9,10-gueen), the execution time can
ke shortened in almost linear proportion to the number of
FEg,

On the basis of the same data, Figure 4 shows the parfor-
mence improvemont ratio due to the increase of the number of
FEs. Average activity ratio of PE is about 99% when the
thirteen PEs are doing parallel infersnce for 10-guesn prob-
lem.

5.2 Detailed Analysis
‘The following are the results of detailad analysis of the
collected data.

(1) Performance of FE

Absolute performance

One PE has a performance of approximately 1 KLIPS,
almost egual to C-prolog on vaxll/780.

Overhead during sequential execution

We tried to create the system on the basis of sequen-
tial inference and reduce the overhead for paralliel
processing as much as possible. As mentioned before,
howaver, overhead 1is reguired for memorizing binding
timings of wvariables.

Therefore, we measured the percentage of the binding
time processing out of the total processing. When the
benchmark program (n-queen, gquicksort) was executed
using one PE, the wvalue was less than £%. In other
words, when continuous processing is performed in one
PE, our parallel inference interpreter performs as well
as the sequential inference interpreter.

Overhead during parallel executicn

Now let's look the processing time of one PE when a
job is executed in parallel by several PEs.

We sampled the processing of a PE in time series to
check the processing type, while a 7-gqueen was being
executed by 13 FEs. Figure 5 shows the results,

The time reguired for WIFICATION, GOAL FRAME and
BTRACK is the inherent time in sequential processing.
Others are the time reguired for parallel processing, in
other word, overhead.

We found that the main overhead was for communica-
tions, splitting of job (£ind the splittable part,
release the constraints and create a subgoal), and for
renumbering wvarisbles +to convert a given job into its
internal exprsssionz.

(2} Number of communisations

Total number

Figure 6 shows the total number of communications
made from +the start to the end of a program. As you
can sea from the figure, the absolute number of commun-
ications wvaries slightly with the program but is almost
linearly proportional to the numher of PEs. In other
words, if the number of PEs increases, the granularity
of the split job beccmes smaller, which increases com-
munication.

If a perfect OR parallel processing is executed, the
number of communications will increase exponentially in
an n-gueen problem, for large n. On the other hand,
trying +to reduce communication would reguire consider-
able memory for storing the OR processes, The KaBU-
WAKE method was found to achieve an almost ideal ratio
of number of communications to numher of PEs.

Time dependency

In the KADU-WAKE method, a job iz split only when
requested. ' When +the input job is big, the amount of
communication between processors is large until the job
is split up and the processors become busy. However,
while the PEs are bhusy processing portions of the job,
there is almost no communication.

Figure 7 shows the characteristics of communication
we cbtained by executing an n-gueen job. TFor a G-gueen
problem, the amount of communication ‘2 almos® constant
from beginning +to end. TFor 8-gueen and 9-gueen prob-
lem, however, there tends to be me-c communication at
the beginning and end of the job, while there is little
communicaticn in betwesn.

Since search tree is expected to become enormous in
practical applications, this tendency will become more
remarkable, and the ratio eof communication +time to
total time should decreass greatly. Thus, HABU-WAKE
mothod should prove most effective in practical appli-
cations.

E. CONCLUSIONS

We proposed the KABU-WAKE method as a new parallel
inference mechanism based on sequential inference process-
ing. Then, we built an exparimental system, which we used
to test the mathod. Cur first evaluation indicates the
method is effective. Specifizelly, averhsad far parallel
Trocessing in PEs ' the amournt of comfunicatise

Ior the number of FEg 1in +he
naincled very eflectivelv.

14
oeELween PEs is relativels
gvstem, and larce treses z2r

We will study the follewing items in the future:
- Handling of multiple scluticns in practical application
and clarifving support functions reguired +to the
machines

- Decreasing overhead between PEs during subgcoal transfer

- Feasibility of compilation in KABU-WAKE method

7. ACKENOWLEDGEMENT

The authors would like to thank to Division Manager
Tanahashi and Department Manager Sato for their unfailing
encouragement in our research, and Managing Director Yamada
for giving us the opportunity to conduct the research. We
are also grateful to Mr. Hayashi and Mr. Hattori for their
helpful discussion on +the comparisons of performance of
sequential inference and parallel inference.

