ICOT Technical Memorandum: TM-0121

T™M-0121
Development of Delta as a First Step

to a Knowledge Base Machine
by
H. Sakai, K. Iwata, S. Shibayama,
(Toshiba Corp.)
M. Abe and H. lto

July, 1985

e85, 1C0T

Mita Kokusai Bldg. 21F i03) 456-3191~5

II :D I 4 28 Mita 1-Chome Telex 1COT J32064
Mimnato-ku Tokyo 108 Japan

Institute for Ne_w' Generation Computer Technology

Development of Delta as a First Step to a Knowledge Base Machine

Hiroshi Sakal Kazuhide Iwata Masaaki Abe
Shigeki Shibayama Hidenori Itoh
Toshiba R & D Center ICOT Research Center
Favasaki Japan Tokyo Japan
ABSTRACT

Delta, a relational database machine is under development at
ICOT (Institute for New Generation Computer Technology) to study
knowledge base machines (KBMs). This paper focuses on its
architecture especially on its specialized processor, RDBE
(relational database engine) and alsoc presents our approach to a
knowledge base machine.

1 INTRODUCTION

Development of a knowledge base machine (EBM) is one of
ICOTS's major themes., By KBM, we mean a backend machine to
inference machines, which is able to store and manipulate a
large amount and variety of knowledge,

One may regard knowledge informaticn processing in general as
a search problem. In this sense, database machines have tha
advantage of finding all items which match the search condition
in a primitive but huge search space, while inference machines
have the advantage of finding an arbitrary item in a complicated
search space using heuristics in order to aveid combinatorial
explosion. The authors think a KBEM must have both mechanisms in
an integrated manner, since most actual problems seem to need
both brute-force search and heuristic search. Since other
research groups of ICOT developed inference machines PSI [Taki
841, PIM-R [Onai B4), and PIM-D [Ito B4), the KEBEM group first
focused on the database mechanism and developed Delta [Shibayama
84], a relational database machine. We chose the relational
mpdel among others because it seemed to provide a general
storage of Prolog facts [Codd 70] [Gallaire 78].

An efficient relational database machine with an intimate
interface to logic programming was the prime development
objective of Delta. We chose (1) a functionally-distributed
architecture, (2) relational database engines (RDBEs) to perform
relational database operations, and (3) a large capacity
hierarchical memory system,

The current status of the KBM group activities is as follows.
Delta is now available to the inference machines and an effort
tc make the PSI accessible to Delta is being continued. To
evaluate Prolog programs on a relational database system, Yokota
proposed some methods [Yokota B4] [Yokota 85]. In order to
develop a EKBEM, we have started the discussion about its
functiens and architecture.

This paper feocuses on the development of Delta. In section 2.
the overview of Delta and an exemple of guery processing are
presented. In section 3, the RDBE is described in detail. 1In
section 4, a preliminary performance of some primitive functieons
is presented. In section 5, current problems of Delta and our
efforts to solve them are discussed. In sectien 6, we will show
our informal approach to a EKEBM.

2 OVERVIEW OF DELTA

2.1 System Cenfiguration
Delta consists of five different kinds of components so that

gueries from inference machines may be efficiently processed on

specialized components. Its architecture is shown in Figure 1.
The components of Delta are as follows:

(1) An interface processor (IP), which serves as a front-end to
inference machines via a local area network (LAN),

(2) A controel processor {CP), which provides database management
functions, such as Jquery language analysis, concurrency
control, and dictionary/directory management ,

(3) Relational database engines (RDBEs), which are the key
components for processing relational database operations.

(4) A maintenance processor (MP), which has an operator consolse
and provides functions for reliability and serviceability.
(3) A hierarchical memory (HM), which provides other units with

8 common storage,
The rest of this section bresents an overview of Delta., Since
the Delta system can be easily understood from its memory

System, the BM unit is described first,

2.2 Hierarchiral Memory Unit

The HM provides a common storage to other units of Delta. It
is implemented using a conventional mainframe to achieve large
storage and high speed data transfer. It has 128 Mbytes of main
memory, 20 Gbytes of secondary memory and four magnetic tape
drives. The HM is connected te the IP, CP and MP wvia
block-multiplexer channels (one channel for each unit). As for
the RDBEs, the HM has two channels for sach se& that data may be
transferred from HM to RDEE and vice versa simultaneously,

Units other than HM sengd commands to HM in order to access
data in it. That is, the HM may well be regarded as a fast
secondary =storage, The storage of the HM can be classified into
three types as illustrated in Figure 2.

The first type 1is called Attribute Dataset. It stores
ordinary relations. Each relation is split inte attributes and
each attribute iz stored in the secondary storage with an index.
The HM software manages it using VSAM (virtual storage access
method) and the page size iz 4 Ebytes. As for the internal
schema, we will discuss its detail later.

This area cannot be accessed directly from other units. In
order to access an attribute of a relatien, they send a commangd
te make working data from the attribute., When a command has some
conditions, the HM selects the dats referring to “he index as
specified by the conditions.

The second type is called RSP Memory. It stores data copied
from a relation, data generated by a RDBE and data sent from a
host machine via the IP. It consists of 32 Kbhyte pages of main
memory. A set of pages is assigned to each context of data. For
a large amount of data, the HM software stores the overflow
pertion in the Secondary storage without using the wirtual
storage function of the operating system.

