ICOT Technical Memorandum: TM-0125

TM-0125
The Concepts and Facilities

of SIMPOS Window System

by
). Tsuji {Mutsubishi Electric Corp.)
and 8. Uchida

July, 1985

985, ICOT

Mita Kokusai Bldg. 21F (03) 456-3191—35

ID DT 4-28 Mita 1-Chome Telex ICOT]32964

Minato=ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Page 1

The Concepts and Facilities of SIMPOS Window System

Junichire Tsuji
{ Mitsubishi Eleciric Corporaiion)

Shunichi Uchida
(Inseitute for New Generation Computer Technology)

Abstract

This repor: describes the window system of SIMPOS (Sequential Inference Machine Programming and
Operating System). The window system, one of input/output medium systems, will provide the interface
between PST machine (Personal Sequemtial Inference maching) and the wuser through the bit-mapped
display, keyboard and mouse.

Table of Contents

1. Introduction

2. Concepts
2.1 Window System
2.2 Window

2.3 Hierarchy of Window
2.4 Input Management
2.5 Output Management
2.6 Temporary Window
27 Menu Window

2.8 Choice Window

i Window Manipulator

4. Classes

5. Using the Window

6. Ewvaluation

7

. Future Plans

1. Introduction

SIMDOS [Hartori 84, Takagi 84] 15 a programming and operating system for PSI [Taki 84, Yokota
84] Tt provides researchers with software development tools for logic programming. The operating
system purt of SIMPOS has three layers: the kernel, the supervisor, and the input/output medium
systems.

The window swstem is one of the input/output medium systems. It manages the bitmapped
display, the keyboard and the mouse, and it provides to the user the multi-window environment which
5 2 high level man-machine interface. This report describes the concepts and facilities of the
SIMPOS window system. Chapter 2 describes the wvarious concept of the window system. Chapter 3
represent the window manipulator which is the tool for man-machine interface of the window system.
Chaprer 4 describes main classes defined in the window system. Chaprer 5 describes the way to use a
window from user program, from definition of window class to the deletion of window. Chapter &
presents the evaluation of window system from the view point of execution speed and man-machine
interface. Chapter 7 describes the future plun of window system.

2. Concepts

2.1 Window System

The I'ST muchine is & Prolog based high level language machine, and a super personal computer. It
15 developed as the prototype for the fifth generation computer system, and will be vsed as a software
development toal at the second and third stages of the filth generation project.

As a personal tupe [ilth generation computer system. it 15 required very high level man-machine
interface. The window system is a set of programs which provides the communication pass between
the user and PSI machine, and keep the man-machine interface ut high level.

The PSI machine is the multi-process machine, and can do many processes concurrently with the
reguest from the user. But PSI machine has only one console, and if the console is connected to a
process, the user can communicare with only one process simultanenusly. To supply 2 pood interface
on the multi process enwironment, it is needsd that user can communicate with some processes
concurrently, €. user can refer some process simultancously snd can send the operation to any
process on machine

To support these environment, SIMPOS window system supplies some logical terminals named
window on the bit-mapped display, keyboard and mouse, and control these windows by the will of the
UsEr.

To accomplish these characteristics, the SIMPOS window system works with device handlers,
coordinator and each programming systems. Figure 1 shows the structure of systems which work on
user communication. The input/output devices are controled by each device handlers. The window
system coatrol the basic functions about input/output management (control of window allocation,
ventrol of data path from input device to each process, and so on). And the management of inter
process communication is managed by coordinator. (Tsuji 84, Kurokawa 84)

Page 7

Coordinator J

i _r

C_ Pr-.'.Tu _:2: - (Pm-lcfss }

.

Windaw Subsystem

Mouse

Birmap Depla
D dier Y Tlandler

Hzadler i

2.2 Window

Exch window is one logical terminal for the user. Using some windows, the user can do some tasks
The Figure 2 shows the PSl's display, and in this situation the user is doing the

at the same time.

-

Figure 1.

| Enna-Kanj
Translation
]‘—— Mndule .
|
i I
P
| Kevhaard
Handler
|

System structure around the Window System

editing @ program and using another window he is debugging the program.

All the programs in SIMPOS are written in ESP (Extended Self-contained Prolog [Chikayama 84]),
the prolog based logic program language and it is designed as the Object Oriented language.
window is defined as a object in the SIMPOS, and each predicate which do the function regard to the

window is all defined as the method predicate for that window class,

5 Hebapar.]

REiter o

Elman mrchar has
shalance
SR LbutE marnbiwi

Sarma k(Db = la
reranke (e mdnw. WD,
camt_nirs N GRE. L3RI .
tamtomoslbion W 0E, 10E)
CEptwandgw [= Wy
tamt_LiillwiW."Emgrimr "},
Bolivetia (e ;

axchar (0l g ELY 1L R3WEE - 0.
oo e i A
Trwdrman (Wl
LEL L LR PR 5 O 0% - 7Y L P H |

aaahar {8 01 YL K272, K], %Y | JEER, FY2.FF &=
Fom il

o
L Xl = & I kel o= &3),
EYYl =w I F N¥YD o= Bal),
[W = i@ I K2 = 5 T,
WYl = @ Py VYd = B),
F.fmil i

St Ly

H

W1 CRLLy tinah dbgashard
GH L CEIT fanutidaashary

cmacher £.1. 5.7, 41,

1811 CALLy rpmchar ibpacker.]. . 3.F.4)
13212 CALLY #acrer ddm ngow: §o5 2ok ol Bl |
1

4513 CAMLY sschsr Swmondow, .52 8. 1.5, 7.4,
]

VB CALLY wanrar (dwindos, L 5,24, 2,8, 4.8,
18715 CALLy smeher (Bwandew, L. 5. Frd.3.9.8.13

L. 1
13808 CALLY =scher (Swingdew L. 3,204,412, 8.]

L
trate
wuln
ol e
v

wd
Late
Lmk
e

oataa

Input Class Mawe.

