ICOT Technical Memorandum: TM-0115

[BRI

PSE Font Editor
Implementation Notes

by
Herve Touat (INRIA)

May, 1985

CI98S, 1COT

Mita Kokusat Blde 21F 03) 456-3191~5

|GOT 1-28 Mita 1-Chome Telex ICOT J32964

Minato~ku Tokyo 108 lapan

Institute for New Generation Cohi_puter Technology

P21 FOMT EDITOR

IMFL EMEN TATIOR NOTES

by

Herve Touati

May 1988

ABSTRACT

The PSI (Personal Seguential Inference) machine, the first
major produet of Japanese FUCS (Fif'th Generation Computer Systems),
iz intended to provide & comfortable logic program development. A=
itz bitmap display allows it, the BSI machine ecan use any kind of
Fonts for the comfort of itz users. In addition to the wvarious
styles of characters provided by the machine, the user oan create his
own fonts by using the PST font editor,

4 first version of the P3I fonl editor has been implemented in
ESP (Extended Self-contzined Prolog). This paper describes in detail
this ipplenentation.

The cbject-oriented programming feztures of the ESP languape:
objects with time dependent states, object classes and inheritance
améng thec, have been widely used in this implementation. They
provide = matural frerework for the description of the program.,

Tnis paper is also intended to be an evidence of what can be
done in two wmonths and a half by 2 non-Japanese, nonprofessicmal
programmer, with owr =oftware tools,

CHAFTER 1

=

L L) - - 1] # 4 o -

— =k W 0D =] O Bl PO e

[

Fogy - - N N -

—

i g

- L] [
=
4= Lak Mg

INTRODUCT ION

PRESENTATION . . . + « + « & &
REMARES + & & & & + &
FILE SYSTEM INTERFACE

DESTGN COMSTRAINTS« &

DESIGN COMMITMENTS
THE CLASS CHAR_RECORD

THE (LASS (EAR RECORD WITH PATTERN

THE CLASS AS_FONT FILE
THE (LASS GENERAL FONT
THE CLASS EDITED FONT

DISPLAY INTERFACE

DESIGN CONSTRAINTS
DESTGN COMMITMENTS
THE CLASS AS FONT_DISPLAY . .
THE CLASS (HAR_MODE_DISFLAY .
THE CLASS PATTERN MODE DISPLAY

GRAPHIC INTERFACE

DESIGN CONSTHAINTS
DESIGN COMMITMENTS

THE CLASS FONT_INFER TOR HDIDUH
THE CLASS FONT SUPERICE WINDDW
THE CLASS FONT MILTIELE SELECT

THE CLASS FONT MILTIFLE SELECT.

THE CLASS FONT GRAPHICS WINDOW

MENU
MILTI

&

-

THE CLASS PATTERN_DISPLAY WINDOW

THE CLASS DISPLAY_SAMPLE WINDOW

-

Ll

THE CLASS PATTERN REGISTERS WINDOW

THE CLASS FONT_DISFLAY WINDOW

THE (LASS HORIZONTAL CODE DISPLAY HDITIH
THE (LASS VERTICAL _CODE DISPLAY WINDOW
THE CLASS PARAMETERS_DISPLAY MEND

EDITING FACILITIES

DESTIGN CONSTRAINTS
DESIGH COMMITMENTS
THE CLASS EDIT RECORD . . .

THE CLASS AS EDIT PATTERN H']]ulIIh‘

THE CLASS EDIT PATTERN WINDOW

B =

— s
(W= . R O B T

19

22
25
28

34
34
35

36
37
38
3]
N2
By
48
53
55
58

61
61
62
T2
a1

CHAFTER 6 TOP LEVEL SYSTEM

.1 DESIGN CONSTRAINTS ., . . & & v + « o . e .
6.2 DESIGN COMMITMENTS . & + &« 4 4 4 v v v o « = » « + BB
6.3 THE (L.ASS FONT TEMPORARY WINDOW 87
6.4 THE (LASS FONT_FILE MANTIPULATOR B9
6.5 THE CLASS CHAR_MODE 4 v v 4 4 v v v o 93
6.6 THE CLASS PATTERN MODE + « & . . . G5
6.7 THE CLASS FONT EXEQUTIVE 4+ . 4 4w v » » . . 100
6.8 THE CLASS FONT EDITOR s s s o= e e . 104
CHAPTER 7 FPROPOSED IMPROVEMENTS
7.1 INTRODUCTION . . . & 4 & v o e e e e e e e 105
T.2 ALGORITHM OPTIMIZATION . , . . + &« = « u . . « « » 10%
7.3 FUNCTIONAL IMPROVEMENTS . . . & 4 &4 v v « « + « . 106
7.4 MEW FEATURES P e e m mox s s e s ow s s 108
7.5 ADDING METAFONT FACILITIES 108

CHAFTER 1

INTRODUCT ION

1.1 PRESENTATION
This paper describes the way the PST machine font editor has been

implemented (May 1985). The implementation can be decomposed into five
major parts:

T. The file system interface
2. The display interface
3. The graphie interface

B. The editing facilities

5. The top level system

Each part corresponds to one of the following chaptera, In each
chapter are desoribed;

1. The design principles of the corresponding part of the font
editor;

2, The role assigned to each class, and the corresponding meaning
of class or instance attributes and methods;

3. The way the methods are implemented, with a description of the
task assigned to each locecal predicate.

This paper iz intended to provide 2 useful support for any person
in charge to improve this system, Although it is possible to edit
reasonably quickly any kind of fonts with thi= current verasion, a lot of
things are te be improved, especially certain urwise and =low
algorithms, and quite & lot of olumsy details related to the user
interfece.

& last chapter describes some useful improvements which ocould be
easily impl emented from the current version,

IN TR ODU CT 10N Page 1-2

1.2 REMAREKS

Throughout this paper, nupbers of methods and local predicates are
deseribed. Those whose meaning i: obvious from their names are given
without further explanation.

Arguments of methods and local predicates are classified as
follows:

1. Upnified arpuments: they are unified with the result of =
certain computation. They thus may be irstantiated or not.
They are prefixed by a "°n,

2, Lutput arpupents: they are supposed not to be instantiated.
Instantiate them may raise an exception or cause unexpected
failures, They are prefixed by a ®=w,

3. Input Arguments: they must be instantiated when the method or
the predicate is called. They are not prefixed by any thing.

CHAPTER 2

FILE SYSTEM INTERFACE

2.1 DESIGN CONSTRAINTS

It was considered that:

1. font patterns must be easily leaded from rFiles to a bl tmap
ared,

2. each pattern must be accessed quickly froz its code,

3. on the other hand, the modification of a font must not be cause
of too much overhead: the patterns coming from an editing
session must be therefore essentially in their definitive
fermat,

h. there is no reason to assume that the user will know at the
beginning what will be the maximum size of the patterns of the
Tent he is editing, Theref'ore these parameters must be
adjusted dymamically,

2.2 DESIGH COMMITMENTS

It was decided that the standard format of the charzcters must be
mainly sultable to the file interface system. The other parts of the
system must be adapted to this Fformat, This standard format is an
instance of the class character record with pattern. The class
ghar record is a lower level eclass which must be absorbed inte the

previous one in a next version.
Moreover, it was decided to ocrezte two different classes of fonts

to handle two different kinds of tasks: the class geperal font and the
class edited font.

An instance of the class geperal font has to be considered as a
fived font. It is able toc read patterns from a file, loed ther into =
bi tmap area, and give thair size and position quickly on request.

bn instance of the class edited fopt is able te read patterns from
a file, and store them in a entirely modular way in the main memory.

- 3 =

FILE SYSTEM INTERFACE Pape 22
Thus medifications are straightforward. To save back into a file, it is
necessary te modify the formats. Adequate methods are provided.

The classes edited font and general_font ipherit the class

as font file which provides basic methods for writing on and reading
frow files,

2.3 THE CLASS (HAR_RECORD
2.3.1 Description
Instances of this classes are simpl e records, They correspond to

the information recessary te handle a character {see "instance
attributes" below),

2.3.2 Instance Attributes

An lnstaznce of this class has 6 attri butes,

1. cgode: the code of the character.

2. font x: the horizontal poaition of the pattern of this
character when leaded in a titmap area.

3. font ¥: the vertieal pesition of the pattern of this character
when loaded in a bitmap area.

b, width: the width of the character.

5. helight: the height of the character,

6. bias: the bias of the character, The vertical position of the
character patterns on a line 4is computed relatively to a
virtual line called the base lipe. Usually, patterns are
Supposed Lo be drawn just above the base line, Eut some common
characters, as "p" or "i", maturally go under the base line,
Therefore, it is necessary to have a parameter the valuye of

which is the distance between the base 1ine and the bottam of
the pattern: the pias is this parameter,

2.3.3 Instance Methods
tget_code{Instance,”Code)
:set_code(Instance, Code)

‘get_size(Instance, “Width, Height, “Bias)

FILE SYSTEM INTERFACE Page 2-3

iset_size(Instance,Width,Height, Bias)
iget_attribute(Instance,” Font_x, Font_y, "Width, Height,“Bias)

iget_recerd{Record, " String)
String is ipstantiated by thiz method to the string:
doubl &_bytes: {Code, Font_x, Font_y,Width, Height, Biasz}.

2.3.1 (Clas=s Mathods

:ereate(Clzss, Instance, String)
String must be of the format:
doubl e_bytes:{Code, Font_x, Font_y,Width, Hei ght, Bias}.

2.3.% Local Predicates

load into_slets(Instance, String)
String must be of the format:
doubl & _bytes:{Code, Font_x, Font_y,Width, Hei ght, Blas}.

load from_slots(Instance,”String)
String is of the format:
double_ bytes:{Code, Font_x, Font_y,Width, Height, Bias].

2.4 THE (LASS CHAR_RECORD WITH_PATTERN

2.4.1 Description

This class inherits the previous one: the char_record alass, One
attribute has been added for storing a pattern, which is represented as
a2 double byte string, TWwo other attributes have been added, which atore
the position of the pattern. This appeared to ba useful when the
editing process make several objects exchanging instances of this class
45 messages.

2.4,2 Instange Attributes

An instance of this class has 3 more attributes than an instance
of the inherited class char_record:

1. sghar x: the horizontal position of the pattern when
transmitted to or received from the ocbject in charge of editing
patterns, which is an instance of the clasa
edit _pattern window.

FILE SYSTEM INTERFACE

Page 2-4

€. gchar y: the vertical position of the pattern paired with the

previous attribute : char_x,

3. bit patterp: the pattern.

2.4.3 Instance Methods
‘get_char_position(Instance,”Char_x,"Char_y)
tset_char_position({Instance,Char_x, Char_y)
iget_patterrn_position(Instance, “Font_x, “Font_y)
tset_pattern_pcsition(Instance,Font_x, Font_y)
:set_pattern{Instance, Pattern)
iget_pattern{Instance, Pattarn)

:format_pattern(Instance, Raster_width)
Defore explaining what this method is doing, some

detail =

about the way patterns are stored in strings must be

explained,

A pattern defipnes a rectangul ar area in the bi tmap memory,
and gives the values of each of the dots (0 or 1). It is easy
to store a pattern of width Width and height Height in a
single btits string: the first line of the pattern is stored
frow the position 0 to the position Width - 1, the second line
from the position Width to the position 2 ® Width - 1, and =o

O,
But it has been decided to use double bytes

strings

instead, mainly because the window graphics methods accept

patterns only if stored in double bytes strings.

There are several ways to store a pattern into a

doubl e

bytes string. The way which was chosen is adapted to the
window graphics method formats., It consist to increase the
width of the pattern by adding white columns te its left, =0
that the fipal width is a multiple of 16, or, in other words
of the form: 106 * Integer. It is then stored into a double

by tes string exactly the same way it would have been

stored

inte a =single bits string. The length of the doukle by tes
string used is therefore equal to Height # Integer. The
integer Integer is ealled the raster width of the pattern

string.
The raster width can be any integer big enough to
the constraint: 16 ® (raster width) >= Width.

In a font, all the pattern strings have the same

width; this wuniformity reduces the access time
patterns once stored in the bitmap memory. And it

satisfy

raster
to the

does not

waste too much space, for usual fonts at least, where the size

of the patterns does not vary considerably from one
to another,

character

When new patterns have been added, or old patterns

-6 -

FILE SYSTEM INTERFACE Page 2-5

suppressed, the maximum width of the patterns in the currently
edited font is recomputed, and the mew global raster width
computed from this maximum width,

It is then necessary to adapt all the records to this new
raster width, It is what this method enables te de.

2.4.4 Class Methods

icreate(Class, Instance)
Identical to :new(Clazss,Object).

2.4, Looal Predicates

format_pattern{Instance,Wew_raster_width)
This is the local predicate directly called by the method of
the same npame., It computes the mirmmum possible raster width
from the current width of the pattern, and pops out an error
message if the value of New_raster_widih is too amall.

It ecomputes the current raster width, by dividing the
length of the pattern string by the total heipht (stored
respectively in the attributes fhit pattern® and
"total_height™), and compares it to New_raster_width.
Depending on the result of this comparison, it then calls the
local predicate inflate, the local predicate deflate, or
simply do nothing, When the predicates deflate o inflate are
called, a new string iz created, filled by the action of these
predicates, and then becomes the npew value of the attribute
"hit_pattern",

deflate(0ld string, New_string, Old width,New_width,Height, N)
Takes, in 0ld¢_string, the part corresponding to the lime of
height H, suppresses one or several double bytes on the left,
and stores the resulting substring into New_string. Then
calls itself recursively, after having increased the height N
by one. Stops when N is greater or egual to Height, the
height of the pattern.

inflate(0ld_string, New_atring, 0l d_width, New_width, Height, N)
Works as the previous predicate, except that it adds white

double bytes (equal to 0) at the left of each line, instead of
sSuppreszing some,

min_raster width(Width,Min_raster_width)

error_message (Instance)

FILE SYSTEM INTERFACE Page 2-6

2.5 THE CLASE AS_FONT FILE
2.5.1 Deseription

This class provides the basic interface functicns between fonts
and files. Currently, the directory accessed by the system is fixed.
But, since the mme of this directery appears only as the initial wvalue
of an attribute, it can be easily modified.

A font iz stecred on two binary files., The unit used for recording
ir these files is the double byte. Here i= a description of the
mntents of these twe Files:

1. Font pamehd,bin: This file, the head file, is composed of a
head and & body. The head, of length 5 (5 douhle bytes),
contains the basic information about the =ize of the fort: the
line height,the basze,the nmber of characters recorded, the
raster width, the total height. Fach of these corresponds to
an instance attribute of this ciess. The body, of length (6 #
number_of characters), contains, for each charzcter of the font
that has been defined, the contents of a char record: code,
font_x, font_y, width, height, and biasa,

2. Fonl pamepat.bip: This file, the pattern fil e, econtains all
the character patterns defined in the current font, Once the
contents of this file are loaded into a double bytes string,
they can be directly stored into the btmap memory without any
modification. PFatterns are stored one after the cther. Their
position and size i= recorded irn the corresponding char _record,
in the head file,

2.5.2 Instance Attributes

An instance of this clsss has 11 attributes. There are: fixed
Strings wused to compute file path mames, fived parameters giving the
size of certain records, and global parameters depanding on the font
instance, as its name, or its size.

1. feopt name: the mame of the font. This is not recorded
directly in the file, but, instead, appear in the memes of the
filesz.

2. directorv path: this slot has ourrently the fixed walue:
Weay sxuser »font".

2. head path: this slct has currently the fixed value: "hd".
This string is appended at the end of the font mame to form the
name of the head file,

4. pettern path: this slet has currently the fixed value: "pat™,

This string is appended at the end of the font mame to form the
rame of the pattern file,

-8 -

FILE S¥STEM INTERFACE Page 2=7

5. file head gize: this slot has also a fixed value : 5. This
iz the length of the head part of the head file, If this has
to be modified, the local predicates set_head, get _head must be
al =0 modified,

6. ghar record size: this slot also has a fixed value: 6. This
is the length of a string corresponding to the contents of a
char record instance.

T+ line heighti: this slot is a parameter of a font, it i= the
distance befween two lines of characters, when Wwriting with
this font.

8. base: this slot is also a parameter of a font, It corresponds
to the distance between the top of a line of characters and the
base line, virtual line that 1s used for precise glignment of
the characters in a line.

9. onumber of char: the number of characters defined in the font.

10. raster width: the global raster width of the font. Look at
the class char_record with_pattern for more details about it,

11. total height: This is also a global parameter of a font. Tn a
font, the npumber of double bytes used to store a line of
pattern is the same for all the patterns, and is equal to
raster_width. When the contents of the pattern file are loaded
inte the bitmap memeory, the logical =pace they use is a
rectangle of widthk 16 ¥ raster_width, and of height
Lotal_height. Total height i= also, of course, the sum of the
helghts of 211 the patterns precorded in the font.

2.5.3 Instance Methods

:lead_free file(lnstance,”Char_string,~Patterr_string)
Loads the head of the head file into the 5§ correspandi ng
slots; the rest of the head file (the character records) are
left one after the other and put in the string Char_string.
The contents of the pattern file are put in the string
Pattern string.

‘save_into_file(Instance,Char_string, Pattern string)
Does exactly the opposite of what load from file doe s,
Creates new files ecach time, to avoid possibly dangerous
destructive actiens,

:set_head(Instance, Head_string)
Head_string must be a double_bytes string of length 5. The
contents of this string become the values of the following
slots ip this order: lire _height, bese, number_of_char,
raster_width, total hedght.

:get_head(Instance, Head_string)

- g =

FILE SYSTEM INTERFACE Page 2-8

Creates a new string, a double_bytes string of length 5, and
stores in it the contents of the five slots mentioned above,

in that arder,

2.5.4 Local Predicates

2.6

set_head(Instance,Headstring)
(See the corresponding instance method)

get _head(Instance, Headstring)
(See the correspending instance method)

lmq_haadEInstance,Pat.n_m.me,*u-:ar-_string,*Pattwq_fﬂe_aize}
Given the path name of the head file, reads it, putes its head
inte s=lots using set_head, puts its body into a new string:
Char_string, and computes the =ize of the pmttern file, which
is merely: total_height # raster_width,

save_head{Instance, Path_name, Char_stri ng}
Does exactly the opposite of what leoad head does. Uses
pet_head instead of set_head.

load pattern(Instance, Path_pame, “Pattern_string)
Given the path name of the pattern file, reads it, and puts
its contents into a new string: Patterrn_string,

save_pattern(Instance, Fath_mame, Pattern string)
Does exactly the opposite of what lead pattern does.

path_head(Instance,“Head_path)
Computes the head file path from the values of the instance

slots, by appending strings.
path_pattern(Instance,”Patter rn_path)
Computes the pattern file path from the values of the instance
slots, by appending strings.
path(Directory, Font_rame, Postfix,~Path_pame)

Simply appends the strings Directory, Font_mame, Postfix and
".bin", and puts the result into Path_name.

THE (LASS GENERAL FONT

- 10 -

FILE SYSTEM INTERFACE Page 2-9

2,6.1 Description

This class inherits two classes: the class ag _font_file,
described above, and the class as general font, which 1s provided by the
window system.

The source code of the class as_general font is leas than one page
long, and has been very clearly written and documented by Iima san.

The general font class itself is a very simple one. At creation
of an instance, a font mame must be specified. During the
initialization, the two font files corresponding to the given name are
read; eharacter records are stored in a hash index, using the codes as
keys, while the patterns are kept in one large string, saved as an
attribute. This string can be stored into the bitmap memory as it is.

2.6.2 Instance Attributes

An instance of this class has, outside the inpherited ones, 3
attributes.

1. c¢har table: this slot is a hash index which contains the
necessary information about each existing character of the
font. For each character, a char_record instance is created,
filled with the information contained in the head file on this
charaoter, and then stored into this hash_index. The key used
is the code of the character.

2. pattern stripg: this string contains the contents of the
pattern file, without any modification.

2, gode list: this slot 1s an instance of the class list, and
contzinz the list of the codes of the existing characters.

2.6.3 Instance Methods

:get_code_list(Instance,”Code_list, Number_of_char)
This, and all the following methods, unless otherwise
specified, are trivial methods, used only for direct
information retrieval. Their meaning is apparent from their
rames.

:get_code_list(Instance,” Code_list)

:get_size(Instance,Code, "Width, "Height, Bias)
When the code is the code of the space character, and when the
space character does not exist in the font, default values for
the width, the height and the bias are computed from the
global parameters of the font., When setting a new font to a
window, the =mize of the cursor is= modified and computed from

- 11 =

FILE SYSTEM INTERFACE Page 2-10

the size of the space character. Without these default
values, it would not be possible to use a font that does pot
have a space charszcter.

iget_attribute(Instance, Code, " Font_x, “Font_y,
“Width, "Height, Bias)

rget_attribute(Instance, Code,” Font_bitmap_area,

“Font_x, “Font_y, “Width, Height, “Bias)
Font_bitmap area is a bitmap area kept as an instance
attribute of the inherited class as general_font. When not
used as an area, this attribute has the value 'nil'. When
used as an area, the area contains all the patterns of the
exi sting characters. Font_x and Font_y are the coordinates of
the teop left cormer of the charzcter pattern corresponding to
the code Code in the bitmap memory. Width and Height give the
size of this pattern,

:load feont{Instance)
creates a bitmap area, loads the contents of the string
"pattern string" in it, in other words, loads all the existing
character patterns in it, and keeps this area as an instance
attribute (an inherited ope, froe the class as_general_font),

istandard line_and_base{Instance, Line_height,"Base)

:in{Instance, Code)
Chacks if the code Code correspends to a character in the font
Instance. If mot, fails., Otherwise, succeeds,

rinitialize(Instance)

reads frop file the contents of the font. The head of the
head file is put inte slots (this is done using irherited
as _font_file methods and slots). The records contained in the
body of the head file are distributed among char_record
instances, which are in turn saved in the hash_index
"char_tahl e", The contents of the pattern file are just
loaded into a string, which becomes the value of the attribute
"pattern string®,

iget_size(Instance,Code, Width, " Height)
:get_width({Instance, Code, "Width)
:get_hed ght(Instance, Code, "Height)

load{Instance)
Tdentimal to :load font,

:get_character(Instance, Code,”Font_x, “Font_ vy,
“Width, "Height, "Bias)

:get_character{Inatance, Code,”Font_bi tmap_area,

“Font_x, " Font_y, "Width, Height, " Bias)
Identical to :get_attribute.

- 12 -

FILE SYSTEM INTERFACE Page 2-11

:character_line(Instance,”Line_height, “Base)

2.6.4 Cilass Method

rereate({Class, “Instance, Font_name)
Font_mame must be instantiated to a string, corresponding to a
currently available font. This method creates an instance of
this class, sets its name to be Font_name, and then calls the
instance method :initislize.

2.6.5 Local Predicates

load _char_records(Instance, Char_string)

Char_string must contain the contents of the body of the head
file, In that case, it is composed of a series of 6
double_bytes records, in a format adapted to char record
instances. Thias predicate creates for each record a
char_record instance, in which the contents of the record are
stored. It crestes also a hash_index, in which it stores each
record. The key used is the code of the record. It oreates
also a list, in which it =saves the code of each of the
records. When all the records from the string Char string
have been saved that way, the resulting hash_index and 1ist
become the wvalues of the attributes ®char table®™ and
Moode list®™ respectively.

load char_records(Instance,Table,List,Char_string, Length,N)
Takes the part of the string Char string located from M to N +
6, saves it in a new char record instance, puts this instance
into the table Table, puts the corresponding code into the
list List, and calls itselfl recurasively after having increased
N by 6. Stops when N is greater than or equal to Length, the
length of the string Char string.

almost_prime(Integer,” Prime)
Computes the first prime mmber equal to or greater than
Integer which can not be divided by 2, 3, 5, and 7. It is
used for adjusting the size of an hash_index,

2.7 THE CLASS EDITED_FONT

2.T.1 Deseription

As the class general_font, this clasas inherits the two classes
as_font_file and as_general_font.

The main difference between the class edited fopt and the clazs
general_font is that the former must allow ezsy modifications of the set
of characters, while the latter iz fixed, and must allow quick acceas to

tha characters,

- 13 =

FILE SYSTEM INTERFACE Page 2-12

To allow quick aceess to the characters, an instance of the class
general font keeps records of the parameters of each character in
char_record instances stored in a hash_index, while the character
petterns are loaded together inte the bitwap memory. fmong the
parameters recorded in char_record instances, two specify the absolute
positicn of the character pattern in the bi tmap memary.

On the other hand, to zllow easy modifications, it is better teo
save each character independently. This is what is done in an instance
of the class edited_font. However, this modularity in the way of
storing characters has cannot be preserved when it is to save the
current state of the edited font instance into a file: the absolute
positions that the character patterns will have, when stored later into
the bitmap memory, must be computed, as well as the font &l obal
parepeters like the line_height or the raster width,

2.7.2 Instance Attributes

An instance of this elass has, outside the inkerited ones, 3
attributes,

. ohar table: this slot iz a hash_index which econtains the
necessary information about each exdisting character of the
font. For each charscter, a char_record_with_pattern instance
iz oreated, filled, on cne hapd with the information contained
in the head file on this character, and, on the other hand,
with the - corresponding pattern read from the pattern file,
This record is then saved into this hash_index, The key used
is the code of the character. Note that, at the difference of
general_font instances, edited font instances storae every
character 23 a whole in a record, and do mot put apart the
pattern,

2. pode list: this slot is an instance of the class list, and
contains the list of the ocodes of the éxisting characters,

3. espacement: this attribute is a fixed one, and is used for
computing the line_height from the parimum height of the
existing characters. It can be either an integer Eor a list
of two integers [N,E]. F alone means that N is defaul ted to 1.

The formula used is:
line height = (Max_height ® N) «+ (Max_height s E} + 1.

2.T.3 Instance Methods
:get_name(Instance, “Font_mame)
iin(Instzanee, " Code)

:load(Instance)

- 14 -

FILE SYSTEM INTERFACE Page 2-13

reads from file the contents of the font. The head of the
head file is put into slots (this is done using inherited
as_font_file methods and slots). Fach record contained in the
body of the head file contains the address, in the pattern
file, of the assoclated pattern.

The contents of the pattern file once put into & string, the
pattern oorresponding to & record begins at the position
raster_width * font_y and i3 of length raster_width # heipght,
where raster_width is a gleobal parameter of the font, already
read frem the head of the head file, and font_ ¥y and height are
parameters contained in each record.

For each record, a new instance of the class
char_record with_pattern is orested, in which the record
itzelfl as well as the corresponding pattern are saved. These
char record With_pattern instances are in turn saved in the
hash_ index "char table". Moreover, the oodes of all the
existing characters are stored into the list "code listh,

:set_record(Instance, Record, Code)

Record must be a character_record with_pattern instance or the
atom ‘'mnil*. This method makes a copy of the record Record,
adds this copy to the hash_index "char table"™ at the key Code,
erasing the previows record if any, and updates the list
"gode_list®™, In the case Record is egqual to 'nil', however,
set_record has the same effect as the method :delete_record.
It is necessary to make a copy of the record, beacause the
record Record may be modified later by another object, and the
user may cbtain that way 2 pattern different from the one he
wanted to save,

:del ete_record(Instance, Code)
Removes the record stored in the table "char_table"™ at the key
Code, if any, and removes the c¢ode Code from the list
"oode _list®™ if mecessary,

:get_record(Instance,”Record, Code)
If no record is found at the key Code, this method, instead of
failing, instantiates Record to the atom "nil'.