The third type is called RSP Dataset. It stores the directory
of Delta. It is segmented into rages of 512 bytes and the HM
software manages it using VSAEM. The CP manages the contents of
each page and the HM is respoensible for logging modified pages.,

i

rpsghi psy 1
LIJ """"]_I_I
I = MLia 1}
LLIA e LI
T LAN
[
A
RSF Subsystem HM Subsystem
1P scU
MU
cr 1o HMCTL — SVP {— CRT
: — KB
:
IOF | | DKC EE
— : CH E
-©
MTC :
— LE, TCE
() systen
-{::::] Console
—Q MTU

PSI : Personal Segquential Inference Machine

LIA : LAN Interface Adapter

RSP : RDBM Supervisory and Processing Subsystem

Ip : Interface Processor CP : Control Processor
RDBE : Relational Database Engine MP : Maintenance Processor
HM : Hierarchical Memory Subsystem

HMCTL: HM Controller DMU : Database Memory Unit
IcP : I/0 Processor SCU : Storage Control Unit
MHD : Moving Head Disk DKC : Disk Controller

MTC : MT Controller

Figure 1

Delta configuration

e

RSP il M
VSAM ESDS

] 512 bytes/page RSP

Dataset

e "

| ——"

RSP Memory
32 Kbytes/page Attribute

Dataset

4096 bytes/page
! _

y
TR B ¥

I
[
[
I
i
]
!
I
|
i
I
I
|

a T
w
|

0

-

¥
1
| —
1
L

B . :

Log Buffer

N g
ORN
Figure 2 Storage management of the HM

2.3 Internal Schema

Conventional database management systems store a relation as
a file in which a tuple is treated as a record and an attribute
as a field. Indexing and hashing techniques are applied to
rapidly obtain tuples satisfying specific ecriteria. These
metheds are useful when the user knows how to use the relation.
A DBMS has tec scan the entire relation if an indexed or hashed
attribute cannot be used as an access path for a given query.

We expect Delta to have unconventional access characteristics
because Delta is planned to be used as external stoerage of
Prolog facts for inference machines. Aceess to the database
stored in Delta is predicted to have the following
characteristics, based on the usage of Proleg prograrms:

(1) There are only a few attributes in most relations,
(2) The attributes used as conditions are unpredictable,
{3) The freguency of access to each tuple is relatively uniform.
Delta adopts an attribute-wise schema to efficiently process
these kinds of reguests. Instead of storing all the attributes
of a tuple tegether, a relation is split inte a collection of
attributes and stores all occurrences of each attribute
together. A TID (tuple identifier) is attached to each attribute
value to identify the tuple it belongs to. A two-level indexing
method is used for clustering as illustrated in Figure 3.
The merits of the attribute-wise schema are as follows:
{1) Delta ecan avoid operations for attributes unnecessary for a
given reguest.
{2) Attributes are treated uniformly.
However, there are several demerits as well.
(1) Transformation between the tuple-wise format and attribute-
wise format is necessary.
{2) Tuple identifiers occupy additicgnal storage space.
(1) The number of internal commands among the units grows.

TID Value
g 3
TiD Range 10 a7
1 =19 1M 22
20 — 39 17 81
Value Range 0 = 59
1 0 — 49 e FYREET:
/1141{: — 149 ~— 56 . 90
200 — 289 1 - 35 28 od
3% — 48 \ 3N
19 — 58
att Ta - az
att2 - b — bz 5 3121
attd ¢ — 2 1= 2 |16 184
\ 25 — &% 0 155
N 56 — 72 35 169
A— D
E - H
=\
Bt T B
M — 63 h‘\\ﬂ 4 ac
o4 — &9 8 ah
19 ab
21 ah

Figure 3 Two-level clustering methed of Delta

3

i Command name Comments
FASS B intratuple operation
JOIN = 7, <8, >, 2,Cartesian product

i RESTRICT =,#,range
SORT iscending/descending
AGGREGATE aggregate operation
UNIQUE eliminating duplicate tuples
UNION set operation
INTERSECTION set cperation
DIFFERENCE set operation
EQUAL equality test between relations
CONTAIN inclusion test between relations
COMPARE compare attributes of each tuple
ZONE-SORT for clustering
DELETE for updating |

Figure 4 List of RDBE commands

2.4 Relational Database Engine

The relatienal database engine (RDBE) is a speeialized
pfocessor to perferm various operaticns on the working data in
the HM. Whenever the RDBE performs an operation, data ise
transferred from the HM to the RDEF and from the RDEBE to the HM
through channzls,

An alternative is to place the RDBE between the HM's main
memory and its sccondary Storage, as in VERSO [Bancilhon B82],
This would reduce data transfer time and improve system
throughput. However, we did not choose this alternative because
it was difficult to modify the disk controller of the HM.

The RDBE offers warious kinds of commands necessary for
ralational datahase Processing. The list of commands are shown
in Figure 4, The RDBE performs these commands using its hardware
modules, the sorter and merger, and alse using its general-
bPurpose microprocessor. The sorter and merger are designed to
perform intertupla commands, i.a, commands which reguirae
comparison between records. For ease of implementation, the
comparison is limited between a contiguous field of a tuple and
a contiguovns field of another, i.e, typically an attribute or
the entire tuple. Comparison between an attribute value of each
tuple and a list of constant values, and comparison between two
attribute values of each tuple are also performed by them. The
rest of the commands are performed by the microprocessor itself
or their combination, The above decision was made according to
the frequency expectation of the commands and their processing
time, and alse the functional flexibility of the RDBE.

The RDBE takes the entire tuple, and not only the key field,
An alternative is to make a copy of the key field of sach tuple
and process it, which would reduce the data transfer between the
ROBE and HM, as well as the required RDBE's memory, We did not
adopt this alternative because of the foellowing reasons:

(1) The HM would have to process the original tuples according
Lo the result of “he RDBE's operation.