& macime

Input Seures Fils Nans,
€ AACTATL A0
Fegisirataing,, .,
Fegiatratad

Fik:un‘: 2

Display image of PSI

Page 3

2.3 Hierarchy of Window

In the multi-window environment, user sometimes want to use some windows 25 a set. For
example, in the editor user want use the text window and commund input window as a set. In this
case, it s very uscful the editer window has text window and command input window as sub-windows.
The SIMPOS window system allows window having some sub-windows In the SIMPOS windaw
system, the windows consist the hierarchy like tree structure. At the top of this structure, there is a
screen, and the ordinary window is defined as the sub-windows of the screen. And each window can
have its own sub-windows and s0 on (Figure 3). In this hierarchy, the management of sub-windows
are done by those superior window. The ordinary windows are managed by the screen, and those

subwindows ure managed by each window, and so0 on.

bCREENj

’ e
_,f’f# Hh\u
e “=
| wmu :Nnaw ! WINDOW- 3_i
,,// \"\.
{_‘/‘ \‘\
| - .
| WINDOW-=2-1 | WINDOW-2- |

Figure 3. Window Hierarchy

2.4 Input Management

The PSI machine has two kinds of input device, the keyboard znd the mouse. These two devices
have different feature and they are contraled by different way. The kevboard, the text input device is
not shared simultaneously by processes, und the input from keyboard must send to the one special
window (SCIECTED WINDOW). For this reason the selected window must determined by user, The
mouse, the pointing devive, is the device which is associated to the mouse cursor on the screen, and
can walk around the whole screen area. And it can be shared hy the windows which are displayed on
the screen. The window which the input from mouse is send to is the shown window on which the
mouse cursor s positioned at that time.

2.5 Output Management

In the overlaped multi-window environment, there are windows which are partially or fully hidden,
and user can not see. When the output is requested to window, the system must recognize the
window is fully shown or not. If no check is done, the output may leave not recognized by the user
forever.

To control the output to windows, we introduced the statuses of window, exposed/deexposed and
shown,/unshown,

As mentioned before, windows are managed by its superior window, and the sub-windaw which 15

Fage 4

not hidden by another sub-window hss the exposed status. the sub-window which is hidden has
deexposed status. The exposed /deexposed statuses represent the status among sub-windows which have
sutne superior window.

The shown/unshown siatus represents the status whether the window is fully shown on the display
or not. The window whose ancestors are all exposed and which is itself exposed has the shown status.
And il the window itsell or one of its ancestor window has deexposed status, it has unshown status.
The window which has shown status is fully shown on the screen.

The most simple way to control the output is to kept waiting the output request for unshewn
window until it becomes fully shown on the display. But by this way, the emergency information
from the process which run on the unshown window can not be shown immediately to the user. It
may cause the trouble to that process. There are some other ways to control the output, but they
have some disadvantages. And it's not useful to take one way to control.

In the our SIMPOS window system, we take four types together and let the user to select one of
them for each window. The four types are as follows:

1y WAIT to let the window waiting to output until it becomes fully shown on the screen.

2} NOTIFY to display the message which tells to user that the window want to output
through the special window (NOTIFY WINDOW -5 to be prepared by system),

I OUTPUT to do the output request immediately to the window. If the window is unshown,

the output is done to the bitmap area which saves the display image of the
window, and only the output to the shown part of the window is displayed on
the screen.

4) SHOW ta show the window compulsorily and do the output to the window.

The last two types may cause some trouble. OUTPUT type may leave the information to be not
recognized by the user. And when the window which wants to do output is hidden by the selected
window, and user is typing the input to the selected window, the SHOW type cause the change of the
selected window and send the input from keyboard to the new selected window. So we recommend to
user to use normally WAIT and NOTIFY types for safety.

As for the output by kanji character, the PSI machine uses the 16-hit data for character, and kanji
character can be treated same as the alphabets. And window system can also treat the kanji character
normally, and user has not to conscious the use of kanji character.

2.6 Temporary Wiadow

As mentioned before, the ordinary window is located in the hierarchy of windows, and shown on
the screen or unshown by another windows by the request of the user. But in some cases, it's better a
window is shown when it is needed and when there is no need to use the window, it is disappeared.
For example, some message window is required only when the system want to show some infhrmaﬁm,
and after the user read the message, it is no need to be shown on the screen. SIMPOS window system
support this window feature as temporary window. The temperary window is appeared at the position
of mouse cursor, and when the mouse cursor goes out from that window, it will disappeared.
Temporary window has following features:

1} it never hidden by ordinary window.