:get_pattern(Instance, Code, Pattern string)
This raises an error and stops the program when Code does not
correspond to an existing character. It can be thought as a
logleal bug and must be fixed, even if it has pever been used
in that case until now.

:raster_width_and may height(Instance,”Raster_width, “Max_height)
Computes the maximum width of the existing characters, and the
highest and the lowest positions the characters will take on a
same lipe. Instantiates Max height to the the difference
between the highest and the lowest poszitions, and Raster_width
to the smallest integer satialying the inequal ity:

16 ® Raster_width >= maximum width.

:savel(Instance)
Computes the global parameters of the font: the line height,

- 15 -

FILE SYSTEM INTERFACE Page 2-114

the base, the number of characters, the raster width and the
total height. Then adjusts the raster width of all the
characters to be equal to the global raster width. It means
that all the patterns will use exactly the same memory space
for saving a lime. Then computes the absolute positions the
patterns will have when loaded in the bitmap memory, and puts
thi= information into the records, Then transfers the
contents of these records into two strings, storing the
patterns separately, and fimally stores thess two strings inte
two different files, namely the head and the pattern files,

2.T.4 (lasses Method

icreate{Class,~ Instance, Font_name)
Font_name must be instantiated to a string, corresponding to a
ceurrently available font, This method creates ap instance of
this class, and sets its name to be Font_name,

2.7.5 Local Predicates

load into slots(Instance,Char_string, Pattern_string)

Char_string must contain the contents of the body of the head
file, and Pattern_string the contents of the pattern file. In
that case, thar_string iz composed of a series of 6
double bytes records, in a format adapted to char_record
instznces. This predicate creztes for each record =&
char_record_with_pattern instance, in which the contents of
the record, as well as the assoclated pattern, are stored, It
creates alsc 2 hash_index, in which it stores gach record,
with key the code of the record. It creates also &2 list, in
which it saves the code of each of the records. When all the
records from the string Char_string have been saved that way,
the resulting hash_index and list are set as attributes,
respectively the "char_table™ and "oode_list™ attri butes,

put_into sl ots(Instance, Char_string, Pattern_stri ng,
Table,List,N))

Takes the part of the string Char_string located from N * 6 to
(N + 1) ® 8, maves it in a new char_record with_patternp
instanece, and takes, frem this new record, the parameters
fent_y and height, Then takes the pattern corresponding to
this record from the Pattern string. This pattern is located
frow the position font_y # raster_width, and its length has
for velue height ® paster_width, where raster_width is a
global parsmeter of the font. Loads this pattern into the
record, addas the record in the table Table, puts the
corresponding code into the list List, and calls itself
recursively af'ter having increased N by 1. Stops when N {is
greater than or equal to the global parameter
"number_of _char™,

det_global _parameters{Instance)

- 16 -

FILE SYSTEM INTERFACE Page 2-15

computes the 5 global parameters of the Font, and stores them
in the following slots: "line_height™, "base®,
"number_of_char®, "raster_width" and "total_height®,

maximum_width_and_helght(Instance,”Raster_width,"Max _height)
computes the maximum width of the characters, as well as the
highest and the lowest positions the characters will take on a
same line. Instantiates Max_height to the difference between
the highest and the lowest pozitions. Max_height is not
gererally egual to the maximum height of the character
patterns, but it is the relevant parameter to use for
computing the lime height. Paster_width 4is the =mallest
integer such that:
16 ® Faster_width >= mawimum width,

compute_parameters(Table,List_of codes, Highest_point,
Lowest_point,Max_width, Total_ height,N)
Removes the pext code in the list List_of_codes, computes the
highest and lowest points of the character of code Code, as
well as its width, Modifies the wvalues of Highest_peoint,
Lowest_point and Max width is necessary, adds to Total_height
the height of the character, and ecalls itselr recursively.
Stops when List _of codes becomes empty.

format_bit patterns(Instance)
modifies the raster width of the character patterns so that it
be equal to the global raster width,

format_patternz(Table,List_of _codes, Raster_width)
removes the next code from the list List_of codes, gets from
the table Table the character of code Code, modifies the
raster width of the pattern of this character, and calls
itsell recursively. Stops when the list List_of_codes bacomes
empty.

load from_slots(Instance,~Char_string,~Pattern_string)
Loads all the existing characters into two strings:
Char_string and Pattern_string. The formats correspond for
Char_string to the format of the body of the font head file,
for Pattern_string to the format of the font pattern file.

take_rroo_sl cts{Instance,Char_string, Pattern string, List_of_ ocodes,

Char_string pointer,Pattern_string pointer)
Removes the next code frem the list List_of codes, and takes
from the table "char_table" the corresponding record. Puts
the head of this record in a string, and puts this string into
Char_string from the position Char_string pointer; takes the
pattern of thiz recerd and puts it into Patterrn string from
the position Pattern string pointer: adds & to
Char_string pointer, the helght of the record to
Patterrn string peinter, and calls itself recursively. Stops
when the list becomes empty.

almost_prime{Integer, Prime)

The same as the almost_prime local predicate of the c¢lass
genaral_font,

- 17 =

FILE SYSTEM INTERFACE Page 2=16

espacement (Max_height, Espacement,Line_height)
See the instance attribute espacement of this clasa,

raster_width(Width, Raster width)

The same as the min raster_width local predicate of the ¢l ass
char_record with_pattermn.

copy_record(Record, Copy)

- 18 -

31

CHAPTER 3

DISPLAY_TNTERFACE

DESIGN CONSTRAINTS

It has been deeided that:

1.

The font editor must have tWwo modes of display, namely the
charzcter mode display and the pattern mode display.

Tne character mode display is in charge to display all the
characters of a font, In Japanese standards, a font may have
up te 65536 characters. Therefore, the character mode di spl ay
cannot display all the characters of a font at the same time on
the sereen. It must provide scrolling facilities allowing the
user to choose which characters have to be displayed on the
screen. Moreover, the character mode display must also provide
facilities to create new characters by assigning a pattern to a
code, to reuse old patterns, to load a font from a file 2nd to
save & font into a file. What the commands are doing must be
as obvious as possible. The final design objective of the
system must be to make the user feel he is editing a font,
manipulating direectly patterns, codes, files, fonts and
characters, not using a cumbersome program.

The pattern mode display is in charge to display a pattern in
such a way it can be easily edited dot by dot. This implies
that each dot of the pattern must be displayed as a sgquare of
several dots wide. Moreover, it must be possible to displ ay
this pattern at any time in normal size, and to cut and reuse
parts of it easily. It means that registers for storing and
displaying parts of characters should be made available,

3.2 DESIGN COMMITMENTS

The character mode display and the pattern mode display both use a
full sereen.

The character mode display is composed of: two menus to enter the
sarolling orders; one menu for other orders such as the change mode
order, or the access to file orders; two windows for communicating with

- 19 -

DISFLAY_DITERFACE Pape 3-2

the pattern maode displey; two windows fFor displeying the 8 lower end
the 8 upper bits of the character codes; and, one window for displaying
characters, Their relative position can be examined on the follewing
hard copy of the P2I screen,

|“va123455?39nac¢>
i' © St _PSI P |
U P 1 _ 51 ps) | EXIT
- PSI P | g | ereate
o3 {
e pIsc
! 5
! . FLOPPY

7 EDIT

-

el

A

B i

c 5

0 L

E

F |

o |

11

12

13 |

st
fu

SIMPOS Ve r'sTon 17 o [lontodispiay wingow 23-May =85 Thursday ™ 20: 221

lenus are created first, Their gize is dutomatieally computed by
the windew system. Once having decided that the two windows in charge
of &ssuring the compunieation with the pattern mode, should have the
sume size, the sizes of the nenus compl etely determine the =izes and
besitions of 21l the windows and menus of this node,

The paltern mode display is composed of: 5 menus, mainly for
editing Ffunetians; one window for displaying some parameters of the
pattern beimngs edited; one window Tor displaying the pattern being
edited in real aize, or 2 line of characters picked up from the current
font, alsc in real size; one window for displaying the contents of
paltern registers; and chne window for displaying the currently edited
Pattorn, showing its dots az squares of seyeral dots wide (from 5 to 25
dots, at will).

The pattern mode display is a little more complex than the
character mode display. The reason is that the window used for edi ting
patterns must have its width and its height equal to a multiple of the
size of the sguares used for representing dots of patterns. The size of

- 20 -

DISPFLAY _THTERFACE Pape 3-3

e I

L [

Gialn Wi i | i | ! | | | | |____, J. | | | | !
whte SGQUAra o
IAvET” 58 Line

CHAR MODE HELP

CLEAR
MOVE
SET SAMPLE
FEAL S1ZE
SCALE

CLEAR BLACK
MOVE BLACK
ROTATE
REFLELCS
cuT
DRAW LINE
DR AW

CLEAR GREY ADD
HMOWVE GREY SKAP

Width 13
Height 19
Bias 3 i

e s a - s masa .
zm ..\.!-....-Bn.n_.__,.,.,..,_,.r_..-_q_!_____., e ke S N P L ——

g T —— i

SIMPOS VaFaTan "1 D0~ unt_mﬁltJpja=sulnct=pu1t._naiumn

theze squares is an inportant rarcmeter, called the grid size. The
comrion widith of the menus is the =mallest integer acceptzble as a width
Fer 21l the menus such that the width of the window wused for edi ting
patterns is a multipie of the grid size, The heipht of the window with
registers for storing patterns is the mmallest irteger such that each
register is allocated enouch place on the window scoreep for diaplaying
the conlents of the sereen of the window editing patterns, and such the
selpht of the editing window iz a multiple of the grid size.

Yhen the grid size has to be modified at the uszer's request, menus
are killed, recreated, and the =zizes and positions of all the windows
and munus are recomputed with the new prid sice.

Tne clazss as font _displey is in charge te provide, te the olasses
which 1imherit it, basic iterative instance methods for handl ing menus
end windows,

The class cnar mode_display inherits the elass as font di apl &y ;
an instance of this class is in charge of creeting the windows and the
menus of the charzcter mode display, and of s=etting their =zizez and
positions,

The class pattern mode_display inherits the class as font display;
an lnstance of this elass Ls in charge of creating the windows and the

- 2] -

DIS PL AY_IN TERFACE Page 3~4

menus of the pattern mode display, and of setting their s=izes anpd
poai tions.

2,3 THE L ASS AS_FONT_DISELAY
3.3.1 Description

This class i= a really simple one. It gathers attributes common
to the character mode display and the pattern mode display, such as the
size of the screen, or = global superior window. It provides baszie
iterative methods for handling all the menus and all the windows of a
display mode at the same time.

3.3.2 Instance Attributes

An instance of this class has & attributes,

1. =oreep width: a fixed attribute, initialized at the creation
of an instance.

2. 3greep height: also a fixed attribute, initialized at the
ereation of an instance, It must be noted that the Eoraen
height i3 not the same for a Mitsubishi PSI and an Oki PSI.

3. font: this attribute has for default value the current default
font: font_13., This attribute may not be used anywhere. This
point must be checked.

Y. superjor: is set to be & Superior window when an instance of
this class is created, This superior window is used by the top
level loop for reading inputs frem every window or menu without
having to know from which of them the input is coming, It must
be declared as superior window of all the windows and menus of
the two display modes. This is dope by using a method of this
class,

3:.3:3 Inztance Methods

iindtialize{Instance)
Creates all the mepus and windows of any of the two di spl ay
rmodes, and set their sizes and positions., The menus are
treated first, and some gElobal parameters are saved aa
attributes of the display modes, before being used for
computing the sizes and the positions of the window s,

:show(Instance)
shows 2ll the windows and menus of a mode display,

- 22 =

DISFLAY _INTERFACE Page 3-5

rdraw(Instanoce)
clears and redraws the display of &ll the windows of & mode
display.

sreshape(Instanca)

Is only used by the pattern mode display when the grid size
has to be changed. Fills the menus, recrezteas them, adjusts
their widths to the mew grid size, and adjusts the =sizes and
positicns of the windows to the current grid size, This is
not optimized: menus are killed and recrested only to compute
their mimimue =izes. It will be better to save at first their
pinimum =izes in =slots, and to modify only their widths when
the grid size i=s changed.

:kill(Instance)
kills all the windows and menus of 2 mode display,

2.3.4 Class Method

:ereate{Class, ”Instance, Superior_window)
creates a new instance of this class, and inltializes the
sl ots, The supericr window Superior_window is saved in the
slot "superior®.

3.3.5 Local Predicates

initial ize_menus{Instance)
Asks to the mode diaplay the list of the rames of the menus;
ereites these menus, asks o the mode displey to set their
sizes and positions, and loads their names in their name
sl ots. The names are used in the top level loop to determine
from which window or menu the last input is coming.

initialize windowsa{Instance)
Asks to the mode display the list of the names of the windows:
dasks to the mode display what must be thelr sizes and
positions; creates these windows, and loads their names in
their rame slots, The names are used in the top level loop to
determine from which window or menu the last input iz coming.

ereate_menus{Instance, List_of _menus_names)
Removes from the list List_of _menus names the mext menu name,
asks to the display mode what are the commands proposed by
thi= menu, oreates it, with the contents of the slot
"guperior®™ as superior window, saves it in a slot of the mode
display, and calls itself recursively. OStops when the list of
name=s is empty.

create wirdows{Instance,Llist_of_ windowz names)
Removes from the list List_of _windows names the mext window
name, asks to the display mode the size and position of thia
window, as well &5 its nature, creates it, with the contents

- 23 -

DISPLAY_INTERFACE Page 3-§

of the slot "superior™ as superior windew, saves it in a slot
of the mode display, and cails itselr recursively, Stops when
the 1ist of names is empty.

give names(Instance,List_of mames)
Removes from the list List_of names the mext menu or window
name, asks to the display mode the menu or window of that
name, puts that rname in a slet of that menu or window, and
calls itself recursively. Stops when the list of names is
empty.

show(Instance,List_of_names)
Removes from the list List of names the rext menu or window
name, asks to the display mode the menu or window of that
name, shows that menu or window,and calls itself recursively.
Stops when the list of names is empty .

drawl:_‘[nstanne,Lisb_uf_windma_mmea}
Removes from the list List_of _windows names the next window
name, asks to the display wmode the window of that rame,
refreshes and redraw the display of that window, and ealls
itself recursively. Stops when the list of mames is empty.

kill{Instance,List_of_names)
Removes from the list List_of _names the next menu or window
name, asks to the display mode the menu or window of that
name,kills that menu or windew,and calls itselrf recursively,
Stops when the list of names is empty.

redraw_menus(Instance)
Asks to the mode display the list of the mames of the menus;
killas thase menus, and calls the locgal predicate
initialize menus,

reshape_windowa(Instance)
Asks to the mode display the list of the rames of the windows;
asks to the mode display what must be their asizes and
positions, adjusted to the value of a mew grid size; modifies
the =sizes and positions of these windows following these
adjustment s,

reshape_windows(Instance,List_of window 5 _names)

Removes from the list List of windows names the next window
name, asks to the display mode the window af thisz name, as
well as its new =ize and position: momentarily puts this
windew at the position (0,0), changes its size to itas npew
value, and then its poaition to its new value: then calls
itself recursively. Stops when the list of names is empty.
To set the window momentarily to the position (0,0} is
necessary because the new size may be larger than the old one,
and the window manager does not allow a window te go out of
the scoreen, To modify the poaition first solves the prabl em
for windows having their sizes inereased, but creates an
identical probler for windows hav ing their sizes decreased.

- 24 -

DISPLAY _THNTERFACE Page 3-T

3.4 THE CLASS CHAR_MODE_DISFLAY
3.4.1 Description

This class irherits the previous one: the as font display colaas,
12 attributes have been added, 3 corresponding to menus, 5 to windows,
and 4 to margins used to compute the sizes and the positions of the
windows and menus. An instance of this class keeps all the information
concerning the contents of the character mode menus, as well as the
sizes and positions of the menus and windows of this mode, Otherwise,
the main responsibility of this class is to maintain the coherence of
the display of the characters, Characters ape compozed of a pattern and
2 code; the pattern, the B lower bits and the 8 higher bits of the code
are displayed separately, 4in three different windows. An instance of
this class assures that patterns are correotly displayed in rows and
columns, that to each row and to each column corresponds a 8 bit number,
which is displayed at one extremity of it, and that the 8 bit num ber
sorresponding Lo the row in which a pattern of a character is di spl ayed
coincides with the higher 8 bit part of its code, and that the 8 bit
number corresponding to the column in which a pattern of a character is
displayed coincides with the lower B bit part of its code.

2.4,2 Instance Attributes

1. horz scroll menu: small menu at the top right of the diaplay
(see figure above) proposing two horizontal serolling orders:

"{" or sorolling to see one page of displ ay hidden on the left,
and ">" or scrolling to see one page hidden on the right,

2, xert soroll menu: small menu at the top left of the display
(see figure above) proposing two vertical scrolling orders:
""" or serolling to see one page of display hidden at the top,
and "v" or scrolling to see one page hidden at the bottom.

3. comnand menu: menu offering the major commands of the
character mode: "EXIT" for quitting the font editor, "DISC"
for the interface with disc files, "FLOPPY™ for communicating
with floppy files (not yet implemented) "EDIT" for selecting
the pattern mode,

4. horz code wipdow: horizontal window at the top of the screen
which displays the lower 8 bits of the character codes being
displayed on the soreen, This window is only affected by the
horizontal scrolls.

5. xert code window: vertical window on the left of the soreen
which displays the higher 8 bits of the character codes being
displayed on the screen. This window is only affected by the
vertical scralls,

€., font display window: biggest window of the screenm, in charge

of displaying the patterns of the characters of a font.

- 25 -

DISPLAY_TNTERFACE Fage 3-8

T.

10,

11.

12.

ey wWindow: window in charge of the communication with the
pattern_mode. In the pattern_mode, the window used for editing
patlerns can display two patterns at the same tige: one in
grey, the other in black. The pattern displayed in this window
will be displayed in grey in the editing window when the user
selects the pattern mode; inversely, the pattern displayed in
grey in the pattern mode will be displayed in this window when
the user comes back to the character mode.

black window: window in charge of the communication with the
pattern mode, In the pattern mode, the window used for editing
patterns can display two patterns at the same time: oneg in
grey, the other in Black, The pattern displayed in this window
will be displayed in black in the editing window when the user
selects the pattern mode; inversely, the pattern displayed in
black ir the pattern mode will be displayed in this window when
the user comes back to the character mode.

left margin:is set to the width of the menu "vert_scroll_menu",
and then used for computing the sizes and positions of the
windows and the positions of the other menus.

Iieht mapgip:is set to the width of the menu

"horz_scroll _menu", and then used for oomputing the =izes and
pesitions of the windows and the positions of the other menus,
It must be noted that its value is the width of the menu
"horz_scroll_menc", not the distance separating this menu anpd
the left edpe of the screen.

pper margin:is set to the maximum of the heights of the menus
"vert_scroll_menu™ and Phorz_scroll_menur, and used for
computing the sizes and positions of the windows and the
position of the other menu,

Aower margip:is set to the sum of the heights of the mnenus
"vert_scroll_menu"™ and "horz_scroll_menu®, and used for
computing the sizes and positions of the windows "erey_window"®
and "black window™,

3.4.3 Instances Methods

‘menus_list(Instance, “List_of_menu names)

The names used for the menus are the atoms used for
referencing them as instance attributes of this alass, This
is quite convenient, since ESP allows to call an instance
atiribute using a variable instantiated to the name of the
attribute, a= in the following exampl e:

X = black window, Black window = InstancelX.

‘windows list(Instance,”List_of_ windew_names)

The names used for the windows are their mmes az attributes,
The reason is the same as in the case of the menus,

- 26 -

DISPLAY_INTEREACE Page 3=9

iitems list (Object,Menu name,” Items)
Gives the items list and the class name of the menu of name
Menu name in the foellowing format:
Items = {Class name, Ttems list).
The items list is in the format required by the window system
For menus.

:parameters list(Instance,¥Window_name, "Parameters)
Gives the class name; the size and the position of the window
of mepe Window_name, in the following format:
Parameters = (Clzss name, [position(X,Y),size(Width,Haight)]).

:refresh{Instance)

Recomputes the maximm width and height of the character
patterns of the currently edited font; then recomputes the
minmum distance between two consecutive patterns on the same
lipe and on the same row, in the window ™font_display_window",
Then asks to the windows fharz_ocode_window™ and
"wert code_window" the present di stance between two
consecutive codes. With these data, computes an acceptable
distance between two oconsecutive rows and twoe consecutive
columns, and gives this information to the three windows which
need it: "font_display_window", "horz_osode window™ and
"wert _code_window". Then clears the displays of these three
windews, and redraws them with the newly computed distances
between the rows and between the columns,

Everything is ready to ensure that the distance between two
consecutive rows or columns will always be the mirdoum one,
But there is a logieal bug in this part of the program ! for
the distance between two consecutive rows or two consecutive
columns of character patterns to be always the minimm
decceptable one, the methods :get_espacement of the window
classes horizontal ecode display_window and
vertical code display_window, should be modified in such a way
they would always give the mpinimumm distance between two
consecutive codes, and no the distance currently used, as they
do irn this version.

before:draw(Instance)

The :draw method is inherited from the class as font_diepl ay.
This before demon asks to the windows "horz_ oode window™ and
frert_code window™ the current di stance between two
consecutive codes, to the window "font_display_window"™ the
minimum distance between two consecutive patterns on the same
row or on the =same column: computes from these data an
admissible distance between two rows and between two columns,
and adjust the interml parameters of these three windowe to
these valuas,

- 27 -

DISPLAY INTERFACE BPage 3-10

3.4 Class Method

after:create(Class,~ Instance ySuperior_window)
The roreate method is inherited from the cl ass
as font_display. The after demon ocalls another method
irherited from this class, the instance method tinitialize,

3.4.5 Local Predicates

set_margins(Instance)
This method must be used Just after the menus are created,
Computes the fow margdns "left_margin", "ripght marginnm
"upper_margin® and "lower_margin® from the minimum sizes the
window system gave to the menus when they are created. Using
these margins, sets the aizes and the positiens of the menus.

set_espacement (Instance)
Is the local predicate called by the before demon before:draw,

menus_list(List_of_menus_names)
windows list(List_of windows names)
items 1ist(Menu_name, (C1 ass_name, Items list))

parameterq_List[Instanee,Hindw_nane.fClaas__m:ne.
[position(X, Y),size(Width, Height)]))
Computes the size and the position of the window of pame
Window_name using only the sereen size, and the four margins
saved es attributes. Must be therefore executed after the
local predicate set_margins, The computations are essentially
" trivial ones.

2.5 THE CLASS PATTERN_MODE DISPLAY
3.5.1 Description

This elass inherits the claas as_font_display. 1% attributes have
been added, 6 corresponding to menus, 3 to windows, 3 to margins used to
Gompute the size and the positions of the windows and menus, Another
one corresponds to the grid size, which is the size of the squares used
to represent one dot of a pattern being edited, and another te the
number of pattern registers displayed at the top of the screen in
pattern mode,

It is very similar to the olass char_mode display in the way of
areating and setting the sizes and positions of menus and Wwindows, One
important difference however, comes from the copstraint that the window
used for editing patterns must bhave its width apd beight equal to a
multiple of the grid size.

Moreover, since the user is supposed to be allowed to change the

- 2B -

DISFLAY INTERFACE Page 3-11

grid size at will, a method must be provided for that.

3.5.2

Instance Attributes

frush mepu: menu at the top left of the diaplay (see figure
above) proposing three different "coclors®™: "BLACE™, ™JHITE"
and "INVERSE", and three different Mshapea":; "DOT®, "SQUARE"
and "LINE"™ for the brush. 'The brush is nothing else than the
mouse the user uses like a brush when drawing patterns in the
"pattern window" (see below).

oufslide menu: menu just wunder the previous one, proposing
either to come back to the character mode by the command "CHAR
MODE® or to glve some help to the user by the command "HELP™,
The help currently available is only a moral help.

£obal mepu: menu lying just under the previous one, and
proposing variouz commands to modify the current display:
"CLEAR™ clears the display of the window P"pattern window™;
"MOVE" translates the display of the window "pattern window™:
"SET SAMFLE"™ writes in the window "sample window® in real size
a linre of several characters of the current font; "REAL SIZE®
writes in real size in the window "sample window™ one of the
two patternz contained in the window "pattern _window®; and
"SCALE"™ changes the grid size,

black menu: menu lying just under the previous one, and
proposing various commands to modify the pattern displayed in
black in the window "pattern window®: T"CLEAR BLACK™ kills this
pattern; "MOVE BLACKE"™ translates this pattern; "CUT® cuts a
part of this pattern and saves it in a pattern register;
"DRA"™ is a mode in which the user can modify the pattern by
moving the mouse, as it were a pen or an eraser. The other
entries: "ROTATE®, "REFLECT"™ and "DRAW LINE"™ have not been
impl emented yet.

Eey _pmeny: menu 1lying Jjust under the previous one, and
proposing various commands to modify the patterns displayed in
the window "pattern window®™: ®CLEAR GREY" kills the pattern
displayed in grey; "MOVE GREY" translates this pattern; “ADD"
adds the pattern displayed in grey to the pattern displayed in
bl ack; "S5WAP" exchanges the pattern displayed in grey and the
pattern displayed in black.

Parameters display mepu: menu lying just under the previous

one, and displaying the values of three parameters of a
character pattern: its width, its height and its bias. They
correspond to the width, the height and the distance between
the middle line and the bottom line of the box displayed in the
window ‘"pattern window®. Currently its display is not updated
in real time. When the user changes one of these parsmeters by
modifying the shape of the box, the new values of thea
parameters are not automatically displayed. Tis should be

- 29 -

DISPLAY TNTERFACE Page 3=12

10.

11.

12.

13.

14,

fixed. They parameters displayed are only updated when the
ugser enters the command "REAL SIZE",

pattern window: biggest window of the screen, is in charge of
displaying two patterns, one in grey and one in bl ack, in such
a4 way that the dotz of the patterns appear as ajuares of
several dots wide. It also displays & box which glves limits
to the dimensions of the patterns, During edition, the user
can change the dimensions of this box, and write parts of the
patterns cutside of it. But only the parts of the patterns
lying inside the box will be sent to the charazcter mode for
buil ding new characters.

Ieglsters window: horizontal window at the top of the screen
in charge of handling pattern registers and of displaying their

contents on its zoreen,

spple window: small window at the bottom left corner, in
charge of displaying patterns in real size. Iz only used
through the commands "REAL SIZE"™ and "SET SAMPLE" of the menu
Pglobal_menu™,

deft margin:is first set to the maximum width of all the mpepus
of this mode, and slightly increased afterwards if necessary to
ensure that the width of the window "pattern window" i= a
multiple of the grid_size. Used for computing the definitive
sizes and positions of the windows and menus.

upper mapein: corresponds to the heipht of the window
"registers window®, Tts wvalue is such that the height of the
window "pattern window" is a3 multiple of the grid size, and the
height of each register box in the window "reglsters window™ ias
at least egual to the height in number aof muares of the window
"pattern window',

dower margin: is set to the sum of the heights of all the
menus, and used for computing the size and the position of the
Window "sample windown,

Erid aize: is the smize of the squares used in the window
"pattern window" to represent dots. The default value is 20,
the admissible values run from 5 to 25. Values smaller than §
can hardly be used; values greater than 25, up to 40 or 50,
could probably be used. However, it should be checked if they
are really useful or not before allowing their use,

number of register=: is set to the largest number of reglsters

the window "registers windew"™ oan display in such a way that
each register box is wide enough te display the full contents
of the window "pattern_window",

- 30 -

DISPLAY_INTERFACE Page 3-13

3‘5'3

Instance Methods

smenus_list{Instance, "List of menu names)

{See the method menus list of the class char mode_display).