{2) Since the set operation rejuires comparison of the whole
tuples, the RDBE must have enough memory either way,

Although Delta adopts the attribute-wise internal schema,
there exist working records having several attributes as wall,

and the RDBE must process them., The internal representation of a
record, in general, is illustrated in Figure 5. Each record in a
relation has the same length (less than 4 Kbytes) and the same
number of fields; corresponding fields over a relation have the
same data type and length. A field usually has an extra area
ecalled a tag, which indicates whether the wvalue igs null. The
data types are unsigned integer, signed integer, and single-
precision fleoating point. The length af the first two types must
bae even and less than 4 Kbytes.

mE - —— -

] i | |] 1 -1 }relation

TID tag value tag value tag wvalue

Figure 5 Internal representation of a record

2.4 Query Processing in Delta

This section shows how Delta processes a gquery using an
example. Let us assume the example in Figure 6. A host machine
wants to get the names and areas of nations having more than
1,000,000 people. The host machine has to send the seguence of
Delta commands based on relational algebra. The IP receives the
sequence and sends it to the CP. The CP translates the query
into a seguence of internal commands as shown in the figure,
each of which is then issued to an RDBE or HM to make them
cooperatively perform the specified database operation. After
its” completion, the IP gets the result from the HM and sends it
to the host,

Host Machine
SELECT name, aresa
FROM nations
WHERE population »> 1,000,000

Seguence of Delta Commands
Selectioni{nations.population, > 1,000,000, templ)
Projection(templ, [name, areal, intl)

Get{intl)

—Delta L
CP=->HM : PQB(nations.population, value > 1,000,000, bufl)
CP=>RDBE: HESTRICT(bufl, wvalue » 1,000,000, buf2)
CP->HM : PQTB(nations.name, buf2, bufl)
CP->RDBE: RESTRICT{(buf3l, TID buf2.TID, buf4)
CP->HM : PQTB(nations.area, buf2, buf5)
CP->RDBE: RESTRICT(buf5, TID buf2.TID, bufé)
CP->RDBE: SORT(bufd4, TID, buf?)
CP->»>RDBE: SORT{(bufé, TID, bufl)
CP=>HM ¢ TTT([buf7, bufB8], bufd)
/* from attribute-wise to tuple-wise format */
IP=>HM : SPI(buff)

Figure 6 Example of guary processing in Delta

3 DETAILS OF THE RELATICNAL DATABASE ENGINE

3.1 Basic Idea
The basic idea is that a Soin operation is performed

afficiently by sorting tuples of each relation according to

thelr values and comparing tuples from the relations in a manner

resembling a two-way merge operation. This idea is profitable

since it can be applied not only to an egui-join operation but

also to nonegual Join operations and other relational database

operations that take two relations. Althogh the idea has also

been realized in other database machines, the relational

database engine has the following advantages:

(1) The combination of the sorter and merger improves
performance as in pipeline processing.

(2) The RDBE can process null wvalues and duplicate wvalues
efficiently, :

(3) The ©projection operation is performed during another
operatian. ’

{4) Parity check and sorting check mechanisms improve
reliability,

(3) Data processing by the RDBE's microprocessor enhances jits
functional flexibility.

3.2 Configuration

The RDBE configuration is shown in Figure 7. It is designed
for high-speed relational databasze processing by means of
pipelined sorting =né merge-like operation. The RDBE consists of
the following components:

(1) A general-purpose microprocessor, which controls all the
hardware modules to perform RDBE commands.

(2) gwc HM adapters, which serve as interfaces between the RDBE
and HM.

(3} The IN module, which transforms input data into an internal
format suitable far the sorter and merger modules. Among these
transformations are:

* field ordering, which shifts a key field to the head of the

tuple

* data type transformation

* generation of null value bit signals
(4) A sorter, which generates sorted tuples,

(5) A merger, which performs external sorting and relaticnal
database operations using a processing algorithm resembling a
two-way merge coperaticon.

In Figure 7, DT, PT, NL and DP stand for data lines, parity
lines, a null line and a duplication line, respectively. The
null line is used to denate that there is a tuple with a null
value key on the data lines. The duplication line is used to
denote that there is a tuple having the same key value as the
subseguent one on the data lines. These modules are controlled
Lo run simultaneously.

Data transfer is performed in the handshake mode between
these modules. Pach module is designed to achieve a data
processing rate as high as the data transfer rate between the
RDBE and HM. The main data path is from the HM adapter(IN) to
the HM adapter(our) through the IN medule, sorter, and merger.

If an RDBE operation takes two relations, as in a doin
operation, the cperatien is performed in the following ways:

|
MPU H MM
|

__:[HM Adapter(IN)]r* Channel

CT| PT
IN Module
oT PT NI.

Sorting Celll

OT PT| HL

Sorting Cell

2
T 1

| ! I Sorter
| |

HM

1
Sorting Ccll12

DT| PT} HL

Sorting Checker

oT) PT| NL| DP

-——————f Merger

DT PT

—% HM Adapter(OUT) Channel

Figure 7 RDBE configuration

The tuples of the first relation, which was coriginally stored in
the HM, pass through the HM adapter(IN), are modifyed by the IN
module, sorted by the sorter, and are £finally stored into a
buffer of the merger. Then the tuples of the second relation
pass through the HM adapter(IN), are modified by the IN module,
sorted by the sorter, and are stored into another buffer of the
merger, While storing the second tuples, the merger also
compares these with the previously stored tuples, and generates
the results. They are sent to the HM through the HM adapter
(OUT) .

If the microprocessor itself has to manipulate the data, the
result from the merger is sent to its main memory via the HM
adapter(OUT). After the microprocesscr has finished the
operation, the final result is sent to the HM wvia the HM adapter
(ouT) .,

3.3 Sorter
In order to apply a sorter in the RDBE environment, the
following conditions must be satisfied:

(1) It receives the original sequence of tuples from the IN
module, and sends the sorted sequence to the merger,

{2) The data transfer rates both at itse entrance and at its
exit are egual to that between the RDBE and HM.

(3) The delay between the ending of the input data transfer and
the beginning of the output data transfer is small.