Page 5

2) when it is no need to be displaved, it will not hidden but take off from screen.

3y it saves the area of displaying image where it hides.

2.7 Menu Window

The pointing device mouse is very useful device for pointing some position on the screen, and the
mest common way to vse the mouse s the selection of item in the menu window.

The menu window offer the way of input the commands and so on, by means of find and
sclection. The user will not be required to remember the commands and he can find the appropriate
command among the menu items and complete the operation by selecting the item

The menu window 15 the special window which shows some items in it, it accept only the mouse
input (pointing and click), and not accept the keyboard input nor output request. The user move the
mouse cursor to the item which he want and click the mouse button. By this operation the prepared

operation s dene for that item.

2.7 Cholce Window

The menu window support the functinn to select one or more items. And when some alternatives
are exist for a item, menu require anather mene for selecting the alternative. That iz to require to the
user redundant operation. And in another case, one item have many alternatives like an integer value,
the megu cannot manage the selection. In those cases, wser want to select ane alternative for an item
or input the item value from the zevboard. The choice window offers such way for the wser. The
choice window is keeping items for which the user can change the value. In this window, the item
label and the list of alternatives for that item or the current value of that item are shown. Figure 4
shows the sample image of choice window. In this example, u choice window which control the
window attributes is shown The items of SIZE, POSITION, ete. show the value of those items and
user can change the value of the item by selecting that item, and typing the value [rom kevhoard,
Ihe rems like PERMISSION, FONT, etc. shows the currently selected element by reverse display and
user can change the element of that item by clicking the mouse button.

e - N——
kiscrumagr_|

¥ Siemmmes 8
r Fewoass 0!

Lkt [DY

» Sugcaas Fi

FhCE: .
o= teiemr tmige N
bolucimaa VP 0 ng, geaul |
! = SITE AWIOTH Jeaa !
t= lwnpger GRasy SITE CHE10HTE S |
e Faal 18 Pral | amn . desipl POETTIO8 (X1 Fed
. PES] 0P 44T Pam
kil latBten]p rar, Rai)®] | - ’ 1
» Faul 1t | i
WICBLK
= imabawiftas K320
I Suzessn v | MARGIMALEFTE]
: . | MsREINARICHTE 1
ji7 g Bnagan lan MATSINAHIADE 1
* Semcwes 11 WARZIMATRILY 1
1o isat (Etasle EARDSH 2
¥ Suscmss 11 | PERWISSION LT shaw Feadidy

LAGELFOSITION ffr bottom Doeese e mee
BeCEGAND FEETE blace e

Fauf Br oane B4 bmngud
TR CmngoER LOER ! LABEL _FONT L mne B4 hanju 4
L ————— I —

Figure 4. Choice Window

Page 6

3. Window Manipulator

the window manipulator is the program which change the displaying image of the windows, e.g.
size, position, and so on, through the communication with the user. By using this, the user can change
the status of window not only by the program but by the mouse, and the user interface around
window is kept at high level. When the window manipulator is selected in the system menu, the menu
for window manipulator is shown. User select one of the items on the menu and the associated
function is invoked. Each item and its function is as follows:

1y sSHOW
Show the whole part of the partially shown window.
21 HIDE
Put the partially shown window to the bottom of the list of windows.
3) RESHAPE
Reset the position and size by pointing the top-left corner and the bortom-right corner
with mouse,
43 MOVE
Reset the position of window by mouse,
53 EXPAND
Expand the window size as larpe as possible but not hide another fully shown window,
6) MENU
Select the window using the submenu of windows list,
Ty PEEMISSION
Reset the window output permission by sub-menu,
8} ATTRIBUTE
Change the window"s attribute by choice window.
9y HARDCOPY
Take the window's hardcopy.
10} SUPERIOR
Change the windows editing base to superior window.
11y INFERIOR
Change the windows editing base to inferior window.
12} EXIT

Exit from window manipulator.
4. Classes

The SIMP'OS window system is constructed by about 120 classes. This chapter describes main classes.
Those classes are classified to three types. One is the stand-alone class which can be used by itself as a
window class. Another one is mixin class which supply a function and is wsed a5 a super class of
another cizss. And the last one is the internal class which is used by window system itself, and not
used by the user.

4.1 Stand-alone Classes
* window

Page 7

Page 8

the class for make a stundard window
* window _without_lahel
the ¢lass for making a window which has no labels.
* window_with_twa_labels
the class for making a window with two labels, top label and bottom label, user can use one of
the labels for his own usage.
* superior_window
the class for making the superior window, the window which can have the sub-windows.
* lubeled _superior_window
the class for making the superior window with label.
* menu
the class for making the standard menu, single select single column menu.
* multi_column_menw
the class for making the nulti column menu.
temporary _imenu
the class for making the single select single column temporary menu.
* temporary_multi_column_menu
the class for making the single select multi column temporary menu,

* multiple_select_menu
the class for making the muin select single column menu.
* multiple_selsct_multi_column_menu
the class for making the multi select multi calumn menu,
* temporary_multiple _select_menu
the class for making the temporary multi select single column menu.

temporary _telliple_select_multi_column_nmenu
the class for muking the temporary multl select multi column menu,
* submenu
the class for making the sub menu which is the sub window of another window.