:windows list{Instance,”List_of window_rnames)

(See the method windows list of the olass char_mode_display).

iitems list(Object, Menu_name,” Items)

(See the method items list of the class char_mode_display).

iparameters list{Instance, Window_name, " Parameters 1ist)

{3ee the method parameters list of the clasa
char mode_display).

:get_grid size(Instance, Grid aize)
:set_grid_size(Instance,Grid size)

Checks if the pew grid size Grid szize has an admissible value
{integer between 5 and 25); if not, changes its value to be
equal to 5 or to 25; then if this new grid size happens to be
equal the old one, does nothing; otherwise, saves this new
grid size in the slot "grid_size", creates and shows a full
screen window to hide what part of the transitional states of
the display. Calls the methods :reshape, :show and :draw
which are inherited from the class as_font_display, and kdlls
the full screen window.

before:draw(Instance)

3.5.4

The :draw method is inherited froc the class ag_font_display.
Tis before demon sends to the window "pattern_window" the
current wvalue of the grid =ize, and to the window
"regizters window® the current value of the alot
"number_of_registers". The :draw method is not used wvery
often, probably only at the creation of the display, and each
time the grid size is modified,

Clazss Method

after:create(Class,” Instance, Superior window)

3‘5‘5

The icreate method i3 inherited f'rom the class
as font_display. The after demon calls another method
ipherited from this class, the instance method :initialize.
This demon, as well as the equivalent one of the claas
ehar_mode_display, should be repleaced by adding the goal
iinitialize to the :creste method it=elf,

Local Predicates

sat_margins(Instance)

Thiz method must be used Just after the menus have been
created, Computes the twoe marging " eaft margin®™ and
Mower_margin® from the minimm sizes the window system gave

- 31 -

DISPLAY INTERFACE Page 3~14

to the menus when they were oreated, and, at the same time,
sets the positions of the menus; then adjusts the margin
Meft margin® 3o that the width of the window "pattern window ™
iz a pultiple of the grid size, ocaputes the margin
"upper_margin®, and the parameter Famber_of _registers", as
indicated above; then adjusts the vidths of the menus to be
equal to the value of the slot "Lart margin”.

set_margins and positions(Instance.List_of_menus nam es, Poaition)

Removes from the list List of menus names the next menu name,
gets this menu (the rame of which is nothing else than the
name of the slot in which it has been saved), asks for its
size, sets its position to be (0,Position), modifies the slot
"left_margin" if its current value is smaller than the width
of this mepu, adds the heipht of this menu to the pointer
Position, and calls itsell recursively., When the list becomes
empty, sets the value of the s=lot "lower_margin®™ to be egual
to the value of the pointer Position, and atops. At that
mament, Position is equal to the sum of the heights of the
menus. The initial value of the pointer must be 0,

adapt _margins to_grid size(Instance)
Adds to the present value of the slot "left _margin® just what
is necessary for the integer (screen width - left_margin) to
be a pultiple of the integer Erid size,

Determines the value of the s=lot "number_of_ registers™ in
such a way that each register could be allocated Just encugh
Space on the screen of the register window to display the
contents of the window "pattern window®, The § that appears
in the formula comes from the fact that the frames delimiting
the regions allocated to different registers must not be
considered as an usable part of the display. The width of the
freme is 3.

Computes an intermediate variable, Upper_margin, in sueh a
way that each register will be allocated just encugh space on
the sereen of the register window to display the contents of
the window "pattern window®™. Then adds to that variabl e what
is pecessary for assuring that the height of the window
"pattern window" will be a multiple of the grid size,

set_sizes(Instance,List_of menus names)
Sets the widths of the menus the name of which appears in the
list List_of menus_ names to the value "left margin®,

menus_list{List_of_ menus_pames)
windows list(List_of_ windows names)
items list(Menu_name,{Class_name, Items_list))
Ttems list respects the format of the menu items of the window
gsystem, except for the menu "parameters di spl ay_menu"™, which
has a special format adapted to the specifiec needs of the fent
editor. See the class parameters display_menu for details.
parameters_list(Instance,Window_name,(Class name,
(position(X, Y),size(Width,Height)]))

- 32 -

DISPLAY_INTERFACE Page 3-15

{See the method parameters list of the class
char_mode display).

check_grid size(Instance, Input_grid size,Grid size)
Input_pgrid _size iz supposed to be an integer.

- 33 =

CHAPTER 4

GRAPHIC_INTERFACE

4.7 DESIGN CONSTRAINTS

It has been seen in the previous chapter that the font editor
needs various kinds of windows and menus.

1. First of all, windows displaying character patterns in real
size are reguired. Methods for drawing a pattern must allow
the programmer to precise the pomition of the pattern in a
window, as well as the part of the pattern or the part of the
window that must be used.

2. Then standards for patterns must be fixed, and windows must be
able to send and receive information, not only patterns but
also all the relevant parameters that must be used to ensure
the expected functionalities, Editing facilities will be
treated in the next chapter.

3. Moreover, windows for displaying various kinds of parameters
must be provided, as well as methods for accesasing thesze
parameters,

b.2 DESIGN COMMITMENTS

At that level, there is not teeo many choices far the design of the
cl asses. Mainly, what has been decided is to areate mmall classes
adapted to each basic functional rejuirement of the overall design, It
means up to ten different windows or menus classes which fit some
special application, instead of two or three general classes,

A basic requirement of the top level objects is that all the
windows and menus may be read from a superior window of the =zize of the
screen. Mlthough this facility is provided by the window system, it has
not been introduced in usual windows and menus classes; it is the main
reason why the font editor needs special windows and menus classes,
ramely: font_inferior_window, font__superior_window,
font_mul tiple select_window, font_mul ti ple_select_mul ti column window.

Crephica functions, =ince they write direetly in the bitmap

- 34 -

GRAPHIC_ INTERFACE Page 4=2

memory, must be executed through the window managper. To allow easier
modifications of the interface between the window manager and the font
editor, it has been decided to oreate a window class: the claas
ont_graphics_window, in which the methods that must be executed inside
the window manager are regrouped.

The standard format used for storing and transmitting patterns as
messages batween objects will ba instances of the class
char_record with_pattern.

The character mode display meeds windows that ecan display a
pattern, and behaves like a register, Instances of the class
pattern_display window have been designated for meeting this needs,

The pattern mode display needs a window that ecan display a line of
characters of the font currently edited. This window will be an
instance of the class display_sample window.

L requirement & little more complex from the pattern mode di =pl ay
is a window that can display several patterns, each in a8 box,in such a
way thal the boxes seem to behave like pattern registers for the user,
This window will be an instance of the class pattern_registers window.

Ancther requirement, from the character mode display this time
consists of a window that can handle all the patterns of a font, diaplay
some of them, scroll, and allow direct access to each of these patterns.
this window will be an instance of the class font_display_window.

The last requirement of the character mode display consists of two
simple windows used for dleplaying the codes of the characters. These
windows should be able to display a list of integers, to seroll, and to
offer the possibility of changing the distance between two sonsecutive
integers. These windows will be instanees of the claszas
horizontal_code_display window and verti cal code_display_ window.

The last requirement of the pattern mode display consists of a
sizple window displaying three parameters. This window is impl emented
25 a menu, and will be an instance of the class parameters di splay_menu,

B.3 TE CLASS FONT INFERIOR WINDOW
4.3.1 Deseription

This class is almost entirely built by inheriting classes provided
by the window sy stem, It ipherits the following classes:
with_superior_input_buffer, which allows inputs done through ita
instances to be read from a superioe window; as_input; as_mouse_input;
@3 output; as graphics; user window, whioh is a basie window ol ass,
For more details on these classes, aee the window system manual.

GRAPHIC_INTERFACE Page §-3

§.3.2 Instance Attribute
An instapece of this class has 1 attribute.

to tdtle: it is a fixed attribute, in which the mme of the
windew iz stored at the creation (see the olass
ag_font_display). The usual attribute ¥title" of windows
cannot be used here, because the class which provides it, the
class with_label has not been inherited., However, the choice
of the name of this attribute may be confusing., Another name
for it as well as for the methods :get_title and :set_title
ghould be considered.

4.3.3 Instance Methods
iget_title{Instance, " Title)

:set_title{Instance,Title)

4,3.4 (Class Method

after:create(Class, Parameters list,” Instance)
Sets the inside units of the window to the values (1,1). The
default inside units given by the window system are the width
and the height of the space character in the default font
font_13, and are not suitable for graphies. Sets the
perziz=sion of the window to Mout™, so that it is poassible to
write inte this window even when it is not completely shown.

4.4 THE CLASS FONT_ SUPERIOR_WINDOW

4.4.1 Desoription

This class is entirely built by inheriting classes provided by the
Window system, It ipherits the following classes: as input_buffer,
which allows the inputs done through an inferior window to be read from
thiz window: as superior, user_window. For more details on these
classes, see the window system manual,

4.5 THE CLASS FONT_MILTIFLE SELECT_MENU

- 36 -

GRAPHIG_TNTERFACE Page U=l

4.5.1 Description

This elass is almost entirely built by inheriting classes provided
by the window system, It inherits the following classes: sash, which
provides a frame delimiting the area on the screen used by the menu;
with_superior_input_buffer, which allows the inputs done through this
meny Lo be read from a superior window: a3 _menu; ag multiple select;
a3 _mouse_input; user_window, which is a basic window class, For more
details on these classes, see the window system manual.

4.5.2 Instance Attribute
A instance of this class has 1 attribute.
1. Litle: it is a fixed attribute, in which the name of the menu

iz =stored at the creation (see the class a3 font_display and
the class font_inferior_window).

4.5.3 Instance Methods
:get_title(Instance,"Title)

tset_title(Instance, Title)

4.6 THE CLASS FONT_MILTIPLE SELECT _MILTI_COLUMI_MENU
L.6.1 Description

This class is almost entirely built by inheriting classes provided
by the window system. Tt inherits the foellowing classes: sash, which
provides a frame delimiting the area on the screen used by the menu;
Wwith_superior_input_btuffer, which allows the inputs done through this
menu to be resd from a superiop window ; ag mul tiple column;
as_mul tiple_sel ect; as_mouse_input; user_window, which 1is a hasic
window class. For mare details on these classes, see the window syster
manual .

4,6.2 Instance Attribute
An instance of this class has 1 attribute.
1. titler it is a fixed attribute, in which the rame of the menu

is stored at the creztion (see the classes as font_display and
font_inferior_window).

- 37 =

GRAPHIC_THTERFACE Page 4-5

4.7 THE CLASS FONT_GRAPHICS_WINDOW
4,7.1 Description

This class ioherits the class font_inferiar window. Its main role
is to provide to classes inheriting it methods for drawing a pattern in
a given area of a window, cutting what must not be displayed. Tt is one
of the classes which have methods that must be executed inside the
Wwindow manager. The other one is the class az_edit_pattern window.

It i= not possible ina oulti-task machine to allow a direct
access to the bWtmap memory to processes, The access must be controlled
somehow, and, in the present version of the P3T operating ayatem, this
task has been attributed to the window manager. Tt is why the methods
of the classes font_graphiecs window and as edit pattern_window which use
bitmap areas for storing patterns and transferring them on window
screens nust be currently executed inside the window manager,

4.7.2 Instance Attributes

T. operation: is the operation used by the methods :draw_record/l
and :draw_record/B to draw a pattern in the window., Its
defaul t value is 'exclusive or'; it can be otherwise set to
"inmverse' or 'copy'. In the current version, the font editor
uses only the default value 'exclusive or',

2. positiopn: is imitialized to the value 'inside', The other
possible value is 'outside', ‘This slot ia used when a pattern
has to be drawn. In the case the pattern is entirely outside
the window, the =slot position is set to the value 'outside',
otherwise to ‘"inside'. When the value of thiz slot is
'outside', the drawing routine is not called,

3. window Xx: The methods :draw_record do not display the part of
& pattern which horizontal coordinate is smaller than the value
of this slat,

4. wipdow v: The methods :draw_record do not display the part of
a4 pattern which vertical coordirate is smaller than the value
aof this slot.

5. box hejght: The methods :draw_record cannot display entirely a
pattern of height greater than the value of this slot, and must
cut a part of it,

6. box width: The methods :draw_record cannot display entirely a

pattern of width greater than the value of this slot, and must
cut a part of it,

- 38 =

GRAFHIC TNTERFACE Page 4-6

4.7.3 Instance Methods

idraw_record(Instance, Record, X0, Y0)

The variable Record must be instantiated to an instanoe of the
class char record with_pattern. This method draws the pattern
of the record Record at the poasition (X0,Y0) 4in the window.
The pozition of the pattern i= the position of the top left
corner of the pattern. (X0,YD) can lie outside the window:
in that case, the pattern may be partially drawn, or not drawn
at all, Any part of the pattern whiech would have appeared
outside the window or at less than 3 dots from the edge of the
window iz not drawn.

:draw_record{Instance, Record, X0,Y0,Limit x,Limit y,Width,Height)

The variable Record must be instantiated to an instance of the
clazs char_record with_pattern. The parameters Limit_x,
Limit y, Width and Heignt define a box. Limit x and Limit y
are the coordinates of the top left corner of this box, while
Width and Height are its width and height. This method draws
the pattern of the record Record at the position (XO0,YD). The
parts of the pattern which would have lain outside the window
or outside the box are not displayed.

:do_draw_record(Instance, Record, X0, Y0)

This is the method used inside the window system. Draws the
pattern of the record Record at the position (X0,Y0), cutting
the part of the pattern which lies outside the window or
out side the rectangle of width "box width™ and height
"box_height"™ and of position ("window_x","window_y"). Thase
four attributes are initialized by the methods ;draw_record
before the method :do_draw_record iz call ed.

:get_oparation(Instance,” Operation)

iset_operation(Instance, Operation)

4.7.4 C(lass Method

after:create(Class, List_of _parametars,” Instance)
This after demon erases the undesirable cursor of the window.

4.7.5 Local Predicates

draw_recard{Instance, Record, X0, ¥0)
If the flag "position™ is set to ‘'outside', does nothing.
Otherwise oreates a bitmap area, loads the pattern of the
record Record in it, coples this area or a part of it in the
window sereen, according to the diverse restrictions already
mentioned, and kllls the area.

open_area(Instance, Record,“Area,” Area_width, " Area_beight)
Asks to the record its size; instantiates the wvariahble

- 39 -

GRAFHIC_INTERFACE Fapge 47

Arez_height to the height of the record; asks to the record
its pattern, which is a double_bytes satring; asks te this
pattern itz length, and divides this length by the heipht of
the pattern. The result is the raster width of the pattern.
Instantiates the variable Ares width to 16 times the rast

width. Then allocates a bitmap area Area of size
(Area_width, Area_height), and lceds the pattern in this area,

transfer_area(Instance,Record, Area, Arez_width, Area_height, X0, Y0)
Azks Lo the record its width; computes the difference between
the Area width and the record width, which corresponds to the
number of empty vertical lines that had to be added to the
pattern of the record when it was stored in a double bytes
string. Then computes which part of the area Ares pust be
transf erred.

The part te be transferred must not include any of the anpty
vertiezl lines. Morecver, when the limit "window_x" is
greater than the position X0, the pattern must be cut on its
lef't of window x = X0 lipes. Similarly, when the limit
"window_y" is greater than the position YO, the pattern must
be cut at its top of window_y = Y0 lines,

The width of the part transferred iz limited both by the
width of the area after the previous operations and by the
value of the attribute "box_width". The height of the part
transferred is limited both by the height of the area after
the previous operations and by the value of the attribute
"hox_helght".

If, after these operations, there is nothing to display,
does nothing; otherwise transfers the selected part of the
area into the window sereen, at the position
("windew_x", "window_y").

set_limits(Instance,¥0,YD,Limit x, Lj.mit_}r,Hidth,Height,lhrgin}
Increzses Limit_x and Limit_y by Margin, Width and Height
twice by Margir, and calls the local predicate set limits/7.

set_limits(Instance,X0,¥0,Limit x,Limit_y,Width, Height)

Takes the greatest integer between X0 and Limit_x, checks if
the resulting horizontal coordirate can be a the horizontal
coordirate of & dot lying inside the window; does the same
for the vertical position; il it is the case for both, sets
the values of the slots "™window_x", ™window_y", "box width"
and "box_height" to be the ocorresponding values =sent as
parsmeters of this predicates; otherwise sets the flag
"position™ to the value Poutside™,

4.8 THE CLASS PATTERN_DISFL AY_WINDOW

--Juan-

GRAPHIC _INTERFACE Page 4-8

4.3.1 Description

This class dpherits the class saszh, which provides a frame
delimiting the area on the screen used by the window, and the class
font_pgraphics_window, which provides methods for writing a pattern in
the window =zcreen, An instance of this class behaves like a register
for patterns. A pattern stored in a window of this class is =m=aved in an
attribute, It is suppocsed to be in the standard format of instaneces of
the class char_record with_pattern. 2 window of this class iz destiped
for communicating with the user in the following way: when the usep
wants to lead a pattern in it, he selects a pattern in the window
displaying the charscter patterns of a font, and then clieck the mouse in
the window of this class; when he wants to do the opposite, he selects
first this window, and then the destimation of the pattern. For
allowing the latter, an instance of thisz class has another attribute for
remecbering whether or not the user has selected it.

4.8.2 Instance Attributes

1. status: remembers if this window has been already selected.
Its initial wvalue is 'nil'; when the window is selected, its
value is 'select'. Can be reset to 'nil' frem outside simply
by selecting this window one more time. This selection is used
by the font editor for remembering inputs from the user, and
has nothing to do with the selection of windows in the sense of
the window manager. Tt may be better to change the rmame of
thiz attribute and of the corresponding methods from ' select!
to 'activated'.

2. recerd: is a slot for saving an instance of the class

char_record with_pattern. If no record is saved in it, its
value is set to the atom 'nil'.

4.8.3 Instance Methods

iget_record(Instance,~Record)

!set_record(Instance, Record)

!select(Instance)
If the flag "status™ is set to 'nil', sets it to "select';
otherwise sets it to 'mil',

‘get_selected status(Instance,”Status)

tdraw_display{Instance)
clears the display of the window; if the slot "record" is sat
te 'nil', does nothing else; otherwise, the zslot "recopdn

contains a record; draws this record, centered in the middle
of the window sereen,

- 4] -

GRAPHIC_INTERFACE Page 4-9

§.8.4 Local Predicate

center_pattern(Instance,”X0,"Y0)
computes the position that the pattern of the record "record®
must have to be displayed in the middle of the window screen.

4.9 THE CLAss DISPLAY_SAMPLE WINDOW
b.9.1 Description

This class inherits the dlass sash, which provides a frame
delimiting the area on the screen used by the window, and the ol ass
font_graphies_window, which provides methods for writing a pattern 4in
the window acreen. An instance of this class can display patterns,
recorded im a list of char_record with_pattern instances, It has two
modes of display: the 'sample' mode, in which several patternz are
displayed on one or several lires, and the 'real size! mode, in which
only one pattern is displayed, This distinction is not really relevant,
and may be suppressed with profit. The arigin of the present state is
that the method for displaying one pattern has been impl emented first,
and the method for displaying several patterns later,

4.9.2 Instance Attributes

1. record: is a slot for saving an instance of the class
char_record with_pattern, I me record is saved in it, its
value is set to the atom 'mil'., In 'sample' mode, the contents
of the slot, if different form the atom 'nil', are added to the
list of records to be displayed. In 'real size! mode, this
record, if different frem the atom 'nil', is displayed,

2, Aipe height: is computed each time a new set of records must
be displayed in the "sample' mode. Tts value is egual to the
maximum apparent height of the given set of records, increased
of one third to leave some Space between lipes.

3. gapple: is a flag which keeps the information about the
current mode, May take two values: 'Yea' if the current mode
is 'sample', 'no' if the current mode iz "real size',

b. precord list: is an instance of the class liat, In both the
'real size' and the 'sample' mode, the record or the records to
be displayed are stored in this list, which is read afterwards
by the diasplay routine.

- 42 -

GRAFHIC_INTERFACE Page 4-10

b.,9.3 Instance Methods

iset_record{Instance, Record)
Saves the record Record into the slot "record®; if the record
Record is equal to 'mil', does nothing; otherwise, clears the
List "record list", and saves the record Record in it.

iset_sampl e(Instance,list of records)

List_of_records must be an instance of the class list, and
must contain instances of the class char_record with_pattern,
Saves the list List_of_ records inte the =lot record_list®,
If the contents of the slot "record® are different from the
atom 'nil', adds them to the list "record_listn, Then
computes the highest and the lowest positions that the
patterns of the records stored in the list "record list"™ take
on & character line; then =aves their difference, inereased
by one third, into the slot "line_heipght®™. At last s=ets the
"sampl &' mode.

idraw_dizplay({Instance)

clears the display of the windew: in "sampl &' mode, takes the
contents of the list "record listm, displays the patterns of
the records contained in this 1ist opne after the other,
stopping il' no mare space is available in the window, and
switches back to the 'real size' mode. In 'real size' mode,
checks if the slot "record" does not contain the dtom "nil':
if it is the case, does nothing: otherwise, displays the
record Recoprd.

4.9.4 Local Predicates

draw_displ ay(Instance, List_of _records,X0,Y0)

Hemovesz the mext record from the list List_of_records,
computes its position (X1,Y1}, from (X0,Y0), by adding to X0
one sixth of the width of the record, or by going to the next
line; checks if any space is available in the window to draw
the pattern of the record; if not, staps; otherwise draws
the pattern, and calls itself recursively, with new values for
(X0,Y0) to be (X1,Y1) modified by inereasing X1 of seven
sixths of width of the pattern.

compute_position({Instance,Record, X0,Y0, X1, Y1, " Message)

Checks if X0 increased by the width of the pattern of the
record Record is less than the width of the window; in that
case, the pattern can be drawn on the current line; 80 sets
X1 to be egual to X0 increased by cone sixth of the width of
the pattern, to leave some space between charzocters,
Otherwise, checks if Y0 increased by the "line heipht" is less
than the height of the windew: in that case the pattern can
be drawn on the next lime; so sets (X1,Y1) to be the position
of the next character on the nmext lime. In these two cases,
Message is instantiated to the atom 'inside'. Otherwisza,
Message iz instantiated to the atom 'outside'.

The case when the First pattern to be drawn on a line is

- 43 -

GRAPHIC INTERFACE Page 4=11

wider than the window is not treated consistently. If it
happens, the pattern will just be cut to fit the dimensiens of
the window, instead of not being displayed at all,

cumpute,_m.ax__heimt{lnstanee,Liat_nf__reecrrds,"Hax_heigj':tj
Computes the maxdmur height of the patterns of the records
contained in the 1ist List_of records, as well as their
maximum bias, and instantiates the variable Max heipght to the
sum of these two madmums,

Mis algorithm has a logical bug: it does work, does not
prevent this window to display usual patterns, but does not
compute the parameter it is supposed to compute. The
parameter it is expected to compute is the maximum distanee
between the top of the highest pattern of the 1list and the
bottom of the lowest. The error is that it i= not the maxrimum
height that must be added to the maximum bias, but the maxioum
value of the difference (height -~ bias).

compute_max_height(Instance, Records list, “Max_height, Max_bias)
Computes the maximur height of the patterns of the records
coentaining 4in the list Records list, as well as their maxinum
biag, by using 2 recursive procedure,

.10 THE @LASS FATTERN_REG IS TERS_WINDOW
4,101 Dezeription

This clas= ipherits the glass sash, which provides a frame
delimiting the area on the screen used by the window, and the class
f‘ont_gr-amics_winduw, which provides methods for writing a pattern ip
the window screen. An instance of this class can keep smeveral patterns
in registers and display their econtents,

At each register corresponds a rectangular part of the wWindow
streen, called a box, in which the contents of the register are
di=pl ayed, and through which the contents of the register can be
accessed by the wuser directly by cliecking the mouse in it. Each af
these boxes is big enough to display the contents of the window used For
editing patterns,

Since the size of the boxes roughly correspond to the size in
mmber of squares of the editing window, and since the width of this
window is roughly fixed, the mmbar of boxes, and therefore the number
of registers may vary considerably from one grid size to ancther. When
the grid size is decrezased, the number of reglsters iz also decreased,
and, thus, some patterns may be lost in the eperation., if too many
registers were used, the contents of some of them are lost,

The box on the laft of the window has a special role, It does not
correspond really to a register, but to a stack. This stack is called
the o y ecause 1t is used for saving patterns that
would have been thrown away otherwise, and therefore must protected to
be effective as a protection.

- 4h -

GRAPHIC_INTERFACE Page 4-12

When the grid size is decreased, the patterns that could be lost
otherwise should be saved in this stack.

ul1ﬂl2

1.

Instance Attributes

number of registers: the mmber of registers of this window is
computed by an instance of the class pattern _mode_display each

time & new grid size is set, and then sent to this window and
saved in this attribute.

lirst celumpn: The register boxes cannot usually have the same
width for an obvious arithmetiec reason, This attritute
contains the width of the first box, computed in such a way
that the other boxes may have the =zame width.

Sopacement: This attribute contains the width of all the
boxes, with the possible exception of the First one.

helght: this attribute contains the height of this window.
My not be very useful since it is always possible to ask the
height of a window by the method :get_size, provided by the
window system. To suppressz this attribute and to use the
window system method each time the height is regquired is
probably better.

pile: The name of this attribute, as the word "e spacement ",
comes from the French. Te English equivalent of "pile" is
"stack". Is an instance of the class list, and contains all
the records stored in the first register, except the one which
is displayed, which is stored in the table "table_of_contentsh,

ifable of contents: Is an instance of the elass hash_index, and
contains all the contents of the registers of this window that

are displayed, The registers are nmnmbered from 0O te
"number_of_registers®™ - 1, from left to right. The key used
for storing the contents of a register into the hash _index is
the number corresponding to this register.

4.10.3 Instance Methods

:get_number_ of reglsters({Instance, Number_of _regsters)

rzet_number_of _regi sters{Instance,Number_of_reglsters)

sets the contents of the slot "number of_registers™ to be the
value of the variable Number_of_registers, and saves the old
value in & local variable; computes the width of window
screen which can be allocated to the register boxes, in suech a
way that all the boxes have the same width with the pessible
exception of the first one, which may be given a little more
gpace, but npot encugh to be distrituted equally among the

-HE-

GRAPHIC_TNTERFACE Page L=13

other boxes. T™en creates a new instance of the ¢l ass hash
index , saves in it the contents of the ald hash_index as long
as there are encugh registers left for displaying them, and
saves the new hash index in the =lot "table_of _contents®,

:draw_displ ay(Instance)
clears the display of the window, draws the contents of each
register, and draws the lines delimiting the register boxes.
In the case of the first register, which can save several
patterns in its stack structure, only the last entered pattern
iz displayed.

idraw_content s(Instance)
Checks if the table "table of _contents" ia empty. I it i=s
the case, does nothing, Otherwise, draws its contents, each
pattern centered in the correspondi ng boyx,

iget_status(Instance, X, Y, *Status)
(¥,Y) corresponds to a position of the mouse. This predicate
computés in which register box the user clicked the mouse; if
it is the first register, instantiates the variahl e Status to
the atom 'protested': Otherwise, checks if the sel ected
reglster is empty: if it is empty, instantiates Status to the
atom 'empty'; irf it is not empty, to the atom "full'.