(4) It is able to sort a small number of tuples at reasonable
speed,

{EIPIt is able to process absolute values of standard binary
notation up to 4094 bytes long, possibly with the null wvalue
signal on.

Various kinds of sorting algorithms have been studied [Enuth
73], and hardware sorters based on them have been proposed and
implemented. Tanaka proposed and implemented a sorter based on
the heap seort [Tanaka 80]. Although it satisfies the above four
conditions, it is difficult to implement so that it satisfies
the last,

Our sorter, based on two-way merge-sort, is similar to Todd's
[Todd 78]. It is slightly inferior to Tanaka's for the third
condition, but it satisfies the last condition. Our sorter has
the following features:

(1) The sorter consists of a linear array of 12 processing
elements, called the sorting cell, and one processing element,
called the sorting checker; these arrange input data elements
in a specified linear order {ascending or descending), Since
the data bus consists of 16 lines, the unit size of data,
word, is 2 bytes. The sorting operation is performed by
pipeline processing,

{2) The sorter performs only the internal sort operation, The
maximum number of tuples that the sorter is able to process is
shown by the following expression.

min(2%*N, [M/L])
Here, N is the number of sorting cells {currently 12), M is
the memory size of the last sorting ecell {currently 64
Kbytes), and L is the tuple length.

(3) The sorting cell has two operation modes: the sort mode and
the pass mode. The former merges two SsSorted sequences of
tuples into one. The latter does not merge, but transfers
input data directly to the next cell. Let C be the number of
tuples to be sorted, then [log,2(C-1)] of the sorting cells
become the sort mode, and the ofﬁers become the pass mode.

The time required is (2LC + N - 1T sec, excluding the tima
which the sorting checker and the control program take, where
T is the reciprocal of the data transfer rate (currently 3
Mbyte/sec). For example, 409§ tuples of 16 bytes are sorted in
43 milliseconds. Note that the processing time does not depend
on the length of the key field.

{4) The sorter processes null wvalues by recognizing the tag
field and locates them at the last part of the sorted
sequence.,

{5) The sorter performs stable sort operations on egual values,
i.e., it keeps the original relative order of the input
sequence of tuples having the same values.

{6) The soprting checker compares the key field of each tuple
with that of the next one, so that it checks the results to
increase the reliability of the sorter. It also generates a

dupliecate signal when the values are the same. Since it takes
an additicnal time of LT, the time reguired is (2L5 + L + NIT
excluding the software overhead tine.

Figure 8 is a block diagram of the sorting cell. It contains
two memories, each with a first-in/first-out function (FIFO), a
comparator and a control circuit.

The sorting cell operation for every two bytes consists of
three cycles., They are memory read cycle, another memecry read
cycle, and compare-transfer cycle. In the first cyecle, the word
of the first sorted subseguence . is read and stored into the
register of the comparator. In the second cycle, the same
operation for the other subseguence takes place. In the last
cycle, the comparator compares them and the selector outputs the
emaller or greater word to the (i+llth cell, according to the
ascending or descending mode. In this cycle, the word sent from
the (i-1)th cell is stored into the memory. Each cycle takes
220 nsec, and the two-byte merge operation takes 660 nsec.

b]

M : Memory CMP : Comparater
CNT : Controller SEL : Selector

Figure 8 Block diagram of a sorting cell

3.4 Merger

The merger is the central module of the RDBE, which performs
relational algebra opecrations and other operations using a-
processing algorithm based on the tweo-way merge=sort operation.
These are called merger commands and are classified into the
five types of operations listed in Figure 3. They are
~haracterized by their ability to process null wvalues and
duplicate values,

A block diagram of the merger is shown in Figure 10. The
merger consists of an operation section and an output control
section. The operation section contains a comparator, a control
EOM table, and two 64 Kbyte memories (U-memory and L-memory)
having a FIFO function. This section performs the following
steps:

{1) Store two sorted streams from the sorter into the memories

(2] Read a tuple from each of two memories simultanecusly and
providing them to the comparator and the tuple memory in the
next secticon

{3) Compare the keys of each tuple and detact output tuples
satisfying the conditions of the command

s

PASE COMMAND RESTRICT COMMAND
LOAD REST-NULL
FASS=-1(NOP) REST-NONULL
PAS5-2 (UNQ-IN) REST-EQ

| SORT_COMMAND REST-NE
SORT-IN REST-RANGE
SORT-EX
UND-EX

| COMEARE COMMAND JOIN COMMAND
COMP-ALL JOIN-ALL
COMP-NULL JOIN-NULL
COMP-NONULL JOIN-NONULL
COMP-EQ JOIN-EQ
COMP-NE JOIN-NE
COMP-LT JOIN-IT
CoOMP-GT JOIN-GT
COMP=LE JOIN~LE
COMP-GE JOIN-GE

NOP : Mo operation UNQ-IN : Unigue-Internal
EX : External NONULL : Not null

Figure 9 List of merger commands

chter

Control

r--====> L-Memory

ROM fomme e = T
M Operation
rator f——— Section

! |
| U-Tuple i l L-tuple
| Memory Memory
Output
Sequence Control
Contraol Section
Field et _____ Field
Reorder ' Reorder
Data Type _"_____L“h___} Data Type
Transform | Transform
Fiela Keooovenndo o . Tield
Select i ﬂ Select

W

MNew TID
Generate

Figure 10

Pl
hl
= Sele:tar_]

b

HM Adapter(QuT}

Elock diagram of

/L

the merger

These functions are executed under the control of a l-Eword *
10-bit ROM table. The address of the ROM table consists of a
null signal, duplication signals, the comparison result flag and
so on. The output of the ROM table consists of memory address
control signals, tuple-selection signals used for the output
control secticn, and an operation-end signal.