* menu_item
the class for making the menu item. [t has the slots, item string, the value to be returned when
scleeted, 1tem type, the documentation for that item,
* choice_window
the class for making a standard choice window
* choice_item
the class for making rhe chowce item,
* marker
the class for making the marker.
* popup_choice_window
the class for making the choice window with popup feature.
* window _region

the class for defining the window region,

4.2 Mixin Classes
1) primitive classes
* hasic_window

Page 9

the class supplying the function as a window. Every window must inherit this class.

* user_window
the class for making the standard window which ¢an be used by the vser,

* as_inferior
the class supplying the function as a sub window. All the window class which is defined by the
user must inherit this class.

* as_superior
the class for supplving the function as superior window. If the user want to use the sub
windows, The window must inherit this class.

* us_inside
the class for managing the inside area of the window. The inside area is the part of window
which does not include the border, label, and the margins.

* bare_window
the class for supplying the hasic function of the window. For example, making the object,
allecating the bitmap area, etc.

* with_border
the class for supplying the function to have a border of the window.

* with_lahel
the class for supplving the function to have a lakel.

with_two_labels
the cluss for supplying the function to have two labels, top label and bottom label.
* with_margin
the class for supplying the function to have the margins. The margin is the blank area at the

outside of windows.

/_I_lhl:l_

This 15 Label -

9
1
|
1

margin
border

e ———

window inside

e e

Figure 5. the Border, Lubel, and Maurgins

* as_relation
the class for managing the allocation of the sub windows in the superior window. This class is

Page 10

irnherited by the class as_superior,
* external
the class for supplying the function to access to the window from outside of window manager.
In other words, it suppiy the function to communication between the user process and window
MANAager process.
* us_temporary _window
the class for supplying the function as temporary window.
* as_popup_window
the class for supplying the function as a popup window. Topup window is the temporary
window which is not hidden by the exit of mouse cursor.
* sash
the class for making a window which has border and margins.
* labeled. sash
the claze for making a window which has boarder, margins and lahel.
* two_labeled_sash
the ¢luss for making a window which has border, margins and two labels.

2) owrput controd
* as_output
the class far supplying the funcl oo of cutput,
* as_cursor
the class to munage the curser which chows the position where the output is done.
* as_string_output
the class for supplving the function to putput a string.
* as_scroll
the class for supplving the function to scroll the window,
* as_dot_scroil
the class for supplyimg the function to scroll the window by dot bases.
* with_mouse_scrofl
the cluss for supplying the function to cause scrolling by the mouse. this class support the two
kind of mouse scroll, by the movement of mouse, and by the click of mouse buttons.
* as_praphics
the class for supplying the function to output the graphic primitives,
* as_markers
the class for suppling the function to have markers in the window.

3) input control
¥ as_input
the class for supplying the function of input from keyboard.
¥ as_mouse_input
the class for supplving the function of input from mouse.
* with_default_mouse
the class for supplying the basic function about mouse contral, to detect the mouse movement
and to show the mouwse cursor in the window, etc,

* with_translation_table

the class for supplying the function to have translution tuble. The translation table is used for
customization and translation the input code to users own character code.
* with_superior_input_buffer
the class for supplying tne function to share the input buffer with its own superior window.
* with_mouse_scroll
the class for supplying the function to scroll the contents of the window by mouse.

with_window_region
the class for supplving the function to define a mouse sensitive area in that window.

with_line_selection
the cluss for making the window whaose each line can be selected by mouse like to item of
menu window.
* as_natification
the class for supplying the function to have the output permission type of "notify". If the
window inherits this class and the window output permission is set to "notify", the notify
window is appeared to show thuser that the output request is occured, when the output is
requested during the window is unshown.

4} menus /S choice windows
* a5 single_select
the class for supplying the funcrion of single select.

as_multiple_select
the class for supplying the function of multi select.

* as_select
the class for supplying the function for selecting the item by mouse.

* as_multiple_column
the class for making the multi column menu.

* az_menu
the class for making the menu windaw. Every menu window must inherit this class.

* as_on off_menu
the class for making the on-off menu, When the window inherit this class, the item with type
of on_off is reversed when selected.

* as_submenu
the class for supplying the function as a sub menu. In the multi_column menu, each column is
defincd as sub méenu wsing this clase.

* az choice

the class for supplying the busic [unction as a choice window. This class manages the choice

items defined at this window,

4.3 Internal Classes
* window_manager
the internal cluss for window manager process.
* display
the class for defining the bitmap display. The Witmap display is constructed by the screen and
status_line.

* soreen

Page 11

Page 12

the class for managing the logical screen on the display.

* status_line
the class for managing the status line, The status line is located at the hottom of the display
and it shows some system statuses, date, time, user name, selected window, etc..

* logical_mouse
the class for the mouse device. This class must have only one ohject and inherits the class
single_object.

* window_messapge
the ¢lass for making the message for the inter process communication between the user process
and window manager process

* single_object
the class to limit the number of object of the ¢lass,

* window_manipulator
the class far the window_manipulator. This class control the window manipulator menu.