:save_into_register(Instance, X, Y, Record)
Computes from the position (¥,Y) in which register box the
user clicked the mouse; 4if this register is the first one,
does nothing; otherwise saves the record Record into this
register, and modifies the display so that the pattern of the
record Recerd is displayed ir the box of this register.

isave_Into protected_register(Instance, Record)

If the first register is empLly, saves the record Record into
the table "table of contents" at the key 0. Otherwise,
replaces in the table "table of contents" the previous record
saved at the key 0 by the record Record, and adds this
previous record at the front of the list "pilem, In both
cases, modifies the display so that the pattern of the record
Record is displayed in the first boy.

:get_register_contents(Instance,X, Y, Record)

Computes from the position (X,Y) in which register box the
user cl 1 aleed the mouse; then gets from the tahle
"table_of_contents" the record Record at the key corresponding
to the selected register, In the case the szl ected register
iz the [ipst register, replaces at the key 0 in the table
"table of contents" the record Record by the first record at
he front of the list "pile®, if any, and modifies the di splay
of the first box if necessary.

‘remove_reglster_contents(Instance,X, Y, Record)
Computes from the position (X,¥) in which reglster box the
user el icked the mouse; removes from the table
"table of eontents"™ the record stored at the key corresponding
to the selected register, and clears the box of this reglister.

- 46 -

GRAFHIC_INTERFACE Page 4-14

This does not work properly in the case of the first register,
since the contents of the list "pile" are not either ol eared
or used. This is another logical bug. PBefore correcting it,
it must be checked if this method is used or not in that o3 se,

iolear_registera(Instance)

b.10.4

clears the display and the contents of all the registers,

Local Predicates

draw_frame(Instance)

draws the vertical lines separating the reglster boxes,

draw_vertical lines(Instance, Initial_x, Espacement,

Height, Number_of_lines, N)
draws a vertical line of thickness 4 at the position Initial_x
through all the height of the window, increases Tnitial x of
Espacement, N of 1, and calls itself recursively, Stops when
N becomes equal to Number_of lines,

draw_contents{Instance)

(see the method :draw_contents)

draw_ccntents{Instance, Table, Num ber_of_registers, N)

tries to get a record saved at the key N in the tahble
"table of coptents®; if there is one, draws it, centered in
the box number N; if there is none, clears the box number N;
increases N by 1 and calls itself recursively. Stops when N
grows bigger than or ejual to Number_of _registers.

draw_pattern(Instance, Record, N}

draws the pattern of the record Record in the middle of the
box number N. The pattern is cut to Fil the dimensionz of the
box if necessary. The case of the first register 18 treated
apart only because the width of its box is not the same than
the width of the other register boxes,

cl ear_register_display(Instance,N)

Clears the box number N. The case of the first register is
treated apart only because the width of its bor is not the
same than the width of the other register boxes.

get_status(Instance,X, ¥, “Status)

Computes from the position (X,Y) in which reglster box the
user clicked the mouse; then determines the status of this
register. If it is the first register, the status 4is
'protected'; otherwise, if the register is empty, the status
is 'empty'; otherwise the status is 'full’.

get_status{Instance,N, " Status)

determines the status of the register number N, as indicated
for the local predicate get_status/4,

Fet_register_number (Instance,X, Y, N)

- 47 -

GRAPMIC_TNTERFACE Page 4=15

Computes the number N of the boy in which the usep cdlicked the
mouse, (X,¥) is the position of the mouse Jjust after the
clickdng.

save_into _register(Instance,X, Y, Record)
({s=ee the method isave_into_reglster, Hote that the
draw_pattern predicate uses an exclusive_or operaticn, and
that calling it when a pattern is already displayed erases
ic).

save into protected register(Instance, Record)
(see the method :save_into_protected_reg ster),

gel_register contents(Instance,X, Y, " Record)
(see the method :get reglster_contents).

get_contents(Instance, N, Status, ~Record)

Gets the contents of the reglster number N, and instantiates
the variahble Record with them; if the register number N is
empty, instantiates Record toe the z2tom "nil'. TIn the case of
the first register, replaces at the key 0 1in the tahle
"tzble_of _ocontents" the record Record by the first record at
the fronot of the list "pile®, if any, and modifies the display
of the firast box if necessary,

remove_reglster_content=(Instance, X, ¥, Record)
(see the method rremove_register_contents).

bry_to_save(0ld_table, Tatle, Ol d_number, Number)
saves the contents of the table Old table in the table Table,
as long as the table Table, of size Number, is not [fall.

try _to_save(0ld table, Table, 0l d_pumber, Numbar, Old_pointer, Pointer)
if there is a record saved at the key Old_pointer in the tahle
Uld_table, saves it in the tahle Table at the key Pointer,
increases Qld_pointer and Pointer by 1, and calls itself
recursively; otherwise, inoreases Old_pointer by 1 and calls
its=elf recursively. Stops when either (ld pointer is equal to
Old_number o Pointer is equal to Number,

4.11 THE CLASS FONT_DISPLAY WINDOW
4.117.1 Description

This class inherits the olass sash, which provides a frame
delimiting the area on the screen used by the windew, and the class
font_graphies window, which provides methods for writing a pattern in
the window screen. An instance of this class is in charge of di=splaying
the character patterns of a font. The characters are di apl ay ed
according to their codes: on the sape lire, the characters the codes of
which have the same 8 higher tits; on the sage column, the characters
the codes of which have the same 8 lower bits, Serolling facllities are
provided so that the user can choose whioch characters he wants to see

- 48 -

GRAPHIC_INTERFACE Page 4-16

di spl ay ed.

Other facilities, as the possibility to select a character code by
clicking the mouse at the intersection of a row and a column, or to
create 2 new character by simply selecting a pattern, taken from the
pattern mode or from another character, and assigning it to a code,are
al so provided.

Moreover, each time a new pattern is introduced as a pew character
pattern, the distances between two consecutive rows or two consecutive
columns are checked and if pecessary, modified, to aveid overl aps,

4.11.2 Instance Attributes

1. font: contains either the atom '"mil' o an instance of the
class edited font. It is the font which has its characters
displayed in this window.

2, gelected code: contains the code selected if there is one, or
otherwise, the atom 'mil'.

3. default code: i= a fixed attribute, initialized at the value
0. Fach time the display of the window is drawn, the pattern
of each code displayed is drawn; 4if there is none, the pattern
corresponding te the default code is drawn; if there is no
pattern corresponding to the default code, nothing is done. It
is up to the user to decide to assign a default pattern to the
default code. The usefulness of the default pattern has to be
determined by the user.

b, ipitial code: is the value of the smallest code displayed, It

is only wused for avoiding to recompute its value each time it
is required. It is not absolutely indispensable.

2. dpitial code x: is the value of the lower B bits of the
snallest code displeayed.

6. Ainitial code y: i3 the value of the higher 8 bits of the
mmallest code displayed,

7. displaved x: is the number of columns displayed.
8. displaved v: is the number of rows displayed.

9, gspacement x: is the distance between two consecutive columns
di =pl ay ed.

10. espacemept v: is the distance between two consecutive rows
di spl ay ed.

11. Ainpitial x: is the position of the left end of the first column
dizplayed in the window.

- 45 -

GRAPHIC_INTERFACE Page 4-1T

12.

initial ¥: is the position of the top end of the first row
displayed in the window.

4.11.3 Instance Methaods

:get_operation{Instance, "Operation)

This method is no longer in use. Must ba suppressed,

‘g8t _operation(Instance,”Operation)

This method is no longer in uze. Must be suppressed,

:get_espacement (Instance,”Espacement_x, *Espa cement_y)

isel_espacement (Instance, Espacenent_x, Espacement_y)

saves Espacement_x and Espacement_y in the corresponding
attributes: computes, from their values and the =mize of the
window, the number of rows and columns that can be displayed,
and saves these values inte the slots "dieplayed x" and

"displayed_y".

:set_font(Instance, Edited_font)

‘get_font{Instance, Edited font)

ireset_espacement (Instance)

If there is no font to di =pl ay, resets the slots
"espacement_x" and "espacement_y" to 0; otherwise, asks to
the font "font™ its global rester width and the paximum height
its charscters u=e on a line, taking their bias into account;
Sels the slot "espacement_x" to be 15 # raster width increased
by 50 per ecent, and "espacement_y" toe be the maximum height
increased by 50 per cent, and recomputes the number of lines
and rows that can be displayed in the window.

idraw_display(Instance)

clears the display of the window, 4if there ias po font to
display, and if no code has been selected, stops; if one code
has been selected, and if this code is displayed, draws a
rectzngle of the size of a character at the position
corresponding to this code, and stops. If there is one font
Lo display, for each displayed code, draws the corrasponding
pattern, if any; if there is none, draws the pattarn
corresponding to the default code, if any; if there is none,
doez nothing. Then checks if one ocode has been selected: in
that ocase, and if the code is displayed, draws a rectangle at
the position corresponding to this ecode,

tseroll(Instance, Message)

Message can be one of the following atoma: "left', 'rightt,
‘up', ‘'down', Scerolls each time of one page, except when he
more colunns orf no mare rows have to be di apl ayed,

:get_selected code(Instance,”Selected_code)

- K0 =

GRAPHIC INTERFACE Page 4-18

Answers 'mil' if mo code is currently selected.

tselect oode(Instance, X, Y)
computes the code which has been selected by the user by a
mouse click with the mouse at the position (X,Y), and calls
the method :select_code(Instance, Code).

iselect_code(Instance, Code)

draws a rectangle at the position corresponding te the
previously selected code, if there is one, and if it is
di spl ay ed. Since the reectangle is drawn using an
'exclusive or' operation, it has for effect to erase the
rectangle previously drawn. Then checks if the code Code is
equal to the previocusly selected code, if army: if it is the
case, lforgets this code, and puts the atom 'nil' intoc the slot
"selected code"; otherwise, puts the new code Code inte the
slot "selected code", and draws a rectangle around the new
Code il it is displ zyed,

:draw_char(Instance,Code)

if the variable Code is instanstiated to the atom "nil', does
nothing. If the code Code iz not eurrently a displayed eode,
does nothing; otherwise, computes the 8 lower bit part and
the 8 higher bit part of the code Code, and uzes them as
coordinates for drawing the pattern associated to the code
Code, or, if there is none, the default pattern. If there is
no default pattern either, does nothing.

4.,11.4 Local Predicates

draw_di spl ay{ Instance}
draws on the screen the patterns corresponding to the
displayed eodes. Moreover, if a pattern has been assigned to
the defaul t code, draws it as the corresponding pattern of all
the codes which do not have their own corresponding patterns.

draw_display(Instance,Displayed vy, Y)
draws the patterns that must be displayed in the row number Y,
increases Y by one and calls itself recursively. Stops when Y
i= equal to Displayed ¥y, the number of rows di spl ayed.

draw_line(Instance,Y,Displayed_x, X)
draws the pattern which nust be displayed at the intersection
of the row number Y and the column mumber X, increases X by
one and calls itselfl recursively. Stops when ¥ is equal to
Displayed x, the number of columns displayed.

draw_char(Object, X, Y)
Computes the code corresponding to the intersection of the row
mmber Y and the column number X. Oets the record assoceiated
to this code; if there is none, the record associated to the
default code; if there is none, stops. Otherwise, displays
the pattern of the record, centered in the middle of the

- 51 -

GRAPHIC_INTERFACE Page 4=19

intersection zone between the row number Y and the column
number X,

get_record(Instance, ~Record, Code)
Eets the record, an instance of the class
char_record_with_pattern, corresponding to the code Code, in
the font "font™, If there is none, gets the record associated
with the code "default_code". If there is none, instantiates
Record to the atom 'nil’,

soroll(Object, Messape)
Computes the pext wvalues of the slots "initial codem,
Pinitial_code_x" and "initial code_y" according to the
direction of serall reguired by the message Message, colears
the display and draws it again, displaying codes according to
the mew values of these slots,

new_code(Instance, Message)

eomputes the new ocodes to he displ ay ed. Messapge can
ipstantiated tec one of the follewing atoms: ‘'leftr, 'up',
'down' and "right'. In the case where Messape is instantiated
ko "left', modifies only the =lot "initial code_x", by
increasing it by the nmmber of columns that can be di spl ey ed
in one window screen, as long as there are any columns to be
displayed left; modifies also the value of the slot
"initial oodem consistently, The other cases are treated
simil arly.

next_code(Code, Number_of_codes, " New_ocode)
used by new_code, when "initial_code x" or "initial _code y"
has to be inoreased.

previous_code(Code, Number_of_codes, “New_code)
used by new_code, when "initial_code_x" or "ritial code_yn
has to be decresased.

compute code(Instance,X, Y, “Code)
Here, (X,Y) refers to the position of the mouse on the soreen,
Computes the code Code corresponding to the the coluwmn and the
Fow pointed by the mouse,

draw_eccde_box(Instance)

If no code is currently selected, doaes nothing. Otherwise,
checks if the currently selected code is displeyed or not; if
it is not displayed, does nothing and stops; if it 1is
displayed, computes the 8 lower bit and the 8§ higher bit parts
of the selected code, and calls the local predimate

dr'aw__wde_box{Instance.Cnde_x. Code_y). Code_x corresponds to
the lower B bit part of the code, Code_y to the higher 8 bit

part.

draw_code_box(Instanece, Code_x, Code_y)
draws a rectangle, using an eéxclusive_or cperation, around the
intersection zone of the row and the column worresponding to
the values of Code_y and Code_x respectively,

- 52 -

GRAPH IC_INTERFACE Page U-20

4,12 THE (LASS HORIZONTAL_CODE_DISFLAY WINDOW
4.12.1 Description

This class ipherits the class saszh, which provides a2 frame
delimiting the area on the screen used by the window, and the class
font_inferior_window, as a basic window class. An instance of this
class displays integers in hexadecimal, from 0 to 255 (FF). These
integers correspond to the 8 lower bits of the charzcter codes of a
font. Therefore, they correspond to columns of character patterns
displayed in an instance of the class font_displ ay_window.

A1l the numbers are not displayed together; are displayed only
those which have their corresponding columns shown in the window
displaying a font. The numbers which are displayed are centered above
their corresponding oolumns, Since the distance batween columns may
change in the window displaying a font, the distance between pumbers irn
this window must be changed accordingly. Mzthod= are provided for
handling this problem. Scrolling faeilities are also provided.

4.12.2 Instance Attributes

1. dnitial code: is the value of the smallest integer displayed.
Corresponds to the =slot "ipitial code x" of the window
displaying a font.

2. string width: is a fixed attribute, initialized to the width
of a character string of length 2 in the window system defaul t
font "font_13", Absolute values are currently used instead of
this slot value, which is not very good.

3. espacepepnt: is the distance between two oconsecutive coclumns
displayed in the window displaying a font. It is almost always
the distance between two consecutive integers displayed in this
window, The only exception oomes from the fact that the
integers are centered above their corresponding columns, and
that their size can be of one character or of two., The
exception coours between "F" and m10M,

4. pumber of codes displaved

5. dpitial x: is the horizontal coordinate of the first integer
displayed in this window. Corresponds to the slot "™initial x"
of the window displaying a font.

6. ipitial v: is the vertical coordinate of all the integers

displayed in this window. Haa nothing to do with the slot
"irdtial_w" of the window displaying a font.

- 53 -

GRAPHIC_INTERFACE Page 4§-21

4.12.3 Instance Methods

:get_espacement {Instance, “Espacement)
This method must be modified so that it does not answer the
current value of the slot "espacement", but the mimimum value
the espacement can take in thi= window. See the cdlass
char_mode_di spl ay for details.

:set_espacement(Instance, Espacement)

saves the value of the variable Espacement in the slot
faspacement™; computes the number of integers that it is
possibie to display, and initializes the slot Fipitial_ y", Tt
is not recessary to initialize the s=lot M™pitial y" each time
8 new value is given toc the =lot "espacement™. But it i=s
necessary to do it at least once. It would be better that the
imdtialization of the slot "initial y" were done by the aftep
denmon af'ter:create,

rdraw_display(Instance)
clears the displ ay of the window, and draws
"number_of_codes displayed™ integers in it, in hexadecimal
notation, beginning with the integer "inmitizl code",

:seroll(Instance, Message)
Message can be one of the following atoms: 'left' or "right!,
Serolls each time of one page, except when no more col umns
have to be displayed. The scroll is coordinated with the
seroll of the window which displays a font.

§.12.4% Class Method

alter:ereate(Class,List_of_parameters, Instance)
erases the undeairable cursor, sets the espacement to the
default value 35, and initializes the slots "ipitial_v" and
"nurber of_codes di spl ayed".

4.12.5 Local Fredicates

draw_displ ay(Instance)

draws the integers that must be displayed in the screen of the
window. The integers are converted in strings of length 2,
corresponding to theilr hexadecimal notation, and then
displayed, centered in the interval of space which has been
allocated to them, The width and the position of these
intervals coincide with the width and the position of the
columns associated with each integer in the window di spl ay ing
a font.

draw_displ ay (Instance, Buffer, Code, X, ¥, Espacement ,Width)
clears the buffer Buffer; wusing the method :writef of the
class writef provided by the system, converts the integer Code
ipto & string of length 2, corresponding to it hexadecimal

- B -

GRAPHIC_TNTERFACE Page 4-22

notation; the method :writef writes the resulting string into
the buf'fer Buffer, Then computes the horizontal position of
the string on the window sereen from X, the horizontal
coordimte of the left edge of the area reserved to the code
Code in the window, and Espacement, the width of this area.
There are two cases:

1= when the integer Code iz smaller than 16, the string is
of the form: ™ #%, its horizontal positicn must be such that
the 7#" is centered in the interval [X,¥ + Espacement];

2- when Code is equal to or greater than 16, the string is
of the form "##", and its horizontal position must be =uch
that the "##" is centered in the interval [X,¥ + Espacement].

The vertical position of the string is simply ¥, previously
computed, Once the pasition is determined, draws the string,
increases Code by 1 and X by Espacement, and ecalls itsell
recuraively. Stops when X + Espacement becomes greater than
or egqual to Widith, the interior width of the window.

seroll(Instance, Message)

Messape can be either the atom "left' or the atom ‘'right'.
Computes, according to the messape Messape, the mew value of
the =lot "ipnitial code®, but keeps the old value for a2 while.
Then draws ope more time the old codes, in exelusive or, which
has the effect of earasing them, and draws the new codes
instead, Then saves the new value of the slot "initial_code™
in the slot itself, For aesthetic reasons, each time an old
code is erased, a new one is written iommediately afterwards.

redraw_di spl ay(Instance, Buffer, Code, New_code, X, ¥, Espacement , Width)

Works 1ike the local predicste draw_display/7, with the only
diff'erence that it writes two codes instead of one, at the
same position: Code and New_code, Both operations are or
exclusive operations. The first one erases the code Code,
previously written, the second writes the new code Hew_code
Jjust afterwards, at the same position, Both codes must be
centered according to their own values,

new_code (Code, Nummber_of_codes, Message, "Now_code)
(See the leeal predicates new_node, next_ocode and
previous_code of the class font_display_window).

4.13 THE (LASS VERTICAL_CODE_DISFLAY_WINDOW

4,13.1 Description

This class inheritsz the colass =ash, which provides a frame
delimiting the ares on the screen used by the window, and the class
font_inferior_window, as a basic window class. It is wery s=imilar to
the class horizontel_code_diaplay _window. An instance of this class
displays integers in hexadecimal, from O to 255 (FF), These integers
correspond to the B higpher bits of the character codes of a font.
Therefore, they correspond to the rows of character patterns displayed
in an instance of the class font_display window.

- R -

GRAPHIC INTERFACE Page 4=23

411 the numbers are not displayed together; are displayed only
those which have their corresponding rows shown in the window displaying
@ font. The nmbers which are displayed are centered at the left of
their corresponding rows, Sinece the distance between rows may change in
the window displaying a font, the distance between numbers in this
window must be changed accordingly. Methods are provided for handling
this problem. Seralling facilities are al so provided,

4.13.2 Instance Attributes

1. initial codg: is the value of the mpallest integer di apl ayed,
Corresponds to the =lot "ipitial_code_y" of the window
displaying a font.

2. airine width: i= a fixed attribute, initialized te the width
of a character string of length 2 in the window gy stem default
font "font_13", JAbsolute values are currently used insztead of
this slot value, which is not very good,

3. espacement: is the distance between two consecutive rows
displayed in the window displaying a foent, and the di stance
between two consecutive integers displayed in this window.

4. number of codes digpleyed

5. ipnitial x: is the horizontal coordimate of all the integers
displayed in this window. Has nothing to do with the sl ot
"imitial x" of the window displaying a font.

€. dnitial v: 4is the vertical ccordinate of the first integer
displayed in this window, Corresponds to the slot Minitial_yn
of the window displaying a font,

b.,13.3 Instance Methods

‘get_espacement (Instance, " Espacement)
This method must be modified so that it does net answer the
current value of the =lot "espacement®, but the mimewm val ue
the espacement ean take in this windeow. See the alass
char _mede_display for detail s,

:set_espacement (Instance, Espacement)

puts Espacement in the slot "espacement"; computes the nmumber
of integers that it is possible to display, and imitializes
the =lot "initial _x", It is not necessary to initialize the
slot Minitial_x"® each time a new value for the sl ot
"espacement™ is set., But it is= necessary to do it at least
once. It would be better that the initialization of the = ot
"initial_x" be done by the after demon af ter:create,

- 56 -

GRAPHIC_TNTERFACE Page b-2k

rdraw_displ ey Instance)
cl ears the di =pl ay af the window, and draw s
"number of codes displayed" dirntegers irn it, in hexadecipal
notatien, begirming with the integer "initial eode™.

:sercll(Instznce,Message)
Message can be one of the fellowing atems: 'up' eor ‘down'.
Serplls each time of one pape, except when ne more codes have
to be displzyed. The scroll is coordirated with the seroll of
the window which displays & font.

b,15.4% Class Methad

af ter :create(Class,List_of _parameters, Instance!
erases the undesirsble cursor, sets the espacement Lo the
default valuwe 25, and initializes the slets "initial x" and
"mumber_of _ocodes displayed”.

4.13.5 Local Predicates

draw_di=pl ay{ Instance)

draws the integers that must be displayed irn the screen of the
window. The integers are converted ir strings of length 2,
corresponding to their hexadecimal rnotation, and then
displayed, centered 4in the irnterval of space which has been
aliceated to thar., The heipht and the position of these
intervals ccincide with the height and the positicn of the
rows associated with each integer in the window displaying a
font.

draw_displ ay{ Instance, Puffer, Code, X, ¥, Ezpacement , Height)

olears the buffer Buffer; usirg the method :writef of the
class writef provided by the system, converts the inleger code
into & string of length 2, corresponding to its hexadecimal
notation; the method :writef writes the resulting string irto
the buffer Buffer. Then computes the vertical pesition of the
string on the window screen from ¥, the vertical coordirate of
the upper edge of the area reserved to the code Code in the
window, and Espacement, the height of this area, The vertical
position of the string 1s computed to Dbe sueh that 1t is
displayed as centered in the interval [Y,Y + Espacement]. The
horizontal position of the string is sircply X Onee the
position is determined, draws the string, increases Code by 1
and Y by Espacement, and calls itself recursively. Steps when
¥ 4+ Espacement becomes greater than or egual te Helght, the
interior height of the window.

socralliInstance, Message)
Message can be either the atom ‘'up' or the atom fdown' .
Computes, according to the message Message, the new value of
the slot Mnitial ccde®, but keeps the old value for a while.
Then draws one more time the ald eodes, in exclusive_ ur, which

- BT =

GRAPHIC_INTERFACE Page 4-25

has the effect of erasing them, and draws the new codes
instead, Then saves the new value of the slaot Pinitial code®
in the slot itself. For aesthetic reasons, each time an old
code is erased, a mew one is written immediately afterwards.

redraw_display(Instance, Buffer, Code, New_oode, X, Y, Espacement, Height)
Works like the local predicate draw_display/7, with the only
difference that it writes two codes: instead of one, at the
same position. Code and New_ocode, Both operations are or
exclusive operations. The first one erases the code Code,
previously written, the second writes the new code New_code
Just alterwards, at the same position.

new_code(Code, Number_of_codes, Message, "New_oode)
([See the local predicates new_eoode, next_code and
previous_code of the class font_display_window).

4.14 THE a.ass PARAMETERS _DISFLAY MENU
4,14.1 Description

An instance of this class is not a menu in itself, It is an
object whioh maintains a menu as an attribute., The reason why a menu,
instead of a simple window, is used for only displaying parameters, is
Lthat menus know by themselves how to display the different items they
have to display, and the space required for doing it, and windows do
nat., The reason why an instence of this olass is not itself & menu, is
that it is quicker to create a new menu and to show it than to modify
the old one each time new parameters has to be di spl ay ed.

To ensure an easy use of instances of the class, methods are added
Lo ensure an interface similar to the interface of a menu,

4.14.2 Instance Attributes

. sSuperior: is the superior window from whiech the top level
reads inputs from the user. Tt must be declared as superior at
the creation of the menus. Since several menus may be created,
it must be saved somewhere in an attribute. See the classes
asg _font_display and pattern mode_display for detail s,

2. mepu: is the currently di=pl ayed menu.

- 5 -

GRAPHIC _TNTERFACE Page 4-26

4.14.3 Instance Methods

:set_valuves{Instance,list_of_values)

the list List_of values must be of the following format:
[Huzberi,Number? ,Nunber3], where the mmbers must be integers.
Computes frogm the list List_of values a list of parameters
adapted to the format required by the window system for
cregting menus; greatez & nmew menu, sets 1its size and
position to be the smpe as the size and the position of the
preceding menw, shows the mew nenu, kills the old one, and
zaves the old menu in the slot "menu”.

:show(Instance)
Thisz method, like all the following ones, are interface
methods. They Jjust call the method of the menu "menu®™ which
nas the seme mame,

:get_size(Instence, "Width, "Height)
iset_size(Instance,Width,Height)
:set_position(Instance, X, Y)
iget_position(Instance,” X, Y)
tget_title(Instance, " Title)
:set_title{Instance,Title)

1kill{Instznce)

4.14.4 Class Method

rorezte(Class,[items_list(List),superior(Superior)],”Instance)

the 1ist List must be in the format [(Number?,Number?,Numberi],
where Lhe numbers must be integers. (reates a mew instance of
this dlass; saves the window Superior into the glot
"superiar®; computes from the list List a list of parameters
adapted to the format required by the window system for
creating menus; creates a menu, and saves this menu intc the
slot "menu¥,

4.14.5 Local Predicates

menu_list(Instance,[X,Y, 2], _
[items_list{"Items list},superior(~Superior)])
¥, ¥, and Z must be integers. For each of them, computes a
string, containing the integer in decimal notation, as long as
the integer is not too big or megative; in that case, uses a
string composed of space characters instead. Then computes a
structure zdapted to the format required for coreating mepus,
and instantiates the variable Ttems list with this structure.

- 59 -

GRAPHIC INTERFACE Page 4-27

This structure contains the strings that the mepnu will
displ ay : on the first column, the strings "Width™, "Heipgntn
and "Dias", on the second column, the string corresponding to
the integers X, Y and 2.

get_nmmber_string(Number,”3tring)

ereates a string of length 4; if the integer Humber is
amaller than 10000 and non negative, writes it in decimal
notation into the string, completing with Space characters if
necessary; otherwise, simply fills the string with space
characters. Feturns always a string of length 4, so that the
mimmum size of the menus created by an instance of the cl ass
will always be the same, This predicate could be simplified
by using the method :writef of the class writef (see the class
horz_code_display_ window).