The output control section consists of two 16 Kbyte tuple
memories, two field-ordering circuits, two field-selection
circuits, two data-type-transformation circuits, a new TID
(tuple-identifier) generator, a selector and an output sequence
controller. This section performs- the following functions under
software control:

(1) Reorder the fields of an ocutput tuple

(2) Select fields of an output tuple

(3) Recover the original notation of the key field
(4) Add a new TID to an output tuple -

Examples of these functions are shown in Figure ll. Figure
ll(a) shows the reordering of the fields of an output tuple. A
tuple(l) with five fields (A, B, ¢, D, E; B is a key field) is
rotated to tuple(2) by the IN module, so that the key field is
positioned at the head of the tuple, and tuple(2) 1is rearranged
to the original tuple(3) by the merger. The selection of the
fields of an output tuple is shown in Figure 11{bl. In this
figure, tuple(4) is projected to tuple(5) or tuplel(6) by the
assignment of the two pointers, p and p.,. Figure ll(c) shows
the addition of a new TID to an output tup%e.

(1) [a] B] cl p| E|
{2) e | ¢l o] =] &a]
(3) (a] 8] c[o] E]
tal
(4) A B8] c|] | EJ
+ 0
P P2
(5) B | C | (6 | A | D | E |
(b)
(7) [wrro [a [D | E |
{c)

Figure 11 Functions of the output control section

An example of the JOIN-EQ operation is illustrated in Figure
12, JOIN-EQ ecommand is typically used when an egqui-join of two
relaticns is performed. Figure 12{a) shows two input streams (51
and S2) sorted in ascending key-order (Al and Bl); these are
etored in the U- and L-memories, respectively. UARDR and LADR

/3

provide seguence numbers, explaining the address control scheme
for each memorvy.

Figure 12(b) shows the cutpuet tuples and Figure 12(e)
illustrates the execution process. The processing algorithm of
the JOIN-EQ command is as followss

If Al > Bl then LADRE := LADR + 1
if A1 < Bl then UADR := UADR + 1
If Al = Bl then
output a matched tuple pair
if the DP of Al and the DP of Bl are on,
then LADR := LADR + 1:
if the DP of Al is on and the DP of Bl jis off,
then UADR := UADR + l: LADR := LADR*
if the DP of Al is off and the DP of El is on,
then LADR := LADR + 1;
if the DP of Al and the DP of Bl are off,
then UADR := UADR + 1l: LADR := LADR + 1;

-
¥
-
F

Here, DP stands for the duplication line and LADR* points te
the first tuple of those which have the same values,
Adopting this algorithm, the merger 1is able to perform the
JOIN-I) command on the attributes havirg duplicate values

efficiently.

Stream 51 Stream 52
(U-Memory) {L-Memory)
uabr | a1 A2 -LADR | Bl E2
] 2 B 0 T T
(a) 1 3 c 1 3 5
2 3 D 2 3 v
3 1 4 A 3 5 u
JOIN Al=B2 _J
v
Al A2 Bl | &2
3 C 3 5 |
{b) 3 c 3 v
3 D 3 s
3 D 3 v
UADR LADR |U-TupleL-Tuple | Result] Output
0 0 | 2 B 1T T
0 1 2B is <
1 1 3 cC 15 = 3c3s
(c) 1 2 3c 3V = 3ca3v
2 1 1D 18 = 3D 3s
2 2 iD 3V = 31D 3V
3 3 4 A 5y <
END 3 [

Figure 12 Example of processing JOIN-ED command

K

The operation of the merger is divided into three cycles.
These are the four-byte read cycle, compare-transfer cycle and
the ROM table read oycle., Each cyele takes 220 ns and is
synchronized with the sorter.

3.5 Data Processing by the Microprocessor
Since the ougzsrations performed by the sorter and merger are
limited to the intertuple comparison concerning one field
{typically one attribute) for each relation, the other
operations must be performed by its microprocessor. These are as
follows:
(1) Selection under complex conditions
{2) Arithmetic operations
{3) Aggregate operations
In order to improve the performance, the RDBE has a compiler
which generates the native machine instructions into the main
memory. The instructions are executed on the tuples generated by
the merger and stored in its main memory by the HM adapter (OUT).
The final result is sent to the HM through the HM adapter(OUT}.
Since data processing using its microprocessor can be
overlapped with the sorter and merger operation, a combined
operation is able to be performed in one shet. The following is
an exemplified guery;

SELECT *
FROM A, B
WHERE al = bl AND a2 > b2

a join operation with a conjunctive condition. The RDBE is able
te perform the join operation in one shot; the egual condition,
using the sorter and merger, and the other, using its
microprocessor.

3.6 Control Mechanisms

The HRDBE's control mechanisms of the modules, in order to
perform a RDBE command are described in this section. Eince the
sorter and merger have limited capacity:; i.e. the maximum amount
of data which the sorter and merger are able to process in cne
scan, the microprocessor controls the modules in a different
way. This depends on the category of the RDBE command and the
amount of data. They are as follows:
{1) Unary intratuple operation;

Arithmetic operations and selection are involved in this
category. When the amount of data is so huge that the modules
{including the capacity of the main memory) is not able to
process it im one shot, the microprocessor controls the
modules for each nenintersecting portion (called a substream)
of the original data repeatedly.

{2) Sort tyvpe operation;

When the amount of data is small enough for the sorter to
process in one shot, the microprocessor indicates the sorter
to sort it and merger to pass it,

When the data 1is not greater than twice the sorter's
capacity, the microprocessor first indlecates the sorter to
sort one half of it and the merger to store it inte its
U=-memary. Then it indicates the sorter to sort the rest and
the merger to merge them.