5. Using the Window

This chapter describes how to use the window system. User can use a window by following

sgquence,

1} define the window class.

2} create the window objesct.

3) setup the window attributes,
4} activate the window.

5} opernte through the window,
&) kill the window.

5.1 Definition of window class
User can use the stand alonc classes which are prepared by window system, or can define his own

window inheriting the classes defined by window system.

5.2 Creation of window object
1he creanen of window ohject is done by object-oriented call of class predicate, :create.

1y erdirary window
wreate] Class, ~Window)
Class == class object of window class.
Window => returned window object

wereate{ Class, Initiation, ~Windaw)
Class == class ahject of window class.
Initiation ~> prolog list of items about window initializarion, such as window size, position, ete..
For the items not described at here, the default value is assigned. { Table 1.)
Window => the returned window object.

Example:

wreatel Fwindow, | size{ 200,400}, position{100,200}], Window },
create the standard window with size of 200 x 400 and position

of {100,200).

Table 1. Window Initial Options

Initiation

Femarks

Dafault Value

superior{Superior)

the superior window

ECreen

s —

potition(XY}

window potition in tha
superfor window

(0,0)

size{Width Height)

window size

ingide tize of
supatior window

{ the grid stze in the windew)

2Y meny window

The creation of menu window is almost same as ordinary window, but the initiation list must
mclude the description about menu irems, items_hist(Menu_items_list). Menu_items_list is the prolog
list of vectors which describe the euch items specification. And each vector must keep the following

forem.

{ item_string, item_type, Hem_id, docwmentation |}

itern_string == siring displayed in the menu.
mem_type —> type of the item.

item_id == the value which will be returned when that item is selected.
documentation => the guide documentation displayved at the status line.

1) choice window

The creation of choice window 15 alinost same as ordinery window, but the initiation list st
contain the description about the choice items, choice_list{Cheice_items_list). Choice_items_list is the
prolog list of the wvectors which show each items specification. And each vector must keep the

following form.

tztlof Sdring) the label title blank

Lopotitlef®ring) the top_lakel tltle blank

bottam litlef2tring’) 1he bottom label title blank

margins{Lelt,Right, the margins 1 dot
Head, TAll)

units{ Width Height) the inside units i - 1 dot

Paga 13

Page 14

{ itemn_string, item_type, elements_list, initial_element, documentation }
item string == strings displayed in the choice window.
item_type => type of the item.
elements_list => prolog list of alternatives of that item.
initial_element => initial value of the item.
documentation => guide displayed on the status line.

5.3 Setting the attributes of the window

Setting the attributes ke size, position, superior window, etc.. Most of these attributes can be
setted by the initiation list at the creation,

1}y Rasiv atteibuics
set_size] Window, Width, Height)
set the size of window,

set_positiond Window, X, Y)
set the position to the superior window.

set_superior]! Window, Superior_window)

set the superior window.

21 Addldelere the mety flem
wudd_item{ Menu, Item, Position)
add a pew menu item to the single column menu at the specified position. Item is the vecior

which specify the item and its form is same as described at the menu creation. Position is the
integer between O and the number of {tems.

aadd_item(Menuw, Tiem, Column, Position)

add & new menu item to the multi column menu at the specified column and specifyed
position.

wdelete_item(Menu,Ttem _string)
delete the item which item_string matches to the Item_string from the menu window.

3) Border/Label/Marping
et border_width{ Window, Width 3
set the width of border by dots. The default value is 2 dots.

set_label_position] Window, Position)
set the postion of label (fop or bottom). Position is an atom "top” or “bottom™.

set_titlel Window, String)
set_tap_title{ Window, String }
set_bottom_title{ Window, String)

sot the string displayed as the label.

set_marging{ Window, Left, Right, Head, Tail }
set the width of each margins by dots,

5.4 Adevvarion of the window
activate] Window)
activate the window. When activated, the window is scheduled to be displayed on the superior
windaow,

show({ Window)
show the window on the screen.

Weactivatel Window)
deactivate the window, e.g. delete the window from scheduling on the superior window. This
predicate don't kill the window, so, the displaying image is kept as it is displayed,

shidel Window }
hide the window on the superior window. The part where no other window is exist will be kept

as displayed.

3.5 Output
L) texr ouipus
swritel Window, Character)
output the Character to the cursor position and put the cursor one character farward.

rmove_cursor] Window, X, Y)
move the cursor to the position of (3, Y).

dnsert{ Window, Character }
insert Character to the cursor position.

delere] Window, Character)
delete the Character from the cursor position. By this predicate, the position of the cursor is

not changed.

clear _line{ Window }
delete the characters berween the cursor position 0 d the end of line.

serolli Window, Offset)
scroll the window contents by Offset. If the Offset is positive integer, scrolling up will be done,

and if the Offset is negative integer, scrolling down will be done,

open_rows{ Window, Row, Offset)
insert the Offset lines at the Row position.

move_rows{ Window, Rowl, Rowl, Offset)

Page 15

Page 16

move the lines between Rowl and Row? by the value of Offset.