- 60 -

CHAPTER &

EDITING_FACILITIES

5.1 DESIGHN CONSTRAINTS

The editing facilities are the core of the font editer. They must
provide to the user gquick and convenient teools for editing patterns.
This implies:

1. a format for recording character patterns such that the color
of each dot can be accessed and modified very easily. Since
this will probably not be the standard format of instances of
the clazs character_record with_pattern, facilities to convert
the format of patterns from a format adapted to the editing to
the standard format must also be provided,.

£. away of displaying the pattern being edited such that each dot
of the pattern is displayed as a sgquare of several dots wide.
It must be possible to modify the pattern dot by dot, only by
using the mouse; to move the pattern; to cut parts of the
pattern, and to reuse old parts characters, The "reusing
parta" faeility 4is probably the most important. Tt requires
the possibility of saving and loading patterns or parts of
patterns in pattern registers, and the ability of displaying at
least two patterns at the same time on the soreen, szay, one in
grey and the other in black, which can be merged into one af ter
their relative position has been decided.

3., Moreover, a pood interface with the other parts of the editor,
mainly with the top level system, is required.

5.2 DESIGH COMMITMENTS

For gquick and direct access to data, a hash table seems
appropriate. It has therefore be decided to store the patterns being
edited in hash tables. The horizontal coordinate of each black dot is
stored in the table, wusing the vertical coordinate as key. The
coordirates of the dots are their absolute coordinates when displayed in
the editing window, computed in mmber of squares. (The suare of
absolute coordinates (0,0) is the one displayed at the top left corner

- 61 =

EDITING_FACILITIES Page 5-2

of the sereen). PRecording the absolute cocrdinates of each dot that way
allow gquick access and modifieation of the cclor of each dot, The
patterns being edited are stored in instances of the class edit record,
wWhich provides a variety of metheds for handling cenversions of farrata,

For displaying a pattern to be edited, a special window olass has
been designed: the class as edit pattern window. An instance of this
class is specialized in graphics, This is the only elass, with the
class font_graphies window, to provide graphiecs methods that must be
executed inside the window manager. See the class Font_graphics _window
For more details about this probl e,

dnother class, the class ediL_pattern_windw, has been designed
for providing interfscing methods with the top level gystem, that the
claas as edit patterrn window does not provide. The ol ass
edit_pattern window inherits the class ag_edit_pattern,

5.3 THE (LASS EDIT_RECORD
5.3.1 Descripticon

kn instance of this class is ip charge of keeping, in & hash
table, with direet and easy acceas, a patiern that is being edited. It
stores only the absolute coordinates of the black dots of the pattern
separately. The horizontal coordinate is stered in the hash table with
key the vertical coordirmate, It provides methods for modifying the
pattern dot by dot,

It is also in charge of converting, in the standard format of
instanges of the class cnar_recerd with pattern, parts or the total ity
of the pattern it maintains in a hash table. The whole pattern format
i3 required when the pattern has te be zaved in a register; only a part
ef the pattern is converted when the user uses the "CUT" operation.

Moreover, it iz in charge of keeping the information about the
dimensions of the box which is displayed in the window used for editing
pPatterns. The dimensions of the box can be modified at any time by the
user, and correspond to the szize and the bias the uszer wishes to give to
the final character, This information is used when converting the
pattern being edited into the definitive format in which it will be sent
Lo the character mode. In the defimitive format, only the part of the
pattern which lies inside the box i=s saved; its width, height and bias
are set Lo be the width, the height and the bias of the box.

Tt also provides a method for converting oeld patterps stored in
the char record with_patterp format into the hash table format, and a
method for translating the pattern. This last method ean be used for
converting absolute coordinates to relative coordimates, relative
toordinates to absolute coordinates, or simply for moving the pattern on
the screen, It also provides method for modifying the size and the
position of the box,

The window used for editing patterns stores all the infermation it
needs for drawing its display into two instances of this class, one of

- 62 -

EDITING_FACILITIES Page 5-3

which is displayed in solid black, the other in grey. It 1is therefore
straightforward to exchange the pattern displayed in grey and the
pattern displayed in black in this window; what is less straiphtforward
and whieh 1is provided as an instance method of this class, is the
function which adds ancther pattern received from outside to the pattern
stored inte the hash table,

§.3.2 Instance Attribute

An instance of this class has 11 attributes.

T. &rid size: This parsmeter has already been introduced, It is
the size of the squares used for representing the dots of the
patterns displayed in the window used for editing them, It i=
used only for converting the size of the editing window from
number of dots to number of squares, It nust be suppressed,
since the grid size has nothing to do with patterns. The size
of the window used for editing patterns must be directly sent
to this instance computed in number of sguares. In the present
version, must be initialized just after the ecrestion of an
instance.

2. dindow width: is the width of the window used far edi ting
patterns. See the instance attribute "grid_size®. Must be
imitialized just after the creation of an instance of this
class.

3. window height: is the height of the window used for editing
patterns, See the instance attribute "grid size™, Must be
imitialized just after the creation of an instance of this
cl a58.

b, box x: is the absolute horizontal coordinate of the upper left
corner of the box, as displeyed in the window used for editing
patterns. 'The coordipate is computed in rumber of sguares,
Must be dinitialized just after the crestion of an instance of
this class.

. DRX ¥: is the absolute vertical coordinate of the upper 1left
corner of the box, as displayed in the window used for editing
patterns. The ccordinate is computed in number of muares.
Must be initizlized just after the creation of an instance of
this eclass.

6. box width: is the width of the box, as displayed in the window
used for editing patterns, It is computed in number of
squares, Its default value is 13, the width of the characters
of the default font "font_13%,

T. Dbox height: is the heipght of the box, as displayed in the
window wused for editing patterns. It is computed in number of
squares, Its default value iz 19, the heipght of the characters
of the default font "font_13"%,

- 63 -

EDITING_FACIL ITIES Page S5-4

a.

A4l
W

10.

11.

5.3.3

box base:r 1is the base of the box, which is the di stance
baetween the wupper lime and the middle lire of the box, as
displayed in the window used for editing patterns. The
relation between the base of the bax and the bas of the
pattern being edited is:
Bias = box height - box base

it is computed in number of sguares. Tts default value is 3,
the mias of the characters of the default font "font_ 137,

record: this slet is used for storing instances of the clzss
char_record with_pattern, during format conversion operations.,

Lipne list: dis an instance of the class list, It contains the
list of the lines, in absoclute coordinates, whiech econtains at
least one black dot.

edit pattern: is an instance of the class hash_index, It
contains the coordinates of the hlack dots of the pattern being
edited, The vertical coordinates are yused as keys, the
horizontal coordinates as entries.

Instance Methods

set window_size(Instznce,Window_width, Window_height)

iget_grid_size(Instance, Grid_size)

iset_grid _size(Instance,Crid size)

‘et _box _size(Instznece,Box_width, Box_height, Box_base)

modifies the values of Box_width, Box height and Box _base ap
that the box fits inte the window used For editing patterns,
and sc that the base lies in the interval [0,Box_height] and
Saves the resulting values into the corresponding =lots,

:get_box size(Instance,”Box_x, “Box_y,” Box_width,

"Box_height, " Box_base)

‘set_box size(Instanese, Box_x, Box_y, Box_width, Box_height, Box_base)

modifies the values of Box_x, Box_y, Box_width, Box_height and
Boyx_base so that the box fits into the window used for editing
patterns, and so that the base lies in the interval
[0,Box height], and saves the resulting values intc the
corresponding sl ots.

teenter _box{Instance)

checks if the dimensions of the box fits the size of the
window, in the ecase the user had changed the grid size and
therefore the size of the window in mumber of suares; then
computes the values to give to the slots "box_x" and "box y"
s0 that the box is centered in the middle of the window used
for editing patterns; then translates the pattern stored is
the hash table the same way the box has been moved, =0 that

- 6l -

EDITING_FACIL IT IES Page 55

the relative position of the pattern and the box remains the
same.

imove_box(Instance,Vector_x, Vector_y)
translates the box using (Vector_x,Vector_y) as the vector
associated to the translation. Stops the move bafore the box
goes out of the window used for editing patterns.

:move patterni{Instance, Vector_x, Vector_y)
translates the pattern stored in the hash table "edit_pattern®
using (Vector_x,Vector_y) as the vector associated to the
tranzlation. Translating cutside the window iz all ewed. The
dots lying outside the window are simply not displayed.

:get_lipe list(Instance, Lime list_contents)

:get_whole size and position(Instance,"Width, " Height,
“Char_x, " Char_y)
If there is no pattern recorded in the hash table
"edit_pattern®™, fails. Otherwise, computes the zize and the
position of the smallest rectangle that contains the pattern
stored into the table "edit patiern™.

iget_record(Instance, Record)

If the table "edit pattern™ is empty, 4instantiates the
variable Hecord to the atom 'nmil'., Otherwise, maves the part
of the pattern, stored in the tahle, which lies inside the box
into & new instance of the class char_record with_pattern.
Saves also in this record the width, the heipght and the bizs
of the box. Tt i= used for sending a character pattern to the
character mode,

:get_whol e _record(Instance,”Record)

If the table is empty, instantiates the variable Record to the
atem 'mil'. Otherwise, saves the whole pattern stored in the
hash table inte a new instance of the el ass
char_record with_pattern. Computes the exterior size of the
pattern, and saves it into the pev record. Saves also into
the record the pozition of the pattern. It iz the format used
for saving a pattern into & register,

:get_cut_record(Instance, X0,Y0,X1,¥1,"Record)

{X0,Y0) and (X1,Y1) must be the absolute coordimates of two
opposite vertices of a rectangle. If the table "edit_pattern®
iz empty, instantiates the variable Record to the atom 'nil'.
Otherwise, saves the part of the pattern which lies inside the
rectangle defined by the absolute coordinates of & ocouple of
opposite wvertices dinteo & new instance of the claas
char record with_pattern. Saves also in the new record the
width and the height of the rectangle, as well as the
coordimmtes of its upper lef't vertex, This format is used for
saving a part of a pattern into & regster,

:set_record{Instance, Record)
Must be paired with the method :get record. lears the
contents of the slots ™lipe_list" and "edit_pattern™ and

centers the box; saves the record Record into the slot

- 65 -

EDITING_FACILITIES Page 5-6

"record™; if [HRecord is equal to the atom "mil', stops;
otherwise, sets the size of the box to be equal to the size of
the record (the bias of the record is translated into the base
of the box using the equation: base = height - bias); 1oads
the pattern of the record into the table Tedit pattern", the
vertical coordinites of the lines which contain at least one
black dot of the pattern being saved inte the 1ist
"lime_list", Loads the pattern in such a way that the
position of its top left corner is (0,0). Then moves the
pattern so that itz top left corner coineides with the top
left corner of the box. Thus the pattern lies exactly inside
the box, which has the =size of the pattern.

iset_whole record{Instance, Record)

Must be paired with the method :get_whole_record. Clears the
contents of the slots "lipe list" and "edit_pattern®: saves
the record Record inte the slot "record"; if Record is equal
to the atem 'nil', stops; otherwise,loads the pattern of the
record into the table "edit _pattern™, the vertical coordinates
of the lines which contain at least one black dot of the
pattern being saved into the list "lipe list". Loads the
pattern in such a way that the position of its top left corner
is (0,0). 'Ten moves the pattern so that its top left corner
has the position it had on the screen before it wazs =maved in
the record Record by using either the method iget_whole_record
or the method :get_cut_record.

It must be noted that only instances of this class are
authorized to areate instances of the class
char_record with_pattern (at the exception of the instanees of
the cdlass edited font, which are ocnly allowed to generate new
copies of already existing patterns). Only three metnods can
generate new instances of this olass: the methods
‘get_record, :get_whole record and :get_out_record, The first
one generates a defindtive format, to be sent to the character
mode; this format is understood by the method iaet_record,
which is used when an old pattern is goeing to be modified.
The last two ones generates a format suitable for saving the
record into pattern registers; this format is understood oy
the method :set_whole record.

tget_dot_color{Instance,¥, Y, Colar)
(X,Y) are the absolute ccordirates of a dot on the screen of
the editing window, in number of sjuares. Color is
instantiated to the atom 'hlack' if the the dot (¥,Y) is
recorded in the hash table "edit_pattern”, to the atom 'white'
ctherwiss.

iset_dot_color(Instanece, X, Y, Color)
(X,Y) are the absclute coordinates of a dot on the screen of
the editing window, in number of aguares, If the color of the
dot of coordinates (X,¥) is already Color, does nothing;
otherwise, if the oolor Color is 'hlack', records the dot
(X,Y); if the color Color is 'white', removes the dot (X, Y),

iempty(Instance)
Succeeds if the table "™adit pattern®™ is empty, fails

- B =

EDIT ING_FACIL ITIES Page 5-7

5.3,

5.3,

otherwise.

:get_lime(Instance, List,Y)

Instantiates the variable List with & (stack vector) 1list
containming the horizontal cocordimates of the black dots, of
verticval coordipate ¥, of the pattern stored in the tabls
"adit _pattern®. The list may be empty.

tadd_pattern({Instance, Record)

Record comes from ancther instance of this class, generated by
2 call to the method :get_whole_record., If Record is egual to
the atem 'nil', does nothing. Otherwise, if' the table
"edit pattern®™ is ewmpty, calls the method :set_whole record
for leoading the record Record inte the table. Otherwise,
moves the pattern recorded in the table te the position (0,0),
saves the record Record intc the slot "record", adds the
pattern of this record to the table, and moves back the
contentz of the table to its initial position.

Mo new local predicate was introduced for implementing this
method. On the other hand, the display of the result of this
operation carnot be optimized by wuwsing this implementation,
because it does not provide any way to remember which squares
have been added.

:elear(Instance)

y

centers the box by calling the method :ecenter_box; eclears the
table "edit pattern" apd the list "line_list™,

Class Methods

iereate(Class, " Instance)

Identical to :new(Class,Instance).

:ereate(Class, Record, “ Instance)

5

creales a mew instance of this cless, and loads the pattern of
the record REecord in it, using the method :set record.

Local Predicates

get_record{Instance, Record)

(See the instance method :get_receord).

lozd record(Instance, Record)

Record must have been saved already in the slot "record"™. The
second argument of this prediecate ia therefore not very
uzefywl, and can be replaced with profit by the line of ocode:
Reccrd = Instancelrecord

Saves inte the record Record the width, the height and the
bias of the box; moves the pattern stored in the table
Yadit pattern" in such a way that the dot displayed din the
upper lef't corner of the box is translated to the upper lelt

-6?-

EDITING_FACTL ITIES Page 5-8

corner of the window screen, which is of coordinates (0,0).
Then saves in a double bytes string the part of the pattern
recorded in the table which lies inside the rectangle of top
left vertex (0,0), and of size the width and the height of the
box, and saves this string in the record. The string iz in
the format required for the patterns stored in
char_record with_pattern instances. Finally moves back the
pattern stored in the table te its original position,

get_wheole record{Instance, Record)
{See the instance method :get_whole record),

load whole_record(Instance, Record)
Record must have been saved in the slot record®. The second
argument of this predieate is therefore not very useful, and
can be replaced with profit by the line of ocode:
Record = Instancelrecord
Computes the size and the position of the apaller rectangle
that contains the pattern stored ir the table "adit_patternt.
5aves these size and position in the record slots, moves the
pattern in such a way that the position of the top lef't corper
of the pattern goes in (0,0}, saves it in a double hytes
string and saves the string in the record, The sring is in
the format required for tha patterns stored in
char_record with_pattern instances. Finally moves back the
pattern stored in the table to ite original position,

get cul_record(Instance, X, ¥,Width, Heignt, “Record)
(See the instance method iget_cut_record).

load cut_record(Instance,X, Y, Width, Heipght, Record)
Record must have bean saved in the slot "recerd®™. As before,
the last argument of this predicate is not really useful.
Saves the four parameters (X, 7Y, Width,Helght}) in the reeerd
slots, moves the pattern in such a way that the dot of
coordinates (X,Y) is translated to the dot of cooprdinates
(0,0), saves in a double_bytes string the part of the pattern,
recorded in the table "edit_pattern”, which lies inside the
rectangle of positien (0,0) and of size {Width,Height), and
saves this string in the record., Then moves back the pattern
stored in the table to its original position,

adjust_box_size(Instance,Width, Heith t, Base)
Checks the proposed size and base af the box, modifies them if
necessary in such a way that the box is kept inside the
editing window, and saves these values intoc the corresponding
slots,

center_box(Instance)

load edit_pattern({Instance)
Saves in the hash table "edit_pattern" the contents of the
record Trecord®, and medifies the list "lipe listm
consistently. For details about the paremeter raster width,
see the class char_record with_pattern,

- 68 -

EDITING_FACILITIES Page 5=9

put_string into_tabl e(Instance,String,Width, Raster_width, Height,H)

The horizontal coordinates of the dots of vertical coordimtes
H iz stored in the substring of the string String of position
H # Raster_width and of length HRaster_width. PBRaster width is
not mecessarily the smallest number of double bytes required
for atoring a line of dots of width Width. It may be larger
than the minimw value. In that ecase, the first double bytes
of the substring does not contain any relevant information and
can be thrown away.

It is what this predicate does: it takes from the string
String only the interesting part of it. The position of this
part is (H+ 1) ¥ Haster_width - Min raster_width, and its
size iz Min raster_width, where Mn raster_width 1is the
smallest number of double bytes required for storing a2 line of
dots of width Width.

T™en 1t saves the contents of this substring in the edit
format, increases K by one, and calls itself recursively, It
stops when H becomes egual to Height.

put_one_line{0bject, Substring, ¥, Width, Raster_width, N)
This time, Raster_width must be equal te the =mallest number
of double bytes required for storing a line of dots of width
Width., Tt must also be equal to the length of the string
Substring.

Each double byte is an integer smaller than (2 power 16).
In bDase 2, this integer can be unigquely deccmposed in the
following form:

X = X0 % (2"15) + ... + X15 ® (270)
where X0, X1, ..., X15 are egual either to 0 or 1.

For saving a line of width 16 exaetly, it is really easy to
use a double byte, The cnly thing to do for computing it is
to specify the values of the quantities ¥0, X1, ... X15 which
appears in itz decompoaition in hase 2. And there ia a
mtural way to do so: Aif the dot of position 1 in the lime is
black, ¥Xi is =zet to 1; otherwise ¥Xi i=s s8t to 0.

For saving a lipe of width 32, 48, 64, or any multiple of
16, it is not more difficult really: the color of the 16
first dets of the line are saved in a double byte as before,
and for the rest of the lime, this procedure is called
recursively,

But what happens if the width of the line is not a multiple
of 16 7 A new line is made froam it, by adding white dots te
ite left, until its width beEcomes a multiple of 16, apnd it i=
this new line which is stored in double bytes.

This predicate is doing the imverse operation: it takes
from the string Substring the double byte whioch lies at the
position N,and translates the ipformation it contains into the
horizontal coordinates of the black dots of wvertiml
coordinates ¥, and stores these ocoordinates into the hash

tabl e.

- 69 -

EDITING_FACIL ITIES Page 5-10

In the case of the first double byte, it meeds to know the
number of white dots that have been added at the lef't of the
lipe when it has been stored in the string, This number is:

A = 16 ® Raster_width - Width,

Mus, in the decomposition in base 2 of the first double by te,
anly the values of XA, ..., X15 correspond to dots of the
line. Te horizontal coordinate of the dot of the linpe
corresponding to XA is 0.

In the case of the other double bytes, all the Xi correspond
to dots of the line. The only important parameter in that
case is the horizontal coordinate of the dot of the lipe
corresponding to X0. It ezsy to see that this coordinate is
equal to:

16 # N - ((16 * Raster width) - Width).

put_one_el ement (Instance, Double_byte, Y, X, Pointer)

If, in the decomposition of Doubl e _byte in base 2 the quantity
£ power (15 - ©Pointer) appears, removes it, stores the dot
(X,Y) in the table "edit pattern", and, if necessary, the
vertical ocoordinate Y in the list line_li=t"™; otherwise does
nothing, Then always incresses X and Pointer by 1, and ecalls
itself recursively, Stops when Double byte becomes equal to
0.

save edit_pattern(Instance)

Supposes that the slot "record" contains an instance of the
elass char_record _with_pattern, and that the size of this
record has been recorded in its slots, MAsks to this record
its size, computes the number of double bytes recessary to
store a line of its pattern. Creates a double bytes string of
length this number times the height of the record., Then
Stores in this string the part of the pattern saved in the
table Medit_pattern™ which begins at the position (0,0) and i=s
of the same size as the record. Then saves this string in the
record "record®,

put_table intc string(Instance, String,Width » Baster_width,
Height,Line_li=st)

Removes from the list Line_list the vertical coordipate H of
the raxt lipe, If this coordinate is negative, or larger than
or equal to Height, does nothing, Otherwise, computes the
number of white dots it has to add to the left of this linpe
(see the local predicate put_one_line for details), creates a
string of length Raster_width to store this lime in, stores
this line in this new string, and copies the contents of this
new string in the string String, at the position corresponding
to the line, that is H # Raster_heignt. Then ocalls itself
recurzively. Stops whep the list Line_list is empty.

put_list_into buffer(Dots 1ist,Substri ng, Width, Raster_width,
Lost_space)
Lost_space must be instantiated to the number of white dots
that must be added at the left end of the line (see the local
predicate put_one_line). Removes the horizontal coordipate X
of the next dot from the list Dots list; if it is negative,

- T0 -

EDITING_FACILITIES Page 5=11

or larger than or egual to Width, deoes nothing. Otherwise,
shifts ¥ by the number of white dots that must be added on the
lef't, computes in which double byte string of the string
Substring X must be recorded, and then computes the power of 2
that must be added to this double byte for ¥ to be saved. Ir
¥is divided by 16, one can write:

X = 16 ® Quotient + Remainder

Quotient is the position of this double byte in Substring, and
remalnder the position of the black dot of coordimate X in
this double byte. Therefore, the power of 2 that must be
added to this double byte is (2 power (15 - Remainder)}.

get_dot_color{Instance,¥, Y, Color)
set_dot_color{Instance, X, Y, Color)

add_list(Instance, X, ¥)
This method iz supposed to be used just after the det (X,Y)
has been stored in the table "edit_pattern®. Checks if the
pontents of the line of vertical coordinate ¥ are composed of
the dot (X,¥) only; in that case, adds ¥ to the list
"lipe_list", Otherwise, does nothing.

remove list(Instance, X, Y)
This method is supposed to be used just after the det (X,7)
naz been removed from the table "edit _pattern™ Checks if the
line of vertical coordinate Y is empty or not; if it i=s
empty, removes Y frore the List "lipe list®, Otherwise, does
nothing.

raster_width{Width, Raster_width)

check_dimensions{Instance, Input_width, Input_height, Input_base,
“Box_width,"Box_height, " Box_base)

If Input_width is negative, instantiates Box width to 0O if
Input_width 1s larger than the width of the editing window, in
nunber of squares, instantiates Box width to the width of this
window; otherwise instantiates Box _width to the value of
Input_width. TIwes the same [or Box_height and Box_base. The
limits for Box base are O and the height of the window.

check dimensions(Instance, Input_x, Input_y, Input_width, Input_height,
Input_base, "Box_x, “Box_¥, Box_width,
“Box_height, "Box_base)
Computes Box_width, Box heipht and Box base by e¢alling the
local predicate check dimenszions/T; then if Input_x 1is
negative, instantiates Box ¥ te 0; i1if Input_x + Box_width is
greater than the width of the window, in number of sguares,
then instantiates Dox x to the difference between the window
width and the value of Box _width; does the same for Box_ Y.

meve_pattern(Instance, Vector_x, Vector_y)
Creates a new hash table, apd translates the pattern recorded
in the table "edit pattern™ and stores the result in this new
tahle. The vector of the trenslation is (Vector_x, Vector_y).

-T1 =

EDITING_FACILITIES Page 5-12

5.4

move _pattern(Instance, Table,Line_list, New_line list '

Vector_x, Vector_y)

Hemoves the vertical coordinate of the mext line from the list
Line_List; translates this coordinate of Veoter_y, and if the
new vertical coordinate is negative, increases it by (2 power
16). The reason of doing so is that the vertical coordinate
of the lines are used as keys of hash indexes, and that hash
index do not aceept negative nunbers as keys, For avolding
this problem, the keys are computed modulo a large number: 2
power 16,

Then translates the dots of the next line by Veetor x and
stores the result into the table Table, using for key the
translated vertieal coordinate, Then calls itzelf
recursively. Stops when the list Line list ia empty.

move_line(Instance, Table, Y, New_y,Dots _list, Vector_x)

For all the horizontal coordinates X appearing in the 1list
Dots_list, remeves the dot (X,¥) from the tahle
"edit_pattern®, which is perfectly useless, sminee this table
will never be used again, and adds the dot (¥ +
Vector_x, New_y) to the table Table,

move_box{Instance,Vector_x, Vector_y)

translates the box of (Vector_x, Vector_y) as long as the box
Stays inside the window used for editing patterns, If the
vector (Vector_x,Veotor_y) is too larga, it is cut so that the
translation keeps the box just inside the window,

compute size and position(Instance,Line_list,

Min x, Min_y,Max_x, Max_y)

removes the vertical coordinate of the pext line from the list
Line list, and ealls jtself recursively. If this coordipate
is larger than (2 power 15), it is considered that this
coordinate 1is indeed negative, and that what was recorded in
the list is a positive integer, eguivalent modulo (2 power
161. Thus, in that case, this coordipate is decrezsed by (2
power 16, With this wvalue, and the values computed
recursively, determines the values of Min_y and Max_y. ‘Then
computes the minimue and the marximum values of the harizontal
coordinates of the black dots of the next lipe, and determines
the values of Min x and Max_x using the wvalues computed
recursively.

compute_extremums(List_of _integers, "Smallest, "Largest)

THE CLASS AS_EDIT PATTERN_WINDOW

1-?2-

EDIT ING_FACIL ITIES Page 5-13

5.4.1 Description

This class imherits only the basie window class:
font_inferior_window. It is the most important window class used by the
font editer.

Ain instance of this class is in charge to provide to the user
hasiec facilities to edit a pattern., Firat of all, it provides a grid,
which divides the soreen of the window 4in regular squares, Bach of
these squares can be accessed ly the user, who can change their color
from white to black o from hlack to white by simply olicking the mouse
on them. The pattern composed of these blzckened sguares is called the
blaek pattern. This patiern can be saved at any moment in a pattern
register or sent to the characteér mode for creating a new character.

fn instance of this class provides also one reglster for storing a
pattern. The oontents of this register are displayed in the window
itself, as if it were the black pattern, with the only difference that
the dots are displayed in grey instead of being displayed in black. The
eontents of this register form what is called the grey patterp. The
user can make the difference de visu between the black pattern and the

grey pattern,

It displays also & box, which mission is to help the user in
setting the final size and bias of the character pattern, and provides
methods For modifying the size and the position of the box,

ALl the structures displayed on the screen: the grid, the black
and the grey patterns and the box, are added in the display rather than
copied. This ereates a soreen image reasonably easy teo understand, and
has the strong advantage of allowing a modul ar implementation of the
display methods., Moreover, the problem of distinguishing between dots
of the grey pattern only, dots of the black pattern only, and dots which
are both of the grey pattern and of the black pattern is simply solved
by di=playing the dots of the grey pattern in light grey. Wherever a
black dot i3 sdded to a grey dot, the result will appear in dark grey.

To speed up the display, two patterns, corresponding respectively
to & black sgquere and a grey square are kept in attributes, in the
double bytes string Pormat adapted teo the interface of the graphies
methods provided by the window system. They are computed only at the
areation of the instance, and each time the size of the grid is modified
by the user.