This Iescprch was entrusted by ICOT as part of the
Fifth Generation Computer Project.

REFERENCES

[1] Kumon, et al., "PARALLEL INFERENCE PROCESSING SYSTEM --
IMPROVED CLAUSE UNIT PROCESSING METHODY,
30th meeting of Information Processing Society
(First half of 1985) 7C-8 Japanese

{2] Iteshiki, et al., "PARALLEL INFERENCE PROCESSING BYSTEM
~= EXPERIMENT OF IMPFROVED CLAUSE UNIT PROCESSING
METHOD", 30th meeting of Information Processing
Soclety (First half of 1985) 7C-7 Japanese

[3] J.5.Conery, D.F.Kibler, "Parallel Interpretation of
Logic Programs", Proc. of the ACM conference on
FPLACH, 19B1.

[4] T.Mocto=-cka, H.Tanaka, et gl., "The Architecture of a
Parallel Inference Engine - FPIE -", Froc. of the
International Conference of Fifth Generation Com-
puter Systems, 1984,

?—a
-
\\\ PE
N T
?=bi,cl T-b,c? ‘?—bE,cEJ

B1:-—g ¥ —p,cl ’A‘?--q,cl—] L‘P"r ulj
Bl :=—r
Fig.1— a Fig.1—-n

Fie.1 Basic mechanisn of EARLU-WAKE

(1 PE |—— —{

DATA- e

Eﬁ PE p— — FE

L NETWORK o
W —i PE |—{
PE

L

CONT-NETWORK

Fig.2

Syster Configuration of
Ewperimental machine

.

=]
(=]
—

Gl

(=} =
e]

;

Execution
Lime

—
=
=
—
-~
=
a
)
—

160 |-

12

of P'roctéssor element

i

Ha,

fig.d Speed up factor due to parallel infeorence

Ferformance

improvement

ratio

S U S S U B T -
I N
S 1-+|.e.i::!||lz “ fwmww.fw:4lu
R T NN __u#/fl/)
] _,|,,,/,, -
] S
o | N
TN

12 13

P rocessor elements

Ho, of

inference

due te parallel

improvement ratio

Fig.4 Performance

R T

' 2.3

GOAL FRAME

18.9

TQueen
UNIFTCATION

54.4

Mo, of PE

Fig.h Details of exccution lime in processos clement

Tatal no,
of
Communications
45{} 3 T (i -
| P | I | [|
5 [.'J Cor 0a
T e I B
A Lo
A e 4
B0 | b ded L L 1L J g
i i { i A | |
[f N J’/Jlr |
00—+ L 010V A
N R N S B —ar
P | L I;,f"T |”r |
nzn | ! ! i | ,’j- | a’r’ . |
T T T T == 8@
A VA e -
4 . ; : | / ,’r i l
n.rl-p.! i i ; | : /zi : . : -
LT A T LA
P YL L
150 1 —— b _}_;/ o Al 1 T S N
oA P T e B
i :' / . |f’f B ,|_ — 6@Q
100 | it d | | e T
P Lf"’f | Jj_.-—--":""'i] '
AT
e ot 4]
s] j |
’?’f:"%i II i {] I | i |
J] i] | | I f J
8

Fig.6 Total numt

No, of processor elements

wr of communications

S

: 13

Cumulative

distribution
of
communications
(%) 100
&0 ;
II""
l|l-ul'
./.
60 .
.I/r.
ba .
- /f _ ._.-."’f_.
4 7 Bﬂ
20 g [
/,- ’f—"J —
r eam o
.:":'f. ///—
N o o
] 0.2 0.4 0.6 0.8 1

Time (normalized by exscution time)

Fig.T Dynamic change of (he number of communications

£