2} Graphic Ouiput
:pet_point_value! Window, X, Y, “Value)
wet_point_valuel Window, X, Y, Value)
read fwrite the value (0/1) of the pixel specified by (X, Y).

draw_line{ Window, X1, ¥1, X2, Y2

draw_line{ Window, X1, X2, X2, Y2, Line_width, Line_type, Alu)
draw a line between the point (X1,Y1) and (X2,Y2)
Line_width => width of the line (default is 1)
Line_type == type of the line {default is fixed line)
Alu == boolean operation for drawing (default is exclusive or)

draw_rectanglel Window, X, Y, Width, Hight)
draw_rectanglel Window, X, Y, Width, Hight, Line_width, Line_type, Aiu)
druw o rectangle at the position of (X, Y) with test size of { Width, Hight }. The

Line_width,Line_type and Alu are same as :draw_line,

:draw_stringl Window, X, 1, String)

draw_stringl Window, X, Y, String, Alu)
druw the string "String” at the position of { X, Y). the position specifies the top_left position
of the first letter of String.

1) markers
wereate_marker] Window, “Marker)

create the marker objeer,

draw_ marker] Window, Marker)
display Murker on the window,

erase_marker] Window, Marker)
erase Muarker from the window.

move_marker{ Window, Marker, X, Y)
display the marker at the position of { X, Y).

set_marker_typel Window, Marker, Type)
set the marker type (box or line).

set_marker_size(Window, Marker, Width, Ilight)
set the marker size.

get_marker_list{ Window, “Markers_list }
return the list of all markers the window have.

5.6 Llnput
read{ Window, ~Code)
read a character {or mouse click, term, etc). If there is no input, the process will be kept

waiting.

sread_sense{ Window, “Code)
almost same as cread, but if there is no input, this predicare returns the atom “§3nil".

In the SIMPOS window system, above two predicates are main input predicate, The returned code
will be different by whether the input is done by keyboard /mouse or by what class the window

inhcrits.

1} fnpur from keyboard
ordinary, the character code will be returned.

2y Fapur from mouse
mnouse_click _code will be returned. The mouse_click_code is coded on the source codes like:
mouwseSr —= mouse right buttan single click
mouseSm => mouse middle button single click
mouses] == mouse left button single click
mouseSrr == mowse right button double click

3 faput with transfation rable
when the window inherits the class "with_translation_table” the input from keyboard and mouse is

translated by the translation table and 2ssociated code will be returned as result.

4} fnpur as mowse_scrol!

when the window inherits the elass "with_mouse_sceall”, the user can require the seroll by mouse.

When this request is dene, the term “scroll_request(Offset)” will be returned as code.

5) fmpwe by menu selecrion
If the window is a menu, by the sclection of menu item the item_id associated to that item will be
returned as code. If the menu s a temporary menu and the mouse exit from the menu, the atom

"abort™ will he returned.

5.7 Deletion of window
Delete the window from the system when the user terminate his job on that window and he want

to delere it

kall{ Window)
delete the window from system and release the bitmup ares which the window occupied. The
window is repistered to the process which create the window, and when uwser killed that process,

all windows that process have will killed automatically.

Paga 17

Page 18

5.8 Sample codings
Here, We show the sample program which create a windew with size of 300 X 200 and position of

(100, 500, draw line and output o character input from keyboard.

samplel Obj) -

e create window
wreate Ewindow, [position{ 100, 50), size{ 300, 200) |, Window),
T activate window
wetvate] Window),
T draw line
wdraw_line{ Window, 10, 20, 250, 150 3,
v input character
read{ Window, Character 3,
o output the character
wwrite{ Window, Character),

6. Evaluation

When user uses the PSI machine, he directly aceess to the window system, and it is very important
to the man-machine interfuce ut the exccution speed and its easiness to use. In this section, we
deseribe the estimation about those of our window system.

6.1 execution speed

Qur SIMPOS project is the first challenge to write an operating system by the prolog-based logic
programming language, we try to make a window system without considering the execution speed so
well in the carly stage. It bagan to work on July of 1984, and it takes about one vear and half from
starting the detail design. But it was too slow and we started the revisision of window system to
make more efficient one. We change the configuration of window system and device handlers, and we
recoding the muany part of window systen.

1} owrpur
For the measurement of one character output,
writel Window, Character)
we use the window with [ollowing conditions.

* window classes
ordinary window which inherits the following classes.

Page 19

labeled _sash, @s_scroll, as_output, as_graphics, as_markers, as_input, as_mouse_input,
user_window

* window status
shown on the display.
without cursor.
putput position not causing the scroll nor wrap around.
output character is printable character.
font size is 13 dots wide, and 19 dots hight.

* measuring points
1. making window messape and process change
2. analysis of window message and calculation of cursor position
3. deletion of cursor
4. calculation of parameters of character displaying.
5. character displaving
&, caleulation of new position of cursor
7. displaying the cursor
2. making the reply messape
8. process change and analvsis of reply message

* revision ilems
a. first version
b. poling version of bitmap display handler
c. subroutine version of bitmap display handler
d. revision of inter process communication
e. firmware support of method call and slots access

* result
Takle 2. Result of estimation of output

msec,

. a : b C d __t___

1 - - 43
2 18 18 © 13 13 2
3 16 146 5 6 2
4 2 n 9. . 10 2
5 333 | 193 10 12 5
E: 23| 23 12 1 1
70 28T 1 146 5 6 2
., B 8 & K} 2 1
9o 1 - - I 68 36 3
|1l e T sse 57 60 15

Mol T T ——i

i ; | 171 | 123 21

I: total time 1n window manager process.
11 : total time of message execution.