The choice of the pattern used for displaying grey squares was not
E2SY. First of 2ll, a pattern using one third of black dots and two
third of whites was tried, but appeared to be difficult to distinguish
fror the inverse pattern. Then a regular pattern composed of one fourth
of black dots and three fourths of whites has been tried, but turned to
be wuwnusable because of a important flickering of the soreen, The
present veraion is also a pattern composed of one fourth of Gblack dots
and three fourtns of whites, which avoids flickering by repeating twice
each lime of pattern.

The hleck pattern and the grey pattern are stored each in a
different instance of the class edit _record, which allows easy

- 73 -

EDITING_FACIL ITIES Page 5=14

modifications of the patterns. Even if the grey pattern ecannot be
directly modified, it is stored in exactly the same format as the black
pattern, mainly because the operation of exchanging these two patterns
is a very common one, and must be kept as simple as possible, However,
the zize and pesition of the box are stored only in the Black record,
and must be transmitted from one record to the other when the black and
the grey patterns are exchanged,

At last, a method has been added to allow the user to draw &
pattern simply by moving the mouse on the screen, The implementation of
tnis method is the only one ever concerned with efficiency in the whole
sy stem, it gives an idea of the performance that can be expected from
the font editor and the PSI machine.

5.4.2 Instance Attributes

1. grid size: well known parameter; contains the size, in number
of dots, of square of the grid, Its value can be changed by
the user. The gdmissible values run free 5 to 25.

£. draw area: this slot is used by the 1oeal predicates in charge
of drawing the patterns. They keep in it a bitmap area
containing the pattern of a hlack or a grey square. When not
used, has the value 'rnilt,

3. operation: is a fixed attribute, initialized at the value
exclusive oe, The graphics inastance methods of this class all
use the exclusive or operation.

4. mrey string: contains a double byte string in whish the
pattern of a grey square of size "grid_size" is recorded. Its
oontents are wodified each time the grid size is modified,

5. GDlack strine: contains 2 double byte string in which the
pattern of a bMack square of size "grid_size” is recorded, Its
contents are modified each time the grid size is modified.

6. grid string: contains a double byte string in which a pattern
corresponding to one line of the grid of the soreen is stored.
This pattern iz composed of regular intervals of lengtn prid
size, such that, in an interval, the only black dots are the
First and the last., This pattern is used For drawing the grid
of the window. It is modified each time the grid size is
modified. Since it is only used onee, it may not be npecessary
to save it as an attribute.

T. S@pty stripe: contains a double bytes string in which a white
line of the s=soreen is stored, For drawing the grid of the
window, a bitmap area of the size of the window screen las
allocated, the grid is drawn in this area, and then the area is
transferred into the hitmap memaory displ ayed in the screen of
the window, Since the window system does not usually clear the
dreas when allocating them, it was necessary to clear the lines

- Th -

EDTITING_FACILITIES Page 5-15

5.4,32

of the area, not filled bty the pattern stored in the slot
"grid string™. It is what the pattern contained in this =slot
is wused for, A better zlgorithm would be to clear the area
Pirst, using a window system method, and to use orly the
"grid string™ when required,

black record: saves the instance of the class edit record in
wWhich the Utlack pattern and the size and dimension of the box
are reccrded.

Erey_record: saves the instance of the class edit record in

which the grey pattern is recorded.

Inatance Methods

tset_pgrid size(Instance,Grid size)

saves the value of the variable Grid_size into the slot
Marid_size"; the wvalue must have been checked baf'ore;
computes the patterns corresponding to a black and a Erey
3quares of size Grid size, and stores them into the sl ots
"grey_string" and "black_string": computes the patterns used
for drawing the grid and stores them in the eorresponding
slots: "grid string" and "empty_string™; sets the inside
units of the window to {grid size,grid size), =0 that the
position of the mouse is directly read from the window Sy stem
in number of squares instead of being read in number of dota;
then initializes the two instances of the class edit_record
saved in the slots "blaek record™ and "grey_record", by giving
ther the size of the window, the value of the grid size and by
asking them to set the box position in the middle of the
sareen,

ks mentioned before, (see the class edit_record), the
instances of the class edit record are not concerned in the
real size of the window, neither with the value of the grid
size, but rather in the size in number of sjuares of the
window, Thi= should be meodified.

iget_grid_size{Instance,™Grid size)

tget_operation{Instance, Operation)

rset_operation{Instance, Operation)

rcenter _box(Instance)

Centers the box irn bath the "bl zck_record" and the
"grey_ record".

idraw_display(Instance)

clears the window, draws the grid, draws the &lack record,
draws the grey record and draws the box. All these operatlions
are or exclusive., They all use methods that must be executed
inside the window mamager, except the method which draws the
boi,

- 75 -

EDITING_FACILITIES Page 5-16

:draw_char_box(Instance)
Draws the box, using an exclusive or operation.

tdraw_reccrd(Instance, Message)
Messagpe can be one of the three following atoms:
'bl ack_record', 'grey_record' or ‘'all'. Calls, through the
window manager, the method :do_draw_record for drawing either
the black record, the grey record, or both,

:do_draw_record{Instance, Message)
Messapme can be ane of the three following atoms:
'black record', 'grey_record' or 'all'. Must be executed
inside the windoew manager. Draws either the black record, the
grey record, or both, according to the message Messapge,

tblacken _dot(Instance, X, Y)
(X,Y¥) correspends to the position of the mouse on the soreen,
computed in number of sguares, and therefore to the absolute
coordinates of a dot of the black pattern. I this dot is
already ilack, does nothing; otherwise, records this dot as
black in the record "black record™ and imverses the color of
the corresponding square on the sereen,

whitern dot{Instance, X, Y)
similar to the method :blacken_dot.

timverse_dot{Instance, X, Y)
similar to the methods :blacken dot and iwhiten dot,

A mwerse_square{Instance, X, Y)
(X,Y) must be the coordimtes of a suare in the screen.
Calls, through the wWindow manager, the method
ido_imverse_square for imverting the coler af the square.

tdo_imverse_square(Instance, ¥, Y)
Must be executed inside the window managar, Inverses the
color of the square of coordinates (X,Y) on the window screen.

‘draw_curve({Instance,Colar)
allows the user to draw a black pattern only by moving the
mouse on the screen. For avoiding too much averhead, asks te
the record "bleck_record" the address of the hash table in
which it stores the black pattern, for writing itself directly
in it,

S.4.4 Class Method

al'ter:create(Class, Parametera list, ™ Instance)
erases the indesirable cursor; sets the grid size to the
default wvalue 20, by calling the instance method
‘set_grid asize which furthermore initializes the various slots
of the instance Instance. But the instance of the class
pattern _mode_display, which creates this instance, also calls
the method :set_pgrid =ize, Thus the job is done twice,

- 76 -

EDITING_FACILITIES Page 5-17

without any reason. This pust be modified. Probably, to
eliminate the call to the method :set_grid size in this demon
will be the solution, But it must be checked that this
solution would not create another problem somewhere el se.

5.4,5 Local Predicate

draw_display{Instance)
drawz the grid, the Hlack record, the grey record and the box.

draw_grid{Instance)
This local predicate is executed inside the window nanager.
Therefore the window system methods used in it must be manager
methods, not user methods. The manager method corresponding
to the user method get_size(Window) is :do_get_size(Window).
Asks the size of the window; allocates an area of the same
height than the windew, and of width the first multiple of 16
greater than or egual to the width of the window. The reason
of that menipulation is that it is possible to write in a
bitmap area only by using double bytes buffers or stringa.
Writes the grid into the area, leaving unchanged the coclumns
at the left of the area which outnumber the oolumns of the
window; transfers the contents of the area in the window

soreen manory, and deallocates the area,

draw_grid(Instance, Area, Area_width,Grid_size, Height, H)
I the remainder of the division of H by Grid size is equal to
0 or to (Grid size - 1), draws, in the area Area, the line
contained in the string "grid string"; otherwise, draws the
iime of white dots contained in the string "empty_string";
then inwresses H by 1, and calls itself recursively. Stops
when H is equal to Height.

draw_char_box(0bject)
asks to the record "tlack_record" the size and position of the
box; translates ther from square ccordinates to dots

coordinates, and draws the rectangular frame of the box, Then
draws the base line of the box, except when this line
corresponds to a part of the frame. This exception cannot be
avoided since the limes are drawn using an exclusive or
operation.

draw_record{Instance, Fecord_name)
gets the pattern of the record of name Record_name, which is
either the black or the grey record, and draws the pattern in
the corresponding color.

draw_record(Instance, Record_name, Record_string)
allocates an ares of height the grid size, of width the first
mubtiple of 16 greater than or egual to the grid size; draws
the pattern Record string in it, which fills the areas either
in blsck or in grey; saves the area in the slot "draw_area";
draws the record stored in the slot of name Record name;

- 77 -

EDITING_FACILITIES Page 5-18

deallocates the area Area and sets back the slot fdraw_arean
te 'nilr.

draw_pattern{Instance, Record _name,Line_list)
removes from the list Line_list the next vertical coordinate
of a lipe of the pattern, recorded in the =lot Record name,
from the list Line list; draws this lime on the screen y and
calls itself recursively. Stopz when the list Line list is
empty.

draw_lime(Instance, Record_name,Dots list,Y)
removes from the list Dots_list the next horizontel coordinate
of & dot of vertical ccordinate Y, of the pattern recorded in
the slot Record name; cheoks if this dot corresponds to a
square inside the window; if it is the case, draws the dot on
the screen; otherwise, does nothing. Then ealls itself
recursively. Stops when the list Dots list is empty.

draw_el ement (Instance, Record_name, X, ¥)

transfers into the window screen the black or the grey suare
stored in tne area fdraw_area" at the position (X,Y), comput ed
in number of squares. Since the area is filled by a black op
a grey pattern, any square in this area aof size grid size can
be used to transfer its contents in the window screen and to
obtain the desired result. The variable Record name is nat
u=zed.

compute_grid_string(Instance, Grid_string,~Bmpty_string)
computes the smallest number of double bytes negessary Lo
cover & full line of the window screen; ecreates two strings
of this size, Orid string and Empty_string, and loads in the
string Grid string the dots used for displaying the grid
squares on the screen,

load grid string(Grid_string,CGrid size, Lost_space,Width,N)

Widih corresponds to the width of the window ; Lost_space to
the difference between the width of the Grid_string (which is
its length times 16, and which is expected to be the mmallest
multiple of 16 greater than or equal te Width). If the
remainder of the division of N by Grid_size is equal to 0 or
to Grid size - 1, setz to 1 in the string Grid_string the bit
at the position N + Lost_space; then increases N to the pext
integer which 1is ecocngruent to 0 or to Grid size - 1 modulo
Grid size, and calls itself recursively, Stops when N is
greater than or ejual to Width,

compute_grid point(...euwes)
This local prediecate has only an historical interest, and is

ne longer used. Can be suppressed,
adapt_to_double bytes format{Width,” Adapted_width)
Instantiates Adapted width to the s=maller multiple of 16
greater than or equal to the value of the variable Width.
imverse_square(Instance, X, Y)
draws a black square at the position (X,Y), computed in sjuare

- T8 =

EDITING_FACILITIES Page 5-19

coordinates, on the window soreen, by using an exclusive op
operation; see the local predicates draw_record/3 and
draw_ el ement. Az these methods, bust be executed inside the
window manager. Does not check if the dot (X,Y) is inside the
window or not. Presently, it is only used by methods
receiving directly the parameters (X,Y¥) as positions of the
mouse on the screen. Tn that case, the check is implieit,

outside_display(Instance, Record name, X, Y)
succeeds if the square of coordinates (X,Y) lies outside the
window soreen; fails otherwise. Must be executed inside the
window manager. The variable Record name is not used.

oompute_grey_string(Instance, Grey_string)
creates a buffer, which is a double byte string just long
enougn to store a lime of width grid size; this buffer will
be used for storing one lime of the grey sguare; oreates the
string Grey_string, of length the length of the buffer times
the height of the grey square, that is, the grid size, Then
computes a double byte integer which corresponds te a regular
pattern of one black dot every four dots, Shifts this double
byte of one bit and of three bits, to form the two basic
double bytes that will be used as parts of the grey saquare.
Then loazds the pattern into the string Orey_string, line by
lipe, repeating, for tWwo consecutive lines, the first double
byte, and then for two consecutive lines the second double

by te,

compute_bl ack_string(Instance, Black_string)

creates a buffer, which will be a double byte string just long
enough to store a lire of width grid size; this buffer will
be used for storing one line of the hlaeck =quare; oreates the
string Black _string, of length the length of the uffer times
the height of the black square, that is, the grid size. Then
computes the double byte integer which corresponds to & line
of black dots, Then loads the pattern inte the string
Black string, lipe by line, repeating this double byte in each
Lime.

load pattern(Strirg, Buffer, Raster_width,Double bytes list,
Step, Pointer)

Buffer must be a double tyte string of length Raster_width,
and String a double byte string of length a multiple of
Raster_width, Femoves the next double byte from the list
Double_bytes list; fills the =tring Buffer with thi= double
byte, copies the string Buffer into the string String at the
pozitions Pednter, and 2ll the positions obtained by
increasing Pointer by a multiple of Step ® Raster_width, until
no more space 1s availables Then inereases Pointer bty 1,
modulo Step, and calls itself recursively. Stops when the
list Double bytes list is empty.

lead buffer(Buffer, X, BufTer_length,N)
puts the double byte X in the string Buffer at the position N,
increases N by 1, and calls itself recursively. Stops when N

is equal to Buff'er_length.

- T4 =

EDITING_FACIL ITIES Page 5-20

lmu}_string(ﬂtring,Buffa*,st.e;-,ﬂuffar'_length,He:i.gtlt,H]
String must be a string of length Buffer_length times Height,
Copies the string Buffer inte the string String at the
position H * Buffer length, increases H by Step, and calls
itself recurzively. Stops when H is greater than or aqual to
Height.

draw_curve(Instance, Table,Color)

allocates an area corresponding to a muare and leads in it
the pattern "™black string®, in much the same way that it is
done in the local predicates imerse_square or draw_record.
Since this predicate is not itself executed inside the window
manager, it must send messages to the window manager for
cxecuting manager methods. Waits for an input. If the input
is a left click from the mouse, puts the font editor in a mode
allowing the wuser to draw a pattern on the soreen only by
moving the mouse. Otherwise does nothing, At last always
deallocates the area.

draw_curve({Instance, Area, Table, Colar)

The table Table must be the hash table used by the record
"black_record"” for storing the black pattern. Color can be
either "hHlack' or 'white'. FEnters a (repeat - fail) loop.
Reads the input frem the soreen without waiting., Tf the input
iz a left click from the mouse, or if the mouse is outside the
window, assures the consistency between the list of the linas
uzed by the Black pattern and the contents of the =lot
"lipe_list™ o' the record "black record", and stops. If the
input iz a middle click of the mouse, changes the color, frog
blzek to white eor fros white toe black; if the input is a
right click, and if the color is black, does nothing and waits
lor enother input: when this input arrives, fails, and
therefore resumes from the repeat instruction: 1if the oolor
is white, tnen calls the local predicate erase.

Otherwise, if the sguare, on which the mouse is, has the
color Color, does nothing; otherwise, modifies the record of
the square in the table Table, by inserting it if the color is
black, or deleting it if the coler iz white, inverses the
corresponding square on the screen, and falls back to the
repest instruction.

erase{Instance, Area, Table)

Is very similar to the loeal predicate draw_curve/4, when the
arpgument Color is equal to ‘'white', There are only two
differences. When a right mouse click is read, this predicate
calls the local predicate draw_curve/l, with the ecolor
'white', and not itself: morecver, instead of only setting to
white the square pointed by the mouse, it sets also to white
all the eight adjacent sguares,

The meanings of the different clicks are not at all obvious
or matural for the wuser, and must be modified., The clicks
must have the same meaning, independently of the color used;
the facility to stop for a while is as useful when the color
is white as when the color is black. Tt will be of great help
for the user to show which color is currently selected, fuor
exanple by changing the shape of the mouse.

- 80 -

EDITING_FACILITIES Page 5-21

reset_line list{Instance,Table)
gets the list stored ip the s=lot Minpe _list™ of the black
record; checks, for all the lines of squares displayed in the
window, il there iz a black dot of the black pattern in it or
not, and modifies the list "lipe_list" depending on the result
of the check.

reset_line list{Instance,Table,Line list,Height,H)
if the line of vertiecal coordinate H does not contain a black
dot of the pattern stored in the table Table, removes H from
the 1list Line_list if necessary; otherwise, adds H to the
list Lipe_list if mecessary, increases H by 1 and calls itself
recuraively. Stops when H is egqual to Height.

5.5 THE CLASE EDIT_PATTEHN_WINDOW
5.5.1 Description

Thisz class inherits the class as edit pattern window, and has for
only responsibility to translate the commands coming from the top level
inte imherited methods. Since all the basic methods exist already, it
has just to put the pleces together.

5.5.2 Instance Attributes

1. Dbrush color: this attribute can take three different wvalues:
the atoms ‘'black', 'white' and '"inverse'. Depending on the
contents of this slot, a left click of the mouse on & sguare of
this window will set its color to black or white, a will
imverse ita color. The user can change the wvalue of this
attribute by =selecting the corresponding entry of the brush
menu, or by clicking double left with the mouse (see the clasa
pattern mode),

2. Drush shape: this attribute can store three different wvalues:
the atoms 'dot', 'lipe' a&and 'sguare', Depending on the
contents of this slot, a left cdlick of the mouse on & sguare of
this window will affect either only thias square, ar this sguare
and the two adjacent ones on the left and on the right, or this
square and all the eight adjacent cnes. The effect depends on
the color selected, but 1is the same for &1l the squares
concerned. The user can change the value of this attribute by
sel ecting the corresponding entry of the brush menu. (see the
class pattern mode),

- 81 -

EDITING_FACIL ITIES Page 5-22

5.5.3 Instance Methods

:set_black_record(Instance, Record)

Record must be an instance of the cl ass
char_record with_pattern, previously recorded in an instance
of the class edited_font, PErases on the screen the box and
the black pattern, simply by drawing them one more time using
an exclusive or operation; saves the record Record inte the
black record, which is an instance of the el ass edit_record;
the pattern of the record Record is then stored in the black
record, Then draws this new black pattern, and draws the box
again. The record Record contains implicit information about
the size and the position of the box, which therefeore may have
changed.

:sel_grey_record(Instance, Becord)

Record must be an instance of the class
ehar_record with_pattern, previously recorded ip an instance
of the class edited font. Erases on the soreen the £r ey
pattern, simply by drawing it one more time using an exclusive
or cperation; saves the record Record into the grey record,
which is an instance of the olass edit_record; the pattern
Stored in the grey record has become the pattern of the record
Record. Then draws this new grey pattern.

iget_black _record{Instance,”Record)
Asks the record "black_record”, instance of the al ass
edit record, te create & W Iinstance of the claszs
ohar_record with_pattern, and to store in it the bleck pattern
and all the infermation needed by the character mode far
creating a new charaoter,

:get_grey_record(Instance,~Record)
Asks the record "grey_record®, instance of the class
edit_record, to create a new dinstance of the class
ehar_r—ecorﬁ_with_pattern, and to store in it the grey pattern
and all the information peeded by the character mode faor
creating a new charscter.

iget_edit record(Instance,~Record)
hsks the record bl ack_record”, instance of the ol ass
edi t_record, to create a new instanee of the ¢lass
onar_record with pattern, and to store in it the bl ack pattern
and all the information needed for storing the record in a
pattern register and reusing it later zafely.

‘set_edit record(Instance, Record))
Record must be an instance of the class
char_record with_pattern, previously saved in a pmpttern
register, Hrases on the sereen the box and the black pattern,
gimply by drawing them one more time using an exclusive ar
operationj saves the record Record inte the hlack record,
Draws this new black pattern, and draws the box again.

:set_h:x_size{lnstanae,Box_width,EoLhaighh,BoLbaaﬂ}
affects both the black record and the grey record,

- 82 -

ERITING_ FACILITIES Page 5-23

:set_box_size(Instance,Box_x, Box_y,Box_width, Box height,Box_base)
affects both the black record and the grey record.

:get_box_size(Instance, Box_x, "Box_y,” Box_width,
“Box_height, "Box_base)
takes these values from the black record,

;exchange_black and grey(Instance)
draws both records, which has for effect to make them
disappear form the soreen, pets from the back record the size
and the position of the box, puts these parameters in the ey
record, exchanges the black and the grey records, and draws
both records again.

tadd_grey(Instance)
draws the black record for erasing it; asks to the grey
record Lo create an instance of the class

char_record with _pattern and to store its pattern in it;
sends this recerd to the black record, asks it to add the
patlern stored in this record to its own pattern, and draws
dgain the modified black pattern.

ielear({Instance, Messapge)
Message can be 'black', 'grey' or 'all'. C(lears the contents
of the specified records and clear the specified patterns on
the screen. In the case the black pattern is cleared, the box
iz redrawn in the middle of the screen,

:move(Instance, X0,Y0,X1,¥1,Message)
Message can be "hHack', "grey' or 'all'. Frases the specified
patterns on the screen, moves the specified recerds, and draws
again the specified patterns, once moved., The vector of the
translation used is simply (X1 - X0,Y1 - Y0).

move _box{Instance,X, Y}

al'ter a2 double middle clieck of the mouse has been detected in
this window, this method is ealled, with the position of the
mouse as parameters. Computes from the position of the mouse
the translation vector that must be used for moving the mouse;
erases the box, sends thi= translation wvector to the Hlaok
record, in charge of checking the information about the box,
and draws the box apain, asking its new position to the black
record. However, in the case the double middle click was done
when the mouse was not just one sguare outside the box, does
nothirne.

:reshape_box(Inzstance, X, ¥)

after a single middle clieck of the mouse has been detected,
this method is wcalled, with the position of the mouse as
parameters, Computes from the position of the mouse the new
size and positiocn of the box, erases the box, and sends this
information to the black record for checking, Asks to the
record the mnew size and position of the box, and draws it
again, However, in the case the middle click was done when
the mouse was not just at one sguare of distance from the box,
does nothing.

- 83 -

EDITING_FACIL ITIES Fage 5-24

tset_brusk_color{Instance, Color)
tset_shape color(Instance,Coler)

tnext_brush_ooler (Instance)
has the effect of a ecircular permutation on the possible
values stored in the slot "brush_color™,

inext_brush_shape{Instance)
has the effect of a cireular permutation on the possible
values stored in the slot "brush_shape”,

ddraw_point(Instance, X, Y)
draws a point, according to the current color and shape of the
brush, at the position (X,¥) on the sereen, and possibly
around.

tdraw_curvel{Instanece)
calls the inherited method idraw_curve/2 with the eolor
"black', This method allows the user to draw a pattern by
sinply moving the mouse on the screen, without having to click
on each dot.

:get_cut_record(Instance, X0,Y0,%1, Y1, Record)
agks the black record to save, in 2 new instance of the class
ohar_record with_pattern the part of the black pattern which
lie=z inside the rectangle defined by the two opposite polints
(X0,¥0) and (X1,Y1).

5.5.4 Local Predicate

move(Instance, Vector_x, Vector_y, Messape)
{zee the instance method mave),

box_move_vector (Instance, X, ¥, "Vector_x, “Vector_y, “Status)

computes the position of the colwmn X and of the lime Y
relatively te the five lines which composes the box., From
these relative positions, the position of the dot (X, Y}
relatively to the bor i= determined; if the dot (X,Y) is a
Muare just outside the box, with one segment in common with a
line of the box, generates a vector whien will move the box of
one suare, in such a way that the selected square comes
inside the box. Otherwise, does nothing,

new_box size(Instance, X, Y, "Box x, "Box_y, "Width, "Height, “Base)
computes the position of the colwn ¥ and of the lime Y
relatively to the five lines which composes the box., From
these relative positions, the position of the dot (X, ¥)
relatively to the box is determined; if the dot (X,Y) is a
Juare with one sepment in common with & lipe of the box,
generates a pew size and position such that the lipe along the
square (X,Y) is moved on the opposite side of the =quare.
Otherwise, does nothing., Conflicts are solved by giving the
priority to the horizontal lines, and among the horizontal

- By -

EDIT ING_FACIL ITIES Page 5-25

lines to the base line,

generate_order(Horz_position, Vert_position, " Position)
Computes the position of a dot relatively to the box from the
relative position of the horizontal and vertical limes it
belongs to.

new_box_size(Instance, Position, "Box_x, "Box_y, “Width , "Height, " Base)
(see the local predicate new_box_size/9).

get_horizeontal position{Instance, X, "Horz_position)
Computes the position of the vertical line ¥ relatively to the
box.

get_vertical position{Instance,Y, Vert_position)
Computes the position of the horizental line Y raelatively to
the box.

draw_polnt (Instance, Brush_color, Brush_shape, X, Y)
(see the instance method idraw_point).

-8 -

CHAPTER &

TOP LEVEL SYSTEM

6.1 DESIGN CONSTRAINTS

New, 211 the teools regquired for the font editor have been
provided, But, for the system to be usable, a control level must be
added, in charge of coordipating the existing parts of the system, of
interpreting the wuser inputs and of talking the adequate actionz. Are
regquired:

1. an ability to read the input entered by the user, elither from
the mouse ar from the keyboard; to propose temporary menus or
windows when recessary; to propose & minimun set of facilities
for entering and correcting strings from the keyboard: to be
ready tc abort an operation al any moment.

2. an ability to dispatch the input to the objects concerned, and
to coordinate the communications between these objects,

3. protections against losts of characters or fonts, o w@mismatch
of font names,

6.2 DESIGN COMMITMENTS

Usually, the user will not have to use the keyboard for using the
font editor. But he will be asked at times to enter strings, like a
font pame; under these circumstances, he must use the keyboard. But
the windows of the character mode and of the pattern mode are only
supposed to receive inputs from the mouse, and there is no reason to
modify them. It has been therefore decided to create a new class of
windows, specialized in accepting inputs from the keyboerd, and in
controlling their contents according to the needs of the system. This
iz the class font_temporary_window, To use a temporary window in such
cireumstances has several advantages: the user can abort the operation
simply by moving the mouse out of the window: the user has a clear
impression that the use of the keyboard is exceptional, and that the
window has no relation with the rest of the diaplay.

Three classes has been created for dispatching the inputs from the

- B6 -

TOFP LEVEL 3YSTEM Page G=2

user &and executing the corresponding commands: the classes char_mode,
pattern_mode and font_executive. The top level loop {a repeat - fail
loop) is an instance method of the class font_executive. It reads an
input from the user, and sends it either to an instance of the class
char_mode o of the class pattern mode, according to the current mode,
with the notable exceptions of the commands changing the moda, or those
used for ocommunicating with outside processes, which are handled
directly by the font_executive instance.

For protecting font nemes from being used for different fonts,
anoth er class of objects has=s been created: the clasa
font_file manipulator. &n object of this class revembers the mmmes of
all the fonts already oreated, by saving them into a file and reading
the file when necessary. It ecan check the mnew names proposed by the
user, and refuses those which already used., This class is inherited by
the class font_executive, which is in charge of the interface with the
ot side world.

The last class defined in the font editor aystem i3 the colass
font_editor, It iz used for creating a font editor as an independent
process. It ipherits the class as program, and when activated, coreates
an instance of the class font_executive and calls the top level loop of
this instance,

6.1 THE (LASS FONT_TEMPORARY WINDOW
6.3.1 Description

This elass is built from several classes provided by the window
sy stem, It ipherits the olasses saah as lnput; as_mouse_input;
ag_output; the class as temporary_window, which provides to its
instances the ability of disappearing as soon as the mouse is no longer
inside them; and the bezic window class user window.