/5

=

an original page condition values

S57B | 2
KR 4
NN 7
b | E
4 | A ‘
DELETE command
¥
3o
5| B ! remaining tuples
6E | B _Jr
2| B a
a2 TR } eleted tuples

Figure 13 Example of the DELETE command

Otherwise, the microprocessor first controls the modules as
in the second case, to generate twn partially scorted
Sequences. Then the microprocessor indicatas the merger tg
merge them repeatedly. Since each step is based on a two-way
merge operation, it becomes inefficient when the amount of
data becomes large, in comparison with the multi-way merger
[Dohi 83).

(3) Binary operation {cype 11

In a join-like operation, the microprocessor controls the
modules to perform the operation for each combination of the
substreams of the relations repeatedly. An alternative is to
sort each tuple first and te process the JOIN command on them.
However, this is pot adopted for twe reasons; (1) it takes
more time when the amount of data is not eight times greater
than the sorter's capacity, and (2) It does not wark wall when
a large number of tuples have the same valus,

{4) Binary operation (type 2)

In a difference-like operation, the microprocessor controls
the modules as follows, Let Ra and Rb be the original
relations, and the cperation be to get (Ra - Rb). It first
indicates the sorter teo sort the first substream of Rb (say
RB1l) and the merger to store it inte its U-memary. Then it
indicates the sorter to sort each substream of Ra and the
merger to perform the RESRICT-NE operation between each
substream of Ra and Rbl repeatedly,

Since the operations described above generates a temporary
result of (Ra - Rbl), The microprocessor repeats the same
operations to generate the fipal result,

Besides the control mechanisms described abowve, the micro-
processor controls the merger to perform different cperations an
the same data, This is useful in the DELETE command. In the
DELETE operation, ths RDBE deletes those tuples the key of which
match any of the conditien values. First, the microprocessor
controls the sorter and Merger to store the condition values
into the merger's U-memory. Then, for each page, It controls the
sorter and merger in twe steps; (1) store all tuples into the

/€

merger's L-memory and at the same time, output tuples which
unmatch any of the condition wvalues, (2) output tuples in the
L-memory which match one of the condition wvalues, Figure 13
illustrates an example. It helps the HM check whether the
contents of each page are meodified or not.

3.7 Increasing xeliability

The RDBE has the follcowing £features to gain reliability. A
parity check mechanism and the sorting checker detect hardware
errors with very little increase in processing time.

When an error occurs, the microprocessor resets the medules
and then contreols the HM adapters to inform HM to retry the data
transfer. The HM only has to treat it as an ordinary I/0 error.

During the power-up sequence, the microprocessor performs
RDBE gperatiaons on certain test data. The test data in the main
memory 15 provided te the IN meodule through the HM adapter(IN).
The result is stored in the main memory via the HM adapter(0OUT)
and is checked by the microprocessor.

4 Performance of Primitive Operations

This section presents the performance of some primitive
operations of the HM and RDBE. We have a plan for thaorough
performance evaluation of Delta after finishing its refinement
task, which will continue t£ill the end of this year.

45 for the HM, performance should be evaluated for each type
of storage, since its storage is c¢laszsified into three types,
However, we have only obtained till now the performance of the
RSP Memory which stores working data and behave as a fast common
secondary storage., The access time and the transfer rate are as
follows:

Access Time 8 msec (Typ.)
Transfer Rate (te IP/CP/MP) 1l Mbyte/sec
Transfer Rate (to RDEE) 3 Mbyte/sec

As for the RDEE, we have obtained the performance of its
representative commands JOIN (egui-join) and SORT., We will first
discuss the theocretical performance estimaticon of +the JOIN
pperation. Then we will compare it with actual performance,

Since every RDBE module, except the merger, proceeds in a
deterministic way, the time reguired te perferm an ROEE
operation can be estimated. The activity of the merger, however,
depends on the distribution of values in the input tuples, so we
present the worst-case estimation. The following list sums up
the parameters necessary to estimate performance:

M : number of sorting cells

M : merger's U- and L-memory capacity
Cn : tuple count of the n-th relation
Ln : tuple length of the n-th relation

Fn : number of substreams; egual to [{(Cn=1)/min{2H8,M/Lnl+l
Enj: j=th substream of the n=th relation

R : tuple count of the result

T time reguired to transfer one byte

w

’7

in a join operation, the microprocessor controls the modules
in the following way:

send a reguest tg BEM through the HM adapter{IN)
while the first stream is not exhausted

begin)
get a substream from HM
modify it in the IN module a

sort it in the sorter
store it into the U-buffer of the merger
Send a reguest tp HM through the HM adapter(IN)
while the second stream is not exhausted

begin
get a substream from BM
modify it in the IN module B

Sort it in the sorter
compare it with the previous one to generate the result

aend
end

Here, the statements . enclosed are executed In parallel.
Figure 14 shows the time chart of the activitias of the modules
while executing section A. The total time taken in this Section
is calculated as follows:

The sorter, including the sorting checker, takes

{2511iL1 + N = 1 + 13T
for the i-th substream of the first relation. The IN module

takes an extra tims of L.T and the merger takes an extra time of
T. The total time is egduzl to the following expression.

(251iL1 + N + 2L1) = 2C1L1 + F1(N + 2L1)

In section B, the merger takes an extra time af
(181i + 52j)max(L1+L2) - SZ2jL2)T
for scanning the i-th substream of the first relation and the
j-th substream of the second relation. In addition, generating a
record as a result takes (L1 + L2yr,

After all, the JOIN command takes the following time:
(2C1L1 + Fli(N + 2L1))T +
Fl{C2L2 + (Cl + C2)max(Ll + LZ) + F2(N + 2L2))T +
R(L1 + n2)T

1 1

; : T ; T _.; Time

- . ! - . ' :

: , ! . ! :

IN module — : ; : ; : |

1 i n 1]]]

Sorter | L Input ' Putput : :

" i) ’] i '

' ' : X ' 1 !

Checker . ! : : i ' !