* gvaluation

From the first version to firmware support, it cost about four months, and we think it very
unprove window system more and
PSI machine is personal machine

ripid improvement. Of course, it's not fast enough and we must
more. But it can be used for software development tool because the
and only one user can use its CPU time.

2} fmpur

For the measurement of one churacter input,

readi Window, Character)

we use the window with following conditions.

* window classes

saule us evaluation of one character output.

* window status

shown on the display.

without cursor.

called the -read predicate and waning the keyboard input.

* measuring points

1. processing in keyboard handler

2. process chungc

3. processing in windew manaper

4. process change

3. processing in Wser process

* revision items

4. first version

b. revision of process change

e. revision of kevboard handler processing

d. direct connection of keyboard handler and user process

c. revision of process change

f. firm ware support

* result

Table 3. Result of estimation of input

o _ mS_EI:
B | 2 | b c d e £
i 1] &6 ! 54 36 a5 24 4§
e 20 20 15 2
3 s 1 15 . : -

4 32 . 24 | 2 : - -
o |I 3 s 5 4 5 L
Ctetal 179 | 18 | 100 59 44 7

Fage 20

* sstimation
Now it takes about 7 mil-seconds to input one character. It can not be said to be enough, but

it 1akes about 4 mil-second in the keyboard handler. Processing in the device handler is deterministic
one. Now the firm ware group will planning to introduce if_then_else notation and other o5 support,
and by that revision the processing in the device handler will become more faster,

6.2 man-machine interface

When considering the man-machine interfuce, the easiness to use is most important problem. In the
multi-windew environment, user can refer many informations from various system programs, e.g. the
propram source by the editor, error message from compilor, trace information from debugger, ete.. its
very uselul to develop a program on the computer. And in such environment, there are some problem

about man-machine interfuce

1) easy 1o solecr g window

In the multi-windew epvironment, the user work around the windows during his work. In the
overlapped type window system, some windows may be fully hidden und user may go to such window
to do some job. In those cases, he want to go another window easily, and system must supply simple
way to go to another window easily.

Qur window system supply the two ways for this purpose. One is selection by mouse button. User
can select the partally or fully shown window by clicking the mouse left butten on the window he
want to select. The other is seleetion by menu. User can select even the fully hidden window using the
window manipulator’s menu (item of select by menu). These ways are very useful for using many
windaws on his job. OF course the user can go to another window by program wsing the
select{Window) predicate.

2y easy to edir the allocation of windows

The multi window environment will offer the capability to refer some windows simultaneously like
the situation of to work on the desk spreading some papers on it. But as you know, man is often
change the allocation of papers on the desk to refer some papers. In the multi window envircnment,
if it's hard to change the windows allocation, it's rather hard to refer windows each other.

Our window system has the tool, "window manipulator”. And it offer functions to change the
allacation of windows using the menu and mouse. User can show, hide, move, or reshape windows very
easily, and he can easily refer another window by using this function.

3} easy to define the window which have some feature user want

When user wse (he window, he may want various f[eatures about it. - For example the menu
window is useful for find and selection of command input, but for some items user will want many
alternatives or want to set the value to the item by keyboard input like integer number. If the
window system will offer standard window only, it seems not good by its flexibility, and it seems very
good to offer the capability to define the window features by user’s will.

Our window system is written by ESP, and by fully utilizing it"s object oriented features user can

Page 21

define his own windows by inheriting the component classes to his own window. For example, Figure
6 shows the display of debugger system's state window which control the trace modes of the debugger.
It has four sub-windows. The top window is the window controlling the mode of debugging and
representation level of trace information. The item of mode selection is selection of three alternatives,
and representation level (Depth and Length) is setted by keyboard input. The second window is to
contral the timing to show the trace informations, and it has two dimensional items because the items
are g0 many. The third window is control the sclection of kinds of predicates to show the trace
informations, and it hus itcms which is located horizontally by the relation with another subwindows.
The bottom window is control the spy point, and spy point is setted by kevboard input. These
sub-windows are defined by debugger itself using the system support component classes.

T 1l -ml-.::-unl -.ulr:: -
*yun LT LTI
zisss taCk mas b ! """".
R IR TP IS . T Lo
irawiCiaas.#), PODUEFRr e e rafeash
HAETLERL T R 1 ke
tateek _amdav_tg:- & =] & I | 2 b —— N
Flhadn e Li. |* Succswsx 10 Hobusge: o :':
Flomee_tap cv mada: trece [EREEE] ro tetae
T E T ST TF] erint dapkth; & i
ariatmnge AT e length: 7 L
¥ Siccass 11
wkiribute State Mew o
LT = b+ LD ?3.4,5] r . " -
P > Suooess 1 PTrace]l EALL wify [IEEE ewik
LR rest enza redo [RETK |
prpmd i | 1o [imschi TALL woafy [OEER #xit LA f—
tramd_terwid, My LI el miss rede REDOD 4
¢ abun(Fctt, (w08 I LEG0 LYY =
Tpdd_ctite [Lemshid CALL EXMIT WLEY FaiL
EEETIEL LI R
Thazh, R - R
r,rilr::::?: [b Mew LEJITTE Coswiled Rual Lin
N:_I:";:.:HF War AR e W) rcae Sy Poants [
y e MU F 2908, w- s
loonl
EDLPS xteampdi AR PP lnbugynr s
ruid g, - |F‘d-sl|s|:rlilq.
fack. A4s rrepd mnd