Ao instance of this cless has several methods which display =
messapge and filters the wuser inputs into the expected answer format.
Fach of these methods provides several ways for aborting the executicon
of the current command to the user, OF course, putting the mouse out of
the window will always have this effect.

6.3.2 Instance Methods

rask_for({Instance, Message,~String)

writes on the window screen the string Message, and waita for
the user to enter a string from the keyboard. If the user
asks for aborting, the variable String is instantiated tc the
atom ‘'abort', Otherwise, it is instantiated to a string of
characters, which are currently limited te the letters from
fa® to "W aspnd from AR to "IW, to the fipures, and to the
character "_¥, The zize of the string is limited to 256
doubl e bytes,

;ask for list(Instance,Message,”List)

- 87 -

TOF LEVE, SYSTEM Page 6«3

wWrites on the window screen the string Mes=zapge, and waits for
the wuser to enter a list of integers from the keyboard, If
the user asks lor aborting, the variable List is instantiated
Lo the atom 'abort', Otherwise, it is instantiated to a staok
list of integers.

:ask_oconfirmation(Instance,Messape,” Answer)
writes on the window soreen the string Messape, addas the
string " (Y/H) " after it, and waits for the user to answer by
yes or by no, If the user enters eithaep By, ®Y®" gop &
carriage return, Answer is instantiated to the atom 'yes';
otherwise to the atom 'npot,

643.3 Local Predicates

ask_for{Instance, Message, "String)
creates a buffer, as a new double hyte string of length 256;
shows the window, writes the messape Message in it, filters
the input; if the input is an order to abort, instantiates
String to the atom 'sbort'; otherwise instantiates String to
the contents of the buffer,

ask_for{Instance, Message, Buffer, “Length, Poi nter)
reads the input from the user. The :pead method fails only
when the user puts the mouse outside the window; in that
case, instantiates the variable Lengthn to the atom 'abort' and
stops. Otherwise, if the input from the user is a carriage
return code, instentiates Length to the value of Pointer, and
stops, If the input is a Control-D code, clears the display
of the window, writes the messapge Message apain, resets the
pointer to O, and cells itselrf recursively, If the input is a
delete code, erases the last character if there 1is arny,
decreases the pointer by 1 if it has a pozitive wvalue, and
calls itsell recursively, If the input is a letter, a figure,
ar the underscore character code, writes the corresponding
character on the screen, adds the code in the string Buffer at
the position Pointer, increases the peinter by 1 and calls

itself recursively; otherwise, simply calls itaelrl
recuraively, dignoring the input. Stops when the pointer is
equal bto 256.

ask_confirmation{Instance,Messape,”Answer)
(see the instance method :ask_confirmation).

ask_for_list(Instance, Messape, List)
shows the window, writes the messape lessage, oreates a
buffer, as an instance of the class list: filters the inputs;
if the buffer is returned empty, instantiates List to the atom
'abort!'; otherwise instantiates List to the contents of the
burfer,

fill buffor(Instance, Buffer)

Buffer must be an instance of the class list, Reads the next
naber from the uszer input; if it receives an order to abort,

- 88 -

TOP LEVEL SYSTEM Page 6-4

6.4

enpties the tuffer Buffer and stops; if it receives an order
to stop, adds the last number read from the input in the
buffer and stops; otherwise, adds the last number reasd from
the 1nput dinto the buffer, and calls itself recursively.
Stops when the buffer contains ten integers.

read_number(Instance,” Number, Message)

creates a new buffer, as a double byte string of length 53
stores the next integer f{rom the user inputs into the new
buffer; if =an order to abort is tranamitted, stops;
otherwise converts the contents of the buffer into an integer,
instantiates the variable Number to this integer and stops.

read_number{Instance, Buffer, Message, "Length, Pointer)

reads the input frozm the user, The :read method fails only
when the user puts the mouse outside the window; in that
case, instantiates the variable Length to the atom "abort' and
stops. Otherwise, if the input from the user is a carriage
return code, instantiates the variable Message to the atom
'aport' i the pointer is equal to 0, or to the atom "last®
otherwise, and stops, It that last case, instantiates the
variable Length to the velue of the pointer. If the input is
a delete code, erases the last charzcter if there is amy,
decreases the pointer by 1 if it has a positive value, and
galls itzelfl recursively. I the input is a [ipure, writes
the ecorresponding character on the screen, adds the code of
the figure in the string Buffer at the position Pointer,
increases the pointer by 1 and calls itselfl recursively, IF
the input is the code of orne of the allowed separators: wn
momoom moomym mAm_ min_ omgn MM op "M writes the character
on the soreen, instantiates the variable Messape to the atom
"not_last', the wvariable Length to the values of the pointer
and stops, unless the velue of the pointer is 0, where in that
case 1t instantiates the variable Messapge to the atom "abort'
and stops. Otherwise, ignores the dinput,and simply ecalls
itsell recursively,

convert to_number(String, "Result, Integer,length, Pointer)

reads the element of position Pointer in the string String:
extracts the digit of code this element, adds it to ten times
the value of Integer; puts the result in Integer, increases
Pointer by 1, and ealls itself recursively., When Pointer is
egual te Length, instantiates Result to the value of Integer,
and stops.

THE CLASS FONT_FILE MANIPULATOR

- 89 -

T0P LEVEL SYSTEM Page 6-5

£.4.1 Description

This class provides to the class font_executive, which inherits
it, the interface methods with font files, Since the ol ass ag font_file
already provides the basic methods for saving a font into a file or for
loading a font from a file, the main mission of an instance of this
class is to know whether a given string is already used as a font pame
or not. It keeps into a file the list of the mames of the font which
have been created in the current machine. When ereated, an instance of
this class lcads these mames from a file into a list, kept as an
attribute. Each time a mew font is created, it checks if the name
proposed by the user i=s aceeptable, and, in that case, accepts the mew
mame; 1t stores it both in the list and in the file, when the new font
iz itself s=aved into a file. It uses the sape fixed directory as a
instance of the class as font file.

6.4.2 Instance Attributes

1. font list: contains an instance of the class list, in which
the list of the font names is stored. A font rame is a string
of characters, not a atom.

£. directory path: fixad attribute, initialized to the path of
the directory currently used for fonts: "raysiuser>font ",

3. font list file path: fixed attribute, initialized to the name
of the file used for storing the mames of the fonts: "fonts®,

4. pumber of fopts: number of font mmes recorded in the file
contaiming the font mames, Computing the wvalue of this
attribute ocorresponds to unneceszsary limes of code, =ince the
class list provides the instance method icount{$liat, N), which
computes the desired parameter, when used with the list
"font_list"™,

5. file length: length, in mmber of doukle bytes, of the file
used for storing the mames of the fonts. Tt is stored in the
file itself. Since one double byte 1is used as a separatar
alfter each font meme in the file, the value of this attribute
is equal to the sum of the number of characters which composed
each font mame, augmented by the number of font mmmes recorded,
augmented by 1., The "1" corresponds to the doukle byte in
which this parameter is stored,

6.4.3 Instance Methods

iload_font_list{Instance)
computes the path name of the file in which the font mames are
saved, from the values stored in the =lets "directory_path"
and "font_list_rile path": reads the file, puts its oontents

- 90 -

TOP LEVE. SY3TEM Fape 6-6

in the slet Mlile length™ and in a stzek list, computes the
velue of the slot "number_of _fonts®, and copies the contents
of the stack list into the list "font_li=st™,

:save font_list{Instance)
computes the path name of the file in whioh the font mmes are
to be saved, and, if the list "font_list™ iz not empty, saves
its contents into the file, as well as the contents of the
slot "file_length".

:new_font (Instanee, Font_name, ” Font)
if the name Font_name is found in the list "fent_list", fails:
otherwise, creztes a new instance of the ¢lass edited font, of
rname Font_name. Does not remenber the pame of this font
before the font is saved in a File.

tsave_font(Instance, Font)

zaves the font Font in file, and asks for itz pame; if this
name iz already recorded in the list "fonk list", does
nothing; it corresponds to the case of a font that has been
modified but not created. Otherwiase, adds the mme toc the
list Mont_list", meodifies the wvalues of the slots
"number_of _fonts™ and "flle length™ consistently, and saves
inte a file the rmames and the {ile length,

tload_font(Instance,Font_name,” Font)
if the mame Font_name is not found in the 1ist ®font_list®,
fails; otherwise, creates a new instence of the olaszs
edited font, of name Font_name, and loads the contents of this
font from file.

6.4.4 Class Method

tereate(Class, Instance)
creates a new instance of this glaszs and leoads in itz =zlots
the econtents of the file containing the list of the mmes of
the fonts.

6.4.5 Local Predicates

registrate name(Instance, Name)

adds the pame Name to the list "™ont_list"™, increases the
value of the =slot "number_of fonts™ by 1, and increases the
value of the slot "File length™ by 1 plus the mmber of
charecters of the mame Name, except when the name Name is the
first to be saved in the list., In that case, sets the value
of the slot "file length™ to be equal toc 2 plus the nurber of
characters of the name Name, The difference of 1 comes from
the fact that the first double byte recorded in the file is
reserved for recording the length of the file.

load _font_list{Instance, List,Path_name}

- 01 =

TGP LEVEL SYSTEM Page 6-T

opens the file of path Path_name; reads the first double by te
recorded in the file and saves it into the =lot "file length™:
copies the rest of the file in a string; then puts the font
names contained in this string in a list, counts their number,
and saves this number inte the =leot Fnunber_of_ fonts", If the
file cannot be opened, simply instantiates List to [] and
stops.

pul:_int.o__listI:"‘F:-nt._names_list,String,Length,“ﬂh_ﬂf__f‘nnts,
Counter, Pointer)

Computes the position of the first character of the next font
name stored in the string String; puts in the list
Font_name list the substring of the string String beginning at
the position Pointer and ending at two double bytes before the
First character of the pext rame; inereases Counter by 1,
puts Pointer at the position of the berinning of the next
mame, and calls itsel!l recursively., When Pointer is egqual to
Length, the length of the string String, instantiates
Nb_of _fonts to the value of Counter, and stops,

end_of _record({String, Length, Pointer, “Mext_name position)

il the double byte stored in the string String at the poszitien
Fointer 1is the code of the character delete, which is used as
2 separator between font nrnames in the file, instantiates
Next_name position to Pointer + 1; otherwise increases
Pointer by 1 and ealls itself recursively, When Pointer is
equal to Length, the length of the string 3tring, instantiates
Next_name position te Length and stops.

save font_list(File length,Font_names_list,Path_name)

makes a new binary file of path name Path_name, creates a
string of length File length, puts at the fipst pozition in
this string the pumber File length, and copies after it the
strings ocontained inp the list Font_names list, one after the
other, using the code of the character delete as a separator
at the end of each name; then copies the contents of the
string in the file,

put_into_string(Font_names list,Stri ng, Pointer)
removes the next string from the list Font_names list, copies
it in the string String at the position Pointer, and adds a
the code of the character delete after it; inoreases the
pointer Pointer of 1 plus the length of the next string, and
calls itself recursively. Stops when the list Font_names list
is empty,

reglstrated name(Instanee,String)

loads from file the names of the fonts into the slot
ffont_list"™, and checks if the string String belongs to the
list of the font rames, If yes, succeeds; if nmet, fails.
Sinee it is not possible to unify two strings which are equal
but not saved in the same memory location, the strings must
before be converted into stack lists, in which the codes of
their characters are stored. Stack lists can be unified if
their oontents are identical, even if they do not share the
same pemory Space.

- 92 -

TOP LEVEL STSTEM Fage 6-8

font _member{List_of_codes,List_of _strings)
succeeds if there is ome string in the list List of_ string
such that the list of the codes of its characters is equal to
List_of codes; f[ails otherwise.

M™is predicate containse a logical bug since the method
string to_list of the class symbolizer cannot be used with the
resul t already instantiated. The line of code:

tstring to list(#symbolizer,List,String), I;
must be replaced by the lipe:
:string to list({#symbolizer,L,3tring), !, L = List;

path_name(lirectory,File name,” Path_name)
{see the local predicate path of the class az font file).

£.5 THE (LASS CHAR_MDDE

£.5.1 Description

Thi=z colasz inherits the class char mode_display. Its only job 4=
to provide methods required by the top level for executing the commands
eéntered by the user, Since the different menus and windows that
composad the character mode display already dispose of baasic methods for
executing the commands entered by the user, the main responsibility of
an dnstance of this class is to coordinate the actions of the various
objects which ocompose the character mode display.

It coordimtes the sorolls of the window displaying the character
patterns, and of the windows displaying the 8 lower hit part and the 8
higher bit part of the character codes respectively,

It alsc occordinates the transfer of patterns, from the windows
displaying the black and the grey patterns of the pattern mode, to the
window displaying the character patterns of the current font, as well as
the transfer effected in the opposite direction.

End it assures the communication of data between the top level and
the windows and menus of character mode.

f.5.2 Instance Methods

:horz_scroll{Instance, Message)
Messape can be either "left' or 'right'. 2ends the mpessage
Message to both the horizontal window displaying the lower B
bit part of the ocode apnd to the window displaying the
character patterns.

wvert_soroll(Instance, Messape)
Message can be either ‘up' ar 'down'. Sends the message
Meszage to both the vertical window displaying the higher 8
bit part of the code and to the window displaying the
character patterns,

-93-

TOP LEVEL SYSTEM Fage 6-9

:code_sel ected{Instance, Input,” Answer)

If the input Input is a left click of the mouse, computes the
position of the mouse, selects the code Code corresponding te
this position in the window displaying the character patterns,
and, if either another oode, Old_code, or one of the two
windows displaying the grey and the black patterns of the
pattern mode has been selected before, instantiates the
variable Answer respectively to the terms load(0ld_ccde,Code),
load black(Code) or load grev(Code). Otherwise, instantiates
Answer to the atom 'select' if no code and npo window was
sglected before, and to the atom 'abort' otherwise, which
corresponds to the case where Code and 0ld_code are egual.

It is really plessant to use the facilities provided by a
Pfrolog like lenguage for building terms and using them as
messapges, But in that case, the message is sent te the top
level, which has to wunderstand it, and then to send back
orders an instance of this class for executing the order.
This c¢an seem an unjustified overhead. The reason why the
arders cannot be fully executed inside the character mode is
that the user may want to @ssign 2 pattern tc a code without
having created a font before. In that case, the font editor
has to propose to the user to coreate a mew font, and to check
ir the mame proposed by the user for the new font is not
already used for another font. This means an interaction with
objeots outside the character mode, which therefore must be
handled by the top level.

iblack sel ected({Instance, Input,” Answer)

If the input Input is a left click of the mouse, selects the
contents of the window displaying the black pattern of the
pattern mode; if this pattern was pot already selected, and
if a2 eode Code was selected in the window displaying the
character patterns of a font, instantiates the variable Answer
to the term leoad_char(Code), If no code is currently
selected, instantiates Answer to 'select'; otherwise
instantiates Answer to the atom 'abort'.

It would be far better that this method does not send
massages to the top level, but execute itself the
corrasponding order, since, in that case, there iz no reason
for the top level to do it,

iget_record(Instance, Color,; Record)
Color can be either 'black' or 'grey'. Gets the contents of
the window displaying either the bHlack or the grey pattern of
the pattern modea,

:set_record(Instance, Color, Record)

igrey_sel ected(Instance, Input, ” Answer)
(Similar to the method :black selected),

:set_font(Instance, BEdited_font)
sends the font Edited font to the window in charge of
displaying the character patterns of a font,

iget font(Instance, Edited font)

- g4 -

ToP LEVEL SYSTEM Page 6-10

:draw_char(Instance, Code)
draws, in the window in charge of displaying the character of
a font, the pattern of the character of code Code, in the
currently displayed font.
This method appears twice in the source program; once is
probably encugh.

srefresh{ Instance, Col ar)
Color can be either 'black' or '"grey'. Clears the display of
the window displaying the black or the grey pattern of the
pattern mode, and draws its display again.

£.5.3 Local Predicates

code_selected(Instance, Input, " Message)
(see the instance method :code_selected).

code_sel ected{Instance,ld code, X, Y, " Answer)
Old _code must be instantiated to the previous code selected in
the window displaying a font, or, if there is none, to the
atom 'nil', Selects the code pointed by the mouse in (X,Y) in
the window displaying a font,

In the case Old_code 1s equal to nil, asks to this window
which oode has been selected, and asks to the Black and the
grey window if' their contents have been selected or not. Ir
the contents of the bhlack window have been sel ected,
instantiates Answer to the term load_black(Code); otherwise
if the contents of the grey window have been selected,
instantiates Answer to the term load grey(Code). Otherwise,
instantiates Answer to the atom 'select'.

In the case Old_code is a code previously selected, asks
which eoode has been selected. If the answer is 'npil', it
means that 0Old_ecode has been sel ected twice. In that eoase,
instantiates Answer o the atem ‘'abort'. Otherwise,
instantiates Answer to the term load(0ld_code,Code).

bl ack_sel ected(Instance, Input,” Answer)
(See the instance method :black_selected),

grey_selected(Instance, Input,” Answer)
{See the instance method :grey_selected).

6.6 THE CLASS PATTERN_MDIE

- 95 -

TOP LEVEL SYSTEM Page O6-11

6.6.1 Description

This class inherits the class pattern mode_display. Its only job
is to provide methods required by the top level for executing the
commands entered by the user, It plays, for the pattern mode, the role
that the class char_mode plays for the character mode,

It gives to the top level the acecess to the black and the &rey
patterns displayed in the window used for editing patterns; this is the
ooly information that is transmitted Lo the character mode when the mode
is changed, This dnformation pust be communicated to the top level,
which is in charge of coordinating the changes of mode,

And it executes itself all the arders the user enters in the
pattern mode, except those orders which need to communicate with the
character mode, which are executed in the top level, or with the hel p of
the top level.

6.6.2 Instance Methods

:get_record(Instance, Color,” Record)
Colar can be either 'black' or 'grey'. Asks to the editing
window the pattern displayed either in black or in gey, ina
format adapted to the charzcter mode,

rset_record{Instance, Color, Record)
Color can be either 'black' or 'grey', Sends to the edi ting
windew a patterp it must display in the color Color. The
record Record is in a format adapted to the character mode.

tbrush_menu_order (Instance, Input)
The corresponding menu proposes to the user to set the ooler
or the size of the brush, which is nothing else than the mouse
that the user uses like a brush for edi ting character
patterns. See the cl azs pattern _mode_di spl ay and
edit _pattern window for details, This method simply sends the
message Input to an instance of the class edit pattern window.

iglobal menu_order (Instance, Tnput)
the corresponding menu proposes various functions as te
display the black pattern in real size, to change the grid
size, or to clear both the black and the grey records. Seea
the class pattern mode _display for details about these
commands,

:bl ack_menu_order(Instance, Input)
the corresponding menu proposes various functions for hel ping
the editing of the black pattern. The execution of thesa
functions consist in waiting for supplementary input from the
user, 4if required, and ealling the suitable method of an
instance of the editing window.

igrey_menu_order (Instance, Input)
Similar to the method :black_menu_order.

- 9 -

TOP LEVEL SYSTEM Page 6-12

‘parameters menu_order({Instance, Input)
for any input, makes the menu displaying the size of the box
display the current size of the box.

When the shape of the box is modified, the new parameters
are not automatieally sent to this menu. Tt would be much
better to have the size of the box automatically sent to this
menu each i1t is modified. It is much clearer for the user,
and does not cost anything to the programmer, s=ince all the
necessary methods exist already.

ipattern window_order(Instance, Input)
interprets the mouse clicks from by the user in the window
used for editing patterns, and executes the correspondi ng
commands: elther writing dots, moving the box, modifying the
shape of the box, modifying the color or the shape of the
brush,

iregisters window _order(Instance, Tnput)

interprets the mousze clicks from by the user in the Window
containing registers, and executes the corresponding commands :
loading the black pattern into the reglster pointed by the
mouse, or loading the contents of the register pointed by the
mouze into the editing window as the hlack pattern, saving the
previous black pattern in a special register: or clearing all
the registers,

6.6.3 Local Predicates
brush_menu order(Instance, Tnput)

global_meny order(Instance, Input)
uses the lecal predicates wait_for_vector, aak_rlor and
ask_for_list for asking more information to the user when it
is required, See these local predicates for detail s,
Utherwise, only the case where Input has been instantiated
to a term of the form: set sample(Edited_font) has some
interest. OSince an instance of this class has no connection
with the character mode, and thus with the font ourrently
being edited, which is kept inside the character mode, it
cannot net have executed the order "SET SAMPLE" by itself. To
help it, the top level filters the inputs, and when the
message "SET SAMPLE" is encountered, it asks the charactep
mode to send to it the font ourrently edited, and sends this
Font to the pattern mode inside the message set_sample. The
poosibility of using terms in ESP is really convenient, It
allows the programmer to add a parameter only used in some
cases, by modifying only the parameter itself in these cases,
not the predicate,

bl ack_meny_order (Instance, Input)
uses the local predicate wait_for_vector, for asking more
information to the user when it is required. See this local
predicate for details. Note that the arder "DRAI"™ sorresponds
to the instance method idraw_curve of the ol ass

- 97 -

TOP LEVH. SYSTEM Page 6=13

edit_pattern window,

grey_menu_order{Instance, Tnput)
uses the local predicate wait_for_vector, for asking more
information to the user when it is required. See this local
predicate for detail s,

parameters meny_order{Instance, Input)
(See the instance method :parameters menu order).

pattern window_order(Instance, Input)

See the instance method :pattern_window_order. In the preszent
version of the font editor, the right alick of the mouse is
ressrved as& an interruption key. It is therefore not
currently possible to change the size of the brush by a right
click in the editing window. This must be fixed, either by
authorizing an interruption only when the right click is done
in ancther window that the editing window, or by suppressing
this interrupting faeility. The second solution is probably
better. The interrupting facility was only used for hel ping
the debugging of the program,

registers window_order(Instance, Input)

if the input is a left click, checks if the register pointed
by the mouse is the first register on the left, or, if it is
nmot, if it is empty or full; asks to the editing window a
copy of the black pattern, and ecalls with all this information
the local predicate automatie registers, If the input is a
middle click, loads a copy of the Hlack pattern into the
reglster pointed by the mouse, erasing the ocontents of this
register, except when there is no black pattern or when the
reglster selected is the one on the left. If the input is a
double middle click, erases the contents of all the registers,
Otherwise, does nothing,

automatic reglsters(Instance, Status, Record, X, Y)

Status can take three different values: 'protected', if the
register pointed by the mouse at the position (X, Y) is the
Pirst on the left; 'full' if the register pointed by the
mouse is not the first on the left and contains a pattern;
'empty' otherwise. Record is a copy of the black record
displayed in the editing window, or, if there is none, the
atom "nil'.

if' the status is 'protected', and if Record is equal to
"nil', sends the pattern displayed in the first reglster to
the editing window as its new black pattern. If Record is not
equal to 'nil', exchanges the hlack record and the pattern
displayed in the first register.

If the status is 'empty', and if Record is not equal to
'nil', leads the record into the selected register, I the
status is 'full', and if Record is equal to 'nil', copies the
pattern displayed in the register inte the editing window, as
its new black record., If Record iz not equal to '"nil', does
the same first, and then saves Record into the first register.
Otherwise, does nothing, For more details, see the c¢lass
pattern_reglsters window,

TOP LEVIL

SYSTEM Page 6=14

check grid _size(String, "Grid_size)

this predicate i3 used by the local predicate
glebal menu_order when the input is equal to 'scale'. The
user is asked to enter 2 new grid size. The result of this
input is stored in the string String, and has to bae
interpreted by this predicate. The variable String can be
instantiated either to a double byte string or the atom
'abort'. If String is a string of length 1 er 2, containi ng
only [figures as characters, instantiates Grid_size to the
eorresponding integer; otherwise instantiates Grid size to
the atom "abort',

check _grid size(String, String length, Grid_size)

(see the local predicate check grid size/s2).

load_record list(Record_list,List of codes, Edited font)

This local predicate is used by the local predicate
giobal _meny order when the input is 'set_sample’. Record_list
must be an instance of the class list, List_of codes a stack
list of double bytes integers and Edited font an instance of
the elazz edited font. For each code found in the list
List_of codes, tries to get the corresponding character record
in the font Edited font. If it finds one, adds it to the list
List_of_records, otherwise goes to the next code. Stops when
the list List_of_codes is empty.

ask_for(Message, ~String)

creates an instance of the class font_temporary window, calls
the instance method :ask_for of this class, and kills the
window,

ask_for_list(Message,~String)

ereates an instance of the class font_temporary_window, oalls
the instance method :ask for_list of this class, and kills the
wWindow,

wait_for_vector (Instance,”X0,"¥0,"X1,% Y1, Message)

this local predicate is called by several cther ocnes of this
claz=s, It waits wuntil the user elicks the mouse in the
edliting window twice, for entering the ooordinates of two

points: (X0,Y0) and (X1,Y1). Only the left olick is
dccepted, If the user dees what is expected, Message is
instantiated to ‘'normal'; otherwise Message is instantiated

te 'abort', and some of the other variables may not be
instantiated,

These two points can be the source and the destimation
points used for ¢translating patterns , or the two opposite
corners of a rectangle used for ocutting patterns in the
editing window.

hs it is, this predicate is only half usable, because it
does not show that it reacts to the user inputs. It must be
modified in such a way that the user can always see on the
sereen what is going on. The user has a very limited short
time memory, which should not be encumbered by such irrelevant
things as whether or mot he has already elick the mouse twice.

- 99 -

TOP LEVEL SYSTEM Page 6-15

6.7 THE CLASS FONT EXECUTIVE
6.7.1 Desecription

This class is the top level class, It enly dinherits the class
font_file manipul ator, which provides methods for communicating with the
file system, When a font editer is created, an instance of this class
is created, and the top level loop is called. When created, an instance
of this class creates three objects: a superior window, an instance of
the class char mode and an instance of the glass pattern mode, The
superior window is declared Superior to all the windows and menus of the
character mode and of the pattern mode (see the class ag font_display).
It keeps as attributes these three object s,

The role of the superier window is to allow an instance of this
class to read through it, in a single instruetion, each input from the
user, With the window or the menu through which the input was deone.
Enowing froz where the inputs came allows to dispateh them easily to the
objects concerned,

Most of the erders are zinply dispatched te the instances of the
class char_mode and pattern mode; those which imvolve both the pattern
mode and the character are executed directly by a instance of this
olass, Tere are however a few exceptions (see below and see the
classes char mode and pattern mode).

6.7.2 Instance Attributes

1. superior: contains the superior window through which the
inputs are read by the top level loop.

2. ghar mode: contains an instance of the alzss char_mode,
created just after the creation of thisz instance,

3. pattern mode: contains an instance of the class pattern mode,
created just after the creation of this instance,

%. displey mode: this slot can contain either the atom

"char_mode' or the atom "pattern mode'. It i3 used for
remembering the current mode.

6.7.3 Instance Methods

:show(Instance)
displays the current mode.

iexecute_orders{Instance)

is the top level loop, It simply repeats the execution of the
method rexecute_order (without "s") until it succeeds,

- 100 -

TOF LEVE. SYSTEM Page 6-16

rexecute _order(Instance)
is the top level step. It reads the pmext input and the window
or menu from which it came through the superior window
"superior®. If the input is a right mouse click, succeeds;
otherwise tries to execute the order corresponding to the
input: 4if it succeeds to do so, then fail s5: otherwise
succeeds,

The interrupt facility offered by the success of this method
when a right mouse click is entered, was designed for hel pi ng
the debugging of the program. Since it is far from being
convenient for the user, who can use it accidentally, it may
be better to suppress it in a more user-fri endly version,

tkill{Instance)
saves the currently edited font, if any, in files: saves the
list of the names of the existing fonts in file; and kills
all the windows and menus that were created at the creation of
the instanca,

6.7.4 Class Msthod

tereate{Class, " Instance)

creates a rew instance of this class; creates a superior
window, an instance of the class char_mode, and an instance of
the clasz pattern mode, with superior window this new superiar
window. Then saves these three objects into the correspondi ng
attritutes, shows the superior window, draws both the
character mode and the pattern mode displays, and shows the
current mode, which i3 the character mode.