] . . 1 1 [

v [h 1 : 1 .I

Merger | ' '] L : |
| | :
" 1)

T LT SLLIT— (N-1)T —% LT =% S14LiT —k T

Figure 14 Time table of the activities of the RDEF modules

/8

Whan Cl and C2 are egual to 4096, and L1 and L2 are esgual to
16 bvtes, and the resulting tuples are small, the RDBE takes
approximately 128 milliseconds. Note that the processing time
does not depend on the key size.

Figure 15 shows the theoretical performance estimation and
the actual wvalues for J0OIN and SCORT commands. Here, record size
is alwsys 1l bvies., The result shows that the RDBE, cooperating
with the HM, achieves the expected performance,

fa) JOIN command) (b} SORT command

IN1 IN2Z ouUT T A I IN ouT T A
1 1 1 31l 1 1 21
4096 | 4096 | 4096 107 150 4096 40948 43 64
B162 | 4096 4096 215 279 3192 8192 107 136
16384 | 4098 | 4088 301 377 le384 16384 349 445
32768 | 40986 4096 559 660 12768 32788 91| 1299
65536 | 4096 | 4096 | 1075 1345 65536 65536 2446| 3139
131072 | 4096 | 4096 [2107 2366 131072 | 131072 5940 7356
262144 | 4096 | 4096 | 4171 4793 262144 | 262144(1397817127
b24235 4096 4098 8299 |108:5& 524288 524288321481 42292

IN number of records in the source relation

QUT : number of generated records
T : theoretically estimated processing time (msec)
A 1 actual processing time (msec)

Figure 15 Performance of the RDBE

5 PROBLEMS OF DELTA

Several problems concerning the performance of the Delta
system have been disclosed, although we have not made thorough
evaluation. We are refining Deslta, especially concerning the
internal commands among units and the basic software in order to
improve efficiency.

Several crucial problems are derived from the configuration
of Delta, especially the separaticon cf the CP and HM. We think
that they should be integrated into a single unit and the
integrated unit should use the RDBEs as I/0 devices because of
the following reasons:

(1) The number of internal cemmands would be reduced
approximately by B80%. The integration of the CP and HM would
directly make the internal commands between them unnecessary.
It would reduce the number approximately by 40%. If the
integrated unit would use the RDBEs as I/0 devices, then the
internal commands between the RDBE and HM would become
unnecessary. It would reduce the number by additional 40%.

{2) Since a query compilation, which the CP does now, reguires
several pages of the directory to be read and modified, the
directory should be accessed by the CP as its main memory, and
not as its secondary memory.

(3) The scheduling of the guery execution, which the CP does
now, should be related to the considerations of the HM
resources. In order to realize it, the integration of the CP
and HM is necessary.

/7

(4) Currently, the HDBE receives an internal ecommand (e.g. JOIN)
from the CP and then the RDBE sends several internal commands
which reqguire data transfers to the HM., When the RDBE executes
an external sort operation on a large amount of data, it is a
significant problem on perfeormance that the HM does not know
the cperation of the RDBE and it ecannot predict the RDBE's
reguirement.,

{3} Currently, staging a relation freom the HM's moving head
disk to its main memeory occurs by an internal command sent
from the CP. After its completion, the RDBE can perform some
relaticnal database operation on it. So the staging phase and
the execution phase are nat overlappead.

Other problems are derived from the attribute-wise schema of
the relations. It needs several times more internal commands
than in the case a tuple-wise schema would be adopted. The
conversion from attribute-wise data to tuple-wise ones and viee
versa requires much resources when the data size is large. The
twe level clustering, in which each attribute is clustered by
the value first and then is clustered by the TID, is not easy to
maintain and results in dull selectivity..

Figure 16 shows an example of a preferable internal schema
for Delta. The attributes having a fixed length should be
gathered together and cne of them should be treated as a primary
key. The other attributes {e.g. image data or explanations of a
dictionary) should be stored separately.

Some more problems are derived from the operating system of
the IP and CP. Since they have a modified version of a tima-
sharing operating system, they are not able to respond internal
commands guickly because of the following reasons:

(1) Although Delta is regquired to support a multi-transaction
environment, its operating system need not necessarily support
a multi-task environment. Such a powerful operating system
consumes non-negligible time for context switching and
cencurrency contrel. A monitor of an event-driven type seems
best for the IP and CP.

(2) The control program of a special-purpoase machine, such as
Delta, should be allocated at a certain address during its
start-up segucnce. An ordinary time-sharing operating system,
however, does not allow the static memory allocation for a
user program.

{3) Since specifie communication requires certain protocol
handling, the device handler has ta support it in order to
achieve quick interrupt handling. Most general-purpose
operating systems, however, have only physical-level handlers
and it is a user program that must handle the protocol.

TID| name| area TID| characteristics LEID map |

' |
L l:|]

Figure 16 Example of a preferable internal schema

20

We plan to improve the efficiency of these units by
exchanging the operating system to a realtime monitor of our
own. Several times improvemsant of the systems throughput is
expected and also the whole software of the IP and CP will be
reduced much in size.

& Toward a Enowledge Base Machine
In this section, we will present our ideas concerning the

KBM. Since we have just started the discussion and wvarious

approaches are being proposed and discussed, the contents of

this section are still informal and indefinite,

as for the functions of a KBM, we think that operations
goncerning knowledge (i.e. inference and pattern matching)
should be added in order to realize both an intelligent database
management system (DBMS) and knowledge manipulation.

We think a conventional DBMS has the following problemss

(1) In a conventicnal retrieval system using keywords as a
search condition, the keywords must be originally registerd by
the users,

(2) In a guery system with a natural language interface, a
conventional DBMS cannot make an incomplete guery accurate for
the lack of the common sense and knowledge about the contents
of the database.

t3) The more a database grows in size, the more important its
integrity check becomzs. Generally the user must direct the
condition timely.