IRETpAPR.C ThS
~ i * I.I-
85 Wadreadey . LS 48 ™

i

Figure 6. Debupger system's state window

4} easy to contral the window from pragram

Easiness 1o use the window by user is very important, but the program must usé the window for
inputSoutput, and if it"s very hard to use the window from program, ths program cannot fully ueilize
the easiness of window. The SIMPOS window system is written hy ESP, and eack window is defined
as an object. And many useful methods are prepared for the program. The system programmer can
use those methods, and can cosily access to the each window

5} casy ro define the strucrure of the windows

Some program like debugeer require some windows for cutput many kinds of information and
input wser command input. In that case, the system programmer don™t want to contral those windows
individually. In the SIMPOS window system, there are some classes for making the structure of
windows and can define some windows as subwindows of one window. So the user can build his own
structure of windows easily and without detailed contral ke can manage the windows.

Page 22

7. Future Plans

Nowadays, about 30 PS] machines are released to the members of FGCS project, and SIMPOS
version 1.0 is working on these machines. The window system is also working on these machine, and
used to the some project in the ICOT. But the window system and SIMPOS working is not concluded
and it will be revised to be more friendly machine,

1y Mulii- font

MNow only two font, Alpha-numeric font and kanji font are released and used on the PSI machine.
But, recently the prototype of font editor is made and many font will be designed for some program.
Now SIMPOS window system supports the multi font environment, but its not so easy to use the multi
font on one window. We will support the multi font environment including the variable pitch font.

2y Srandard fnputfoutpur

In the SIMPOS, there are three medium-subsystems, window syvstem, file system, network system.
they are developed independently and their interface are not standardized. User or system programmer
must use those systems individually snd must notify which medivm to use as input/output. We are
planning to standardize those medium systems and to offer standard input/output to user.

3y Auromaric configuration of subwindows

In the SIMPOS window system, we are supporting the function for making the window structure,
hut now, ucer must consider the allocation of subwindows in the superior window. So when the wser
want to reshape the superior window, the program must reallocate its subwindows according to the
new superior window's size. We are planning to support the automatic configuration of subwindows to
reallocate the subwindows awtomatically at the time of superior windows reshaping. The user or
system programmer ¢an specify the percentage wise size and positon of subwindows in the superior
window and when the superior window is reshaped, the system calculate the new size and new position

af subwindows automartically.

The word "SIMPOS" means progress in japanese, and SIMPOS will improved continuously, The
window system will improved by the reaction from users, and will become more useful and easy

S}'STEI’I].
Acknowledgement

The author express their grateful thanks to Mr. Kazuhire Fuchi, Director of ICOT Research
Center, and Dr. Toshio Yokoi, Chief of third laboratory for their continuous encouragement, and to
ather memhbers of all the researchers of ICOT Ird. laboratory for their advice and discussion about
development of window system. The author alse thanks to Members of SIMFOS Window Sytem
Group { Mr. Yutuka lima, Mr, Osamu Nakazawa, and Mr. Shoji Enomoto) for their works on

window system development,

Page 23

References
[Chikayumy 84] Chikayama, T., "ESP Referance Manual”, TR-044 1934

[Chikayama B4] Chikayama, T., "Unique Features of ESP", TM-0055 1984 (Also in "Proceedings of
FGCS 84", Tokyo, 1984)

[Hattori 84] Hattori, T., Tsuji, J, Yokoi, T, "SIMPOS: An Operating System for a Personal Prolog
Machine PSI", TR-055 1984

[lurokawa 84] Kurokaws, T., Tojo, 5, "Coordinator - the Kernel of the Programming System for the
Personal Sequential Inference Machine (PS1)" TE-061 1984

[Takagi 84] Takagi, 5, et al, "Overall Design of SIMPOS (Scquential Inference Machine Programming
and Operating System”, TR-057 1984 (Also in "Proceedings of 2nd Int'l Conference of Logic
Programming”, Uppsala, Sweden, 1784.)

[Taki B4] Taki, K, et al, "Hardware Design and Implementation of the Personal Sequential Inference
Machine (PSI)" TR-075 1984 (Alse in "Proceedings of FGCS'84™, Tokyo, Japun, 1984.)

[Tsuji 84] Tsuji, J., et al, "Dialopue Management of the Personal Sequential Inference Machine {PSI)",
TR-(46 1984 (Alzo in Proceedings of ACM™84 [984)

[Yokota B4] Yokota, M., et al, " The Desipn and Implementation of 2 Personal Sequential Inference
Machine: PSI", TR-(45 1984 (Also in New Generation Computing, Vol1 No.2, 1984)

Page 24