6.7.5 Local Predicates

execute-order(Instance, Input_channel, Input, Mode)
Input_channel must be instantiated to the window or the mEenu
through which the user entered the input Input. Mode must be
instantiated to the current mode. This loeal pradicate asks
te the input channel its rame, recorded in an attribute when
it was created (see the class as font_display), and dispatches
the input according to the mode.

execute_char_order(Instance, Input_channel _rame, Input)

If the dinput channel is the menu "command menu® of the
character mode, ealls the predicate command menu order, In
that case, the corresponding input is an order cwneerning the
interaction of the character mode with another object: the
pattern mode, a file, a mew font, It ia therefore to an
instance of this class to execute the arder. It is what the
local predicate command menu_order is delng.

In the case the 4input ochannel 15 either the window
displaying the character patterns of a font, or the black or
the grey pattern of the pattern mode, the input is sent to the
character mode for a preprocessing, which determines the

- 101 -

TOP LEVEL SISTEM Page 6-17

nature of the operations to be executed. These operations are
then executed from an instance of this class by eventually
calling character mode methods., They could be executed inzide
the character mode, except for the loecal predicate
loading in font, which ecalls the local predicate oreate font,
when the user tries to assign a pattern to 2 code, before a
font has been loaded or coreated, The loeal predicate
create_font must be executed in an instance of this class,
since it has to know how to prevent the occurrence of mame
conflicts between fonts. See the class char_mode.

The other inputs, which concern only the character mode, are
simply sent to the character mode "char_mode®, and executed by
it.

execute_pattern order{Instance, Input_channel_pame, Input)

If the input channel is the menu "ouside_menu" of the pattern
mede, calls the predicate outside _menu order. In that case,
the corresponding input is an order oneerning the interaction
of the pattern mode with another object: the character mode,
or & ile providing information to the user on how to use the
system (this i3 not implemented yet)., It is therefore to an
instance of this class to execute the arder.

In the case the input channel is the menu "global_menu" of
the pattern mode, and the input is the arder '"set sample',
asks to the character mode the font which is currently edited,
and sends the messape: set_sampl e(Edited _font), ta the
pattern mode, which can then execute the arder.

The other inputs, which concern only the pattern mode, are
simply sent to it and executed by it.

command_meny order{Instance, Input)
If the input is "exit', calls the method :kill and fails, to
stop the top level loop,

If the input is 'cise', oreates and shows a temporary menu
which proposes to the user either to save the ocurrent font or
to load another font. If the user chooses to save the current
font, ahows a temporary window displaying the name of this
font, and asks for confirmation, If the user chooses to load
a font, asks to him, through a temporary window, the mme of
the font to be loaded., Asks & rew name until the rame entered
corresponds to an existing font, or until the user aborts by
noving the mouse outside the temporary window.

If' the ipput is 'edit', changes the mode to be the pattern
mode, shows the display of the mew mode, asks to the black and
the grey windows of the character mode the patterns they were
dlsplaying, and sets these patterns as the hlack and the grey
patterns of the editing window in the pattern mode,

ereate_ font{Instance,” Font)
asks to the user, through a temporary window, = new name for a
font; asks a new name until the user enter=z a mame whieh is
not already used for & font, or until he aborts the operation
by moving the mouse out of the temporary window. When an
acceptable mame 1s received, creates an new instance of the
¢l ass edited font, of name that rame,

- 102 =

TOP LEVEL SYSTEM Page 6-18

out aide_menu_order(Instance, Input)

If the input is ‘'char_mode', changes the mode to be the
character mode, shows the diaplay of the mew mode, asks to the
editing window its black and grey patterns, and s=ets these
patterns as the patterns displayed by the black and the grey
windows of the character mode,

If the input is "help', displays a message of encowragement
to the user,

azk for_font_name(“String)
creates an instance of the eclass font_tempeorary_window,
displays a messape asking for 2 font name and waits for an
ansWwer, Calls the instance pethod :ask for of the class
font_temporary_window. Similar to the local predicate ask_for
of the cless patiern mode,

ask for_another_ name(*String)
The only diff'ercnce with the predicate ask _for font_name is
the messape displayed in the temporary window.

loading in_font{Instance,Record, Code)
asks to the character mode the currently edited font; if
there is none, asks the user to create a rew one; if he does
not want, stops; otherwiss, stores in the font the record
Record, at the code Code, clears and draws again the display
of the character mode, incorporating the new pattern.

It is required to redraw the character mode display each
time & mew pattern bigger than the ones which are already
recorded 1s saved into the font (see the el asses
char_mode_di=zplay and font_display_window). But it is not
required when the npew pattern 1s not bigger. The presant
impl mentation does not optimize, and redraws the character
mode each time a character is oreated with a new pattern,
regardless to its =size.

copy_in font(Instance, Record, Code)
is used f'or assigning to 2 code a pattern already assipned to
another code in the current font, Asks to the charzcter mode
the currently edited font; if there is none, is supposed to
stop: but there is & bug left in the program, & comma
appearing instead of a semi-column. This must be fixed,

Onece the bug is fixed, this local predicate will behave as
described in the following lines. If there 1z no font
currently being edited, stops; if Record is egual to '@il',
deletez the previouz pattern assigned to the code Code;
otherwise, if the code Code is egqual to 0, assigns the record
Fecord asz the mew pattern of this code, and redraws all the
display of the character mode, since the pattern of the code O
is wused a5 a defoult pattern., Otherwise, assiegns the record
Record to the oode Code, and simply draws the pattern
contained in this record., There i3 no need to redraw entirely
the display in this case, since the pattern 1= not entering
the font,

- 103 -

TOP LEVEL SYSTEM Page 6-19

6.8 THE (LASS FONT_EDITOR
6.8.1 Descriptieon

This class inherits the class as_program, and is used when the
user wants to run the font editor as an independent process. When an
instance of this class is activated, it creates an instance of the class
font_executive, and calls the top level loop of this instance.

For a more user-friendly interface, it would be better %o ipherit

the class as e program and to add an entry "font editor™ in the systenm
e,

6.8.2 Instance Method

:goal{Instance)
creates an instance of the elass font_executiv e, and calls the
method :execute orders of this instance.

- 104 -

CHAPTER 7

PROPOSED IMPROV EMEN TS

T.1 INTRODUCTION

In this last part a set of improvements of the current version of
the font editor are described, Most of them are eazy to implement by
patching the existing program. These improvements have been suggested
after several days of practice with the font editer and their main
concern is to improve the user interface of the system. The possibil ity
of implementing metafont-like facilities is also triefly suggested,

7.2 ALGORITHM OPTIMIZATION
T.2.1 Pattern Mode Display

in the present state, each time a new black pattern i=s loaded into
the pattern editing window, the old one is erased entirely and the new
one is drawn afterwards., It will be much better for the user's eye, and
slightly quicker if these two cperations are done at the same time,
modifying only the squares that must be modified. This can be done
wWithout losing too much of the modularity of the program, by giving the
hash table in which the old pattern has been stored as a parameter of
the method in charge of drawing the new pattern.

Similarly, when the black and the Erey pattarns are exchanged,
both patterns are erased, excnanged and then radrawn in the present
implementation. It would be twice as quick to use an exclusive or
operation for adding a dark grey square on all the squares of the hlack
pattern and on all the sguares of the grey patterns, except the common
ones. Te pattern corresponding to the dark grey sguare can be stored
a8t an attribute of the window, the just as the black and the light grey
Juare patterns are stored now. This trick could be alss used when the
grey pattern ia added to the bleck one, '

The algorithm used for writing the grid should also be optimized.
It 1s slew, it does not take advantage of the regularity of the grid,
and it is lipear in its number of lines. Since there are usually more
than 600 lines to write, it could be advantageous to write a logarithmie
gl gorithm instead.

= 0% -

PROPOSED IMPROVEMENTS Page T-2

7.2.2 Character Mode Display

When a new pattern is assigned to a code, the window display with
the character patterns is entirely redrawn. But this is only necesszary
when the new pattern is bigger than any of the patterns already drawn.
On the other hand, when the widest or the highest pattern is deleted,
the display is not redrawn. Both thesse features are somewhat
Ilneonvenient,

When a default pattern is assigned to the code 0, this default
pattern is drawn for all the codes which have not be assigned a pattern.
The algorithm usad for doing this is lipear in the number of codes
displayed and far too slow, It may be better to fill the window screen
quickly, with a logarithmie algorithm, and then add the other patterns,
The speed of execution can al so be improved by drawing the image of the
Window soreen in a bitmap area first, and then transferring the result
to the screen instead doing this operation for each pattern separately,

7.3 FUNCTIONAL IMPROVEMENTS
7.3.1 General Improvements

The uzer interface oould be significantly improved if the
limitations of the human shert time memory 1is taken inte account.
Presently, it is= not. The user has of'ten to keep in mind the inputs he
entered and to figure out by himself what the program is doing. It is
not at all what he wants to do. He wants to concentrate on the font he
is editing and wants the editor to help him, not to disturb him,

First of all, in the present state, it is not possible faop &
program to read an input from a window which is not selected,
Therefore, when the user wants to communicate with the window, he has to
cneck if this window dis selected or not, and if it is not, he must
select it, This is ratner confusing, since the same input in the s=same
Window ecan either select the Window or send a message to the font
eéditor., The next release of the window System will allow the user to
read frow a window which is not selected, and this problem will then be
easily [lixed, But since now it is possible to improve the interface
somewhat, by choosing names that are easy to understand for the wWindows
and menus used by the font editor. These memes will be displayed at the
bottom of the screen. The presently used names (the names of the class
of objects to which the menus or the windows belong) are not easy to
under stand.

When the user enters commands which are not immediately executed,
either because they are slow or because they require suppl ementary
information from the user, it is ¢ften not possikle to know fFreo the
display which ocommand has been entered, If the user is interrupted in
his work for a while, he is likely to forget this command and be
embarrassed when coming baek to the font editor. Two features can be
easily added for handling this probien. The first one is to blacken the
currently executed ocommand on the display, until the ocoomand i=s
éxecuted, This facility is provided by the window sy stem. The second
concerns only the pattern mode di =spl ay.

- 106 -

PROPOSED IMPROV EMEN TS Page 7-3

7.3.2 Pattern Mode Display

When using the pattern mode, the user often has to specify two
Xuares on the screen of the window editing patterns by clicking the
mouse, The user may forget whether or not he has already selected =z
square, S0, the first sjuare selected should be shown by drawing a
gmaller Lemporary sguare inside it, or by any other means.

The color and the shape of the Mrush currently in use must also be
displayed on the screen, The simplest way is to blacken the
corresponding command in the brush menu.

7.3.3 Character Mode Display

What the user usually wants to do in this mode is to assign a
patiern to a code. Often, he knows precisely to which code he wants to
asaign & pattern and finds it really surpri sing to be obliged to compute
the lower & bils part and the higher § bits part of the eode, to convert
them to hexadecimal notation, and to scroll several pages of display
before being able te do it Moreover, the two menus proposing the
sorolling commands are in the two oppoalte upper cormers of the sCroen,
obliging the user to move the mouse From oneé side of the screen to the
other too of ten.

Tt could be much better to put all the sorolling commands at the
top lelt ar top rignt corner of the screen and te uze the other corner
for another window. Im this new window, tWwo codes should be di spl ay ed:
the smallest code courrently displayed and the salected code, if arny,
The user should be allwwed to choose the apallest eode to be displayed
by entering it direetly from the keyboard in the window.

When the user selects & code in the window displaying a ftont, a
rectengle appears around the corresponding position in the screepn. But
when he selects the contents of any of the two windows at the bottom
right corner of the screen, nothing shows it. It should be fixed, by
drawing a rectangle inside the window or by any other means.

The user should not have to remember which of the two windows at
the bottom left corner of the sereen corrasponds to the black pattern op
to the grey pattern of the pattern mode, The window corresponding to
the grey pattern could display the pattern not in black on white, but in
black on light grey.

The user should not have to remember the exact mames of the font
glraady created, When he wants to load a font to modify it, he shoulc
be given a menu displeying the names of the different fonts currently
avail bl e, This ean probably be done by patching the file mand pul ator
source code.

- 107 -

FROPOSED IMPROVEMENTS Page 7-4

7.4 NEJ FEATURES

T.4.1 Pattern Mode

Some commands proposed by the menus have not been impl emented yet.
They can be implewented on the existing system by zimply adding one
method for deing the work, and another one for coordination, They are:
the "HOTATE" command, which rotates the black pattern at an angle of 50,
180, or 270 degrees, arcund a sgquare or an intersection of sguares
chosen by the uszer; the "REFLECT"™ method, which reflects the hizeck
pattern relative to & line inclined at @, 45, 90, aor 135 degrees,
specified by the user.

Encther function: the "STRETCH" function could be added in the
same way. This function stretches or reduces the hlack pattarn
vertically or herizontally. ‘'The user specifies two mquares on the sape
lire or the same column., PFroe the direction (left to right or right te
left; wup down or down up) the command determines if it has to stretch
or Lo reduce the pattern. The limes or ocolumns are added or suppressed
at uniform intervals, & line suppressed is added to the previous 1line,
A line added iz coplied from the previous one.

Two other functions may be alsoc useful to impl ement, One, the
"INVERSE"™ funetion, would exchange all the black squares in white and
all the white sguares in bBlaeck incide a rectangle specified by the user,
The other, the "OR" function, would add the grey pattern to the black
pattern by an exclusive or operation.

There are only three difi'erent shapes of brush proposed currently,
and the nmames of the commands do not describe them fully. Tt would be
much better to display the shapes themselves rather than words
deseribing them, It takes far less space, and it is straightforward to
understand. More shapes san be proposed, and the present version of the
Toent editor ean be used to edit the corresponding character patterns to
display in the brush menu. And it could be possible to let the user
def'ine his own brush shapes and to customize his font editor.

T.4.2 Character Mode
The most important furctions that should be added in this mode are
facilities to lead the fents frem or to save them in floppies the fonts.

This ean be done easily by patching the existing source code handl ing
the interface with dise files,

7.5 ADDING METAFOET FACILITIES

~ 108 -

FROPOSED IMPROVEMEN TS Page T-5

T.5.17 Motivations

Metafont (1) has several very interesting features which could be
implemented in a font editor, even if it iz more eriented towards
typesetting than towards bitmap displays, the latter having a much
bipger dot size,

Metafont allows one to define character fonts by specifying the
key dots of a pattern, and the value of several parapeters such as the
sealo, or the thickness of the lines. It computes oubie ourves itself
to interpoclate between the specified dots, The programmer can speeify
the zsleopes of these curves at the specified dots if he wants to,

By changing the values of the parameters, the programmer ocan
crezle various kinds of fonts {rom the same skeletons. Moreover, the
rounding of the cubie ourves to points of integer coordinates is
optimized, which gives a nlce appearance to the patterns even with a
large dot size.

Metafont provides a really npatwal way to oreate charactep
patterns. To implement it, even partially, on the present font editar
would require & lot more work. But let us dream for 2 while, and
imagine how easy it would be for the user to edit patterns if such
facilities were provided.

The user would just have to think of the proportions of the
pattern he wantz to oreate, and to enter a fow essential dot=s of this
pattern with the mouse. Then entering the metafont mode, he will be
asked to specify the order the cutde interpolation has to follow, as
well as the slopes of the cuble curves at each of the prineipal dots.
Deffault values wWill be provided and the slopes can be entered in a
visual way, by moving a line with the mouse. The program would perform
the interpolztion. I the reszult is not satisfactory, the user could
change some parszmetlers, come back to the skelaton to modify some of its
dots, and try again., This would allow the user to concentrate on the
pattern itself, and not, as is the case with traditional font editors,
on the regular rounding or thickness of the pattern, whiech is very hard
Lo gpet perfect.

1 Knuth, Donald TEX apnd METAFONT New directicons in typesetting Digital
Press and the American Mathematical Society, 1979

- 109 -

adapt_margins to_grid aize, 32

adapt_to double bytes format, 78

add_grey, 83

add_list, 71

add_pattern, 67

adjust_box _size, 68

af ter:create, 28, 31, 36, 39,
54, 57, 76

almoat_prime, 13, 17

AS_EDIT_PATTERN_WINDOW, T2

AS_FONT_DISFLAY, 22

az font_di=play, 29

AS_FONT FILE, 8

as_general_font, 11, 13

ask_confirmation, 88

ask_for, BT to 88, 99

ask_for_another_rame, 103

ask_for_font_name, 103

ask_for_list, 87 to 88, 99

automatic_registers, 98

bage, 9

base line, 9
before:draw, 27, 31
blas, 4

bit_pattern, 6

bl ack_menu, 29
black_meny order, 96 to 97
bl ack_record, 75

black _selected, 94 to 95
black_string, T4

bl ack_window, 26

bl acken_dot, 76
box_base, 64

box_height, 38, 63
box_move vector, B84
box_width, 38, 63

box_x, 63
box_y, 63
brush_color, 81
brush_menu, 29

brush_menu order, 96 to 97
brish_shape, 81
bug, 15, 27, 93, 103

center_box, 64, 68, 75
center_pattern, 42
CHAR_MDDE, 93
char_mode, 100
CHAR_MODE_DISPLAY, 25
char_mode_di splay, 21

Page Index-1

INDEX

CHAR_RECORD, 4
char_record_size, 9
CHAR_RECORD WITH_PATTERN, 5
char_table, 11, 14
char_x, 5
char vy, 6
character_line, 13
check_dimensions, T1
check_grid size, 33, 99
clear, 67, 83
clear register_display, 47
clear registera, 47
code, §
code_list, 11, 14
code_selected, 94 to 95
command_menu, 25
conmand menuy_order, 102
compute_black string, 790
compute_code, 52
compute_extremums, T2
compute_grey_atring, 79
compute_grid point, T8
compute_grid string, 78
compute_max_height, U4
compute parameters, 17
compute_position, 43
compute_aize and_pesition, 72
convert_to number, B89
copy_in_font, 103
copy_record, 18
creata, 5, T, 13, 16, 23, 59,
67, 91, 101
create_font, 102
create_menus, 23
ereate_windows, 23

defaul t_code, 49
deflate, 7
delete_record, 15
directory_path, 8, 90
DISPLAY_INTERFACE, 19
display_mode, 100
DISPLAY_SAMPLE WINDOW, U2
displayed_x, 49
displayed_y, 49
do_draw_reeord, 39, 76
do_imverse square, 76
draw, 23 to 24
draw_area, T4
draw_char, 51, 95
draw_char_box, T6 to 77

- 110 -

draw_code_box, 52
draw_contents, 46 to 47
draw_curve, 76, 80, B4
draw_display, 41, 43, 46,
50 to 51, B4, 8T, 75, 77
draw_elerent, T8
draw_frame, 47
draw_grid, T7
draw_lime, 51, T8
draw_pattern, 47, T8
draw_point, B4 to 85
draw_record, 39, T6 to 77
draw_vertical lines, 47

edit_pattern, 64
EDRIT_PATTERN_WINDOW, 81
EDIT_RECCRD, 62

ECITED FONT, 13
EDITING_FACTILITIES, 61
empty, 66

empty_string, T4

end_of _record, 92

erase, 00

error_message, 7
espacement, 14, 18, 45, 53, 56
espacement_x, 49
espacement_y, 49
exchange bl ack_and grey, 83
execute-arder, 101
execute_char order, 101
execute_order, 101

execute eorders, 100
execute _pattern order, 102

FILE SYSTEM INTERFACE, 3
file head_size, 9§

file length, 90
fill_buffer, 88
first_column, 45

font, 22, 49

fent_13, 22

FONMT_DISPLAY WINDOW, 48
font_display_window, 25
FONT_EDITOR, 104
FONT_EXECUTIVE, 100
FONT_FILE_MANIFULATOR, 89
FONT_GRAFHICS_WINDOW, 38
FONT_INFERIOR_WINDOW, 35
font_list, 90
font_liat_file path, 90
font_membar, 93
FONT_MILTIPFLE_SELECT_MENU, 36
FONT_MILTIPLE SFLECT MJLTI, 37
Tont_rmame, 8
FONT_SUPERIOR_WINDOW, 36

Page Index-2

FONT_TEMPORARY WINDOW, B7
font_x, 4

font_y, 4
format_bit_patterns, 17
format pattern, 6 to T
format_patterns, 17
French, 45

GENERAL_FONT, 10
generate_corder, 85
get_attribute, 5, 12
get_black record, 82
get_box size, 64, 83
get_char position, 6
get_character, 12
get_code, 4
get_code _list, 11
get contents, 4B

. get_cut_record, 65, 68, 84

get dot_color, 66, T1
get_edit_record, 82
get_espacement, 50, 54, 56
get font, 50, 94
get_grey_record, 82
get_grid_size, 31, 64, 75
get_head, 9 to 10
get_height, 12
get_horizontal_poaition, 85
get_line, 67T
get_line_list, 65
get_mam=, 14
get_number_of_registers, 45
get_mmber_string, 60
get_operatien, 39, 50, 75
gat_pattern, 6, 15
get_pattern position, 6
get_poaition, 59
get_record, 5, 15, 41, 52, 65,
67, 9%, 96
get_register_contents, 46, 48
get_register_number, 47
get_selected _code, 50
get_sael ected_status, 41
get_=ize, 4, 11 to 12, 59
get_status, 46 to 4T
get_title, 36 to 37, 59
get_vertical positiecn, 85
get whole record, 65, 68
get _whale size and_position, 6%
get_width, 12
give_names, 24§
global_menu, 29
global_meny order, 96 to OT
goal, 104
GRAFHIC_INTERFACE, 34

- 11 -

grey_menu, 29
grey_meny_order, 96, 98
grey_record, T5
grey_selected, 94 to 95
grey_string, T4
grey_window, 26

grid size, 21
El"iﬂ_ﬂiaﬁ, 3‘]' '53; T4
grid _string, T4

head path, B

height, 4, 45

HDHIZLHTAL_GGDE_DISPLAI_HDIDW,
B3

horz_coda_window, 25

horz_scroll, 93

horz_seroll_menu, 25

improvements, 1

in, 12, 14

inflate, 7

initial_code, 49, 53, 56
initial_code_x, 49
initial_code_y, 49
initial_x, 49, 53, 56
initial y, 50, 53, 56
inltialize, 12, 22
initialize menus, 23
initialize windows, 23
INTRODOCTION, 1

inverse dot, 76
inverse_square, 76, 78
itemg list, 27 to 28, 31 to 32

kill, 23 to 24, 59, 101
Knuth, 109

left_margin, 26, 30
lim_h&imti 9, 42
line_list, 64

load, 12, 14

load buffer, 79

load char_ records, 13
load _eut_record, 68
load edit_pattern, 68
load_font, 12, 91
load _font_list, 90 to 91
load from_file, 9
load from_ slets, 5, 17
load _grid string, 78
load _head, 10
load_into alets, 5, 16
load pattern, 10, 79
load record, 67
luad_r-emrd_liat, 99

Page Index-=3

load string, 80

load whole record, 68
loading in_font, 103
lower_margin, 26, 30

maximum width_and height, 17
menu, 58

meny list, 59

mepus_list, 26, 28, 31 to 32
METAFONT, 108

min _raster width, 7

move, §3 to 84

move_box, 65, 72, B3
move_line, T2

move pattern, 65, 71 to 72

new box _size, 84 to 85
mew_code, 52, 55, 58
new_font, 91
pext_brush_color, B4
next_brush_shape, B4
next_code, 52
nugber_of_char, 9
mmber_of _codes displayed, 53 '
56
number_of_fonts, 90
mmber_of_registers, 30, 45

oper_area, 39
operation, 38, T4
cutside_display, 79
outside_menu, 29
ocutside_meny order, 103

FARAMETERS_DISPLAY MENU, 58

parameters diaplay menu, 29

parameters_list, 27 to 28,
31 to 32

parameters menuy order, 97 to 98

path, 10

path_head, 10

path_name, 93

path_pattern, 10

PATTERN_DISPLAY_WINDOW, 40

PATTERN_MDDE, 95

pattern_mode, 100

PATTERN_MODE_DISPLAY, 28

pattern _mode display, 21

pattern_path, B

PATTERN_RECISTERS WINDOW, 44

pattern string, 11

pattern window, 30

pattern window_arder, 97 to 98

pile, 45

posltionm, 38

- 112 -

previous_oode, 52
PROPOSED IMPROVEMENTS, 105
protected register, 44
put_into_list, 92
put_into slots, 16
put_into_string, 92
put_list_into buffer, 70
put_one_el ement, TO
put_one_line, &9
put_string into_table, 69
put_table into_string, 70

raster width, &

raster_width, 9, 18, T1
raster_width_and_max helght, 15
read_number, 89

record, 41 to 42, 64

record _list, 42

redraw_display, 55, 58
redraw_menus, 24

refresh, 27, 95

registers window, 30

registers window_order, 97 to 98
regi strate_name, 91

registrated name, 92
remove_list, T1

remove _reglster_contents, 46, 48
reset_espacement, S0

resat_lipe list, 81

reshape, 23

reshape_box, 83

reshape windows, 24

rignt_margin, 26

sample, 42

sampl e window, 30

gave, 15

save edit _pattern, TO

save_font, 91

save _font_list, 91 to 42

save_head, 10

save_into file, 9

save_into_protected regi ster,
ks, 48

save_into register, 46, 48

save _pattern, 10

aereen _height, 22

screen_width, 22

scroll, 50, 52, 54 to 55, 57

select, 41

zel ect_code, 51

selected_code, 49

set bl ack _record, 82

set_box aize, 64, 82 to 83

set_brush_color, 84

Page Index-4

set_char_poaition, 6

set_code, 4

set_dot color, 66, T1

set_edit_record, 82

set_espacement, 28, 50, 54, 56

set font, 50, 04

set gl obal parameters, 16

set_grey_record, 82

set_grid size, 31, EJ"I 75

set_head, 9 to 10

set limits, 40

set_margins, 28, 31

set_pargins and_positions, 32

set _number_ of _registers, 45

set_operation, 39, 50, 7§

set_pattern, 6

set_pattern position, &

set_po=ition, 59

set_record, 15, 41, 43, 65, 94,
96

set sample, 43

agt_shapa color, B84

set_aize, 5, 59

set aizes, 32

set_title, 36 to 37, 59

set_values, 59

sat_whol e_record, 66

set _window_size, 64

show, 22, 24, 59, 100

Bpaca, 11

standard line and base, 12

status, b1

string width, 53, 56

superior, 22, 58, 100

table_of contents, 45
take from_slets, 17
TEX and METAFONT, 109
title, 36 to 37

TOP LEVEL SYSTEM, 86
total _height, 9
transfer_area, 40
try_to_save, 48

upper_margin, 26, 30

veart code window, 25
vert_sorall, 93

vert scroll_menu, 25
VERTICAL_CODE_DISPLAY_WINDOW, 55

walt_for_vector, 99
whiten_dot, 76
width, &4
window_hedight, 63

- 113 -

Page Index-5

window_width, 63

window _x, 38

window_y, 38

windows list, 26, 28, 31 to 32

- 1k -