{4) In a conventicnal database system, the user must choose a
suitable file organization for each relation in order to
achieve high performance. It needs skill and the choice
becomes inadeguate when the usage or the size varies,

(3) A conventional DBMS can process a guery only when the
database has the immediate answer,

We think that these problems should be investigated in the
course of our EBM research.

Delta can handle knowledge of tabular form, which, in Prolegqg,
corresponds te facts with constants as arguments. One may well:
regard a query processing on Delta as a breadth-first evaluation
of a Prolog geal. It is a natural idea that a KBM should handle
more generalized knowledge than Delta. The following are our
fundamental ideas:

(1) Conventional database can only process knowledge as data.
That is, it 1s impossible that the database reccgnizes the
contents of knowledge or executes specific cperaticns (e.g.
matching and inference)l,

{2) In Prolog, knowledge is represented as facts and rules. It
is well known that there can exist many facts with the same
predicate name. However, it is said that the number of rules
with the same predicate name is almost always less than ten,
5o the Delta architecture which 1is designed to handle only
facts seems insufficient to a KBM. We have an idea of
developing a specialized processor called inference engine to
perform a breadth-first evaluation of Prolog proagrams.

{3} We think a KBM should alsoc treat several kinds of knowledge
representations other than Horn clauses, (e.g. semantic nets,
frames, relations) directly for the sake of efficiesncy and

ease of understanding. Specialized mechanisms will be required
for each knowledge representation and for the conversion
between them. Delta-like RDEM should be regarded as a special
component for tabular knowledge.

(4) We expect that a KBM must have considerable size of main
memory. While the development of semiconductor technology will
reduce the cost of memory, the bottle-neck betwean the
processor and the memory will remain, According to such
considerations, we have an idea of an intelligent memory
system which stores knowledge. Its detail will be presented at
a succeeding paper.

7 Conclusions

Delta is a relational database machine developed at ICOT
research center as a first step to a KBM. In order to achieve
afficiency, we adopted (1) a functionally-distributed
architecture, (2) relational database engines (RDBEs) to perform
relational database operations, and (3) a large capacity
hierarchical memory systam. Although the RDEEs, cooperating with
the hierarchical memory system, achieved expected performance,
the Delta system as a wohle had several problems and we are
trying to solve them now.

As for a real KBM, we plan to develop a new machine which ean
treat several kinds of knowledge representations. The Delta is
regarded as its compnent for tabular knowledge,

ACEKENOWLEDGMENTS

The present research effort is part of a major research and
development project of the fifth generation computer, conducted
under a program set up by the Ministry of International Trade
and Industry.

We would like to express our sincere appreciation to the
members cf the ICOT KBM group for their wvaluable discussions,
and to Dr. K. Mori, director of the TOSHIBA Information Systems
Laboratory, who provided the opportunity to conduct the present
research. Special thanks to Mr. F. Umibe for pelishing our
English.

REFERENCES

[Baneilhon 82] Bancilhon, F., et al., VERS0: A Relatisnal
Back-End Data Base Machine, Proc. of 1Int'l Workshop on
Database Machines, Aug., 1982,

[Boral 82] Boral, H., st al Implementation of the Database
Machine DIRECT, IEEE Trans., Software Eng., Vol. SE-8, No.&,
Nov., 1982,

[Codd 70) cCodd, E.F. A Relational Model of Data for Large
Shared Data Banks, CACM, Vel.l3, Neo.6, June, 1970.

{Dohi B3] Dohi, Y., et al. sorter Using PSC Linear Array,
International Symposium on VLSI Technology, Systems and
Applications, 1983, pp.255-259,

[Gallaire 78] Gallaire, H., and Minker, J. (eds) Logic and Data
Bases, Plenum Press, 1978.

LZ

[Hell 1981} Hell, W. RDBEM-A Relational Database Machine
Architecture and Hardware Design, Proc. 6th Workshop on Comp.
arch. for MNon=-XNumerical Processing, Hyeres, France, June,
1881,

[Ito B4] Ito, M., =t al. Parallel Inference Machine Based on the
Data Flow M~del, Proc. of Int'l Workshop on High-Level
Computer Architecture B4, 1984.

[Kakuta B5] Eakuta, T., et al. The Design and Tmplementation of
®elational Database Machine Delta, Proc. IWDM'85, (1985)

[¥nuth 73] Enuth, D.E. The Art of Computer Programming, Vel. 3/
Sorting and Searching, Addition-Wesley, 1973,

[Onai B84) Onai, R., et al. Parallel Inference Machine Based on
Reductian Mechanisms - Its Architecture and Software
Simulation, ICOT Technical Report TR-077, 1984,

[Shibayama 84} Shibayama, 5., et al. A Relational Database
Machine with Large Semiconductor Disk and Hardware Relational
Algebra Processor, ICOT Technical Report, TR-055, 1984.

[Taki B4] Taki, K., et al. Hardware Design and Implementation of
the Perscnal Seguential Inference Machine (PSI), Proc. of
International Conference on FGCS ‘84, Wov., 19B4, pp.398-409,

[Tanaka 80] Tanaka, Y., et al. Pipeline Searching and Sorting
Modules as Components of a Data Flow Database Computer,
IFIPAN, pp.427-432, 1980.

(Tedd 78] Teodd, 5. Algorithm and Hardware for a Merge GSeort
Using Multiple Processors, IEM J., RES. DEVELOP., Veol.Z22, No.5,
Sept., 1978.

[Yokota 84] Yokota, H., et al &n Enhanced Inference Mschanisms
for Generating Relational Algebra Queries, Proc. of the 3rd
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,

Waterloo, April, 1984, pp.229-238,

[Yokota 85] Yokota, H., et al Deductive Database System based
on Unit Reseolution, ICOT Technical Report, TR-123, 10985,

23

