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2. Qule: A Funclional Language Based on Unificalion

Nazchiko Zale, Takefumi Sakura:

2.0, Overview

[n the paper [4] we have introduced a new programming language called Quie and
defined iz semantcs formally. The neme Quie may be confusing to some readers, since we
bered slrwaely reported about a previeus version of Quie in [3] The new Qute, which we have
described in [4], &= eather different from the previous one although it inherits many things from
them. Tn spile of this, we have decided Lo call the new language also Qute

ke s oa funchional programming language which permits parallel evaluation. While most
functional lanpuages uses paltern matching as basic variable-value binding mechanism, Qute
uses unification as ils bonding mechamsm. Since unification s directional, as opposed Lo pal-
tern match which 15 unidirechional. Qute becomes & more powerful functional language than
most of existing functional languages.

This appraach coahles the natural wnification of logic programming language and fune-
tional language. In Quitc il 1z posmble to write a program which is very much like one written
in convenbional logie programming language, say, Prolog Al Lhe mame Lime al s possible La
wrile a Qute program which looks ke an ML [(which is a funclional languege ) program.

Qute iz a programming language that evaluates an expression under @ ceMain environment
whieh heeps the value of a vanable The evaluation process can be considered as a reduclion
process of the given expression. and Lhe evalusbion stops when the expression has been
recclipeed Ly o veerrvnd crpressurn for which no more reduction 1s possible. Through the process of
evaluation the given environment 15 also changed to another environment by unification.
Therefare the rezull of an cvaluation can ke congidercd a8 o pair of a narmal erpr‘ess‘i{m and an
cnviranmaend

In Lhe design of Qulbe we tmed bo mimimize the number of basic concepts. se that Lhe
language becomoes cosy Lo learn and specily Phese coneepls wers selected Trom legical cone
siderations, and 27 a resuli some =f them were inherited from Concurrent Proleg ([S]) and ML
(1210 In particular. we (mporied the coneepts of 'parallel and' and '=equential and” from Can
current  Pralng (Howevsr, Lhe current version of  Cooeurrent Probog doss ool have
sequential-and’ |

An cxprossion oien b pvalualed inoparallel (and-parallelsin only b and Lhe same resoll ™
abtained nespeclve of the particular order of evaluation. This is guaranteed by the Church-
Fosser property enjoved by the evalustion slgorithm. Although it is possible to add a nondeter
st feature to Qute orthogonally, Lhis porsl e ool discosssd o [4]) Lhal is, Qule deseribed
i [A dhuer nol bave ‘parallel-or’ Instead, it has ‘if-then-else”. The semantice of “if-then-elsc’
1y defined so as bo be logweal, thet 1z, setizfy the Church-Rosser property. To meck the regquire-
menl, Lhe af=parl of f-lhen-else (which can be regarded as a guard) should be evalualed
withoul affecting the envieonment  As o result, i acts az & synchromization mechanism in
evaluating “parallel-and’. which 5 similar Lo Lhe syachromzation nschamsm of Pariog [1]
Thersfore, the evaluation of an expression may suspend just as in the case of Parlog or Con-
current Prolog

2.2. Fxamples

In thiz mema, =e do nat define (he spimanboes of Qute but give Les exdmples which show
Lhe sy pressive power of Gute  Both programs implement the Eratosthenes' sieve by a stream
programming technigue, but Exemple 1 i3 an M1 style program and Bxample 2 a Concurrent
Prolog slyle program

Example 1



primesy } -« outstream{ziftlintegers 2))
tntegers n == {n {4 {} integers( #n + 1311
it [p s w [p (A () sltifilter] §p. #=(317)]
filter(p, |n . 5]} e
if mod{#n. #p} = 0 Lhen
filter{ #p, #s(})
else

[n (A() filler(dp. §e()))]

outstrean [0 8] a— write n- outstream(s(})

This exaimnple shows the basi constructors of Qute: parailel=and (), seqguenbial-and {;),
st (dotled pair). funclion (A notation}, unification | =1, application, and if-then-else. Thaose
who know ML well find {hat Qule mmherits some notations from ML In this example, stream is
represented by a hixt of an mnteger {an element of a slream ) and a funcuan which produces a tail
of a strequn when an argumient ) (s supplied  Nate that a funclion is a normal cxpression and

can be passed as an argument ol & funebion withowl causing a funarg problem
Example 2

pOmes(] = integers(2, 2), =ift{s, L), outstream t
integersin, [n . 2]} a— wmlegersin+ 1, £},
sifl{s, 1] 2=
il #= = |p u1] then
Ft= [p t1] filter(p, 51, ri. sift{r, t1}
elae
fail
filler{p. 5 r) =—
if 42 = [n =1] then
if mad{gn, #¢p) = 0 then
filter{ ¥ §p. #x1. # #r}
else
fro=[no.ri] filter{ fp. 51 rl}
else
fail
autstream § <=
ilf 55 = [n . s!] then
write n; owulslream =)
ulse
Fail
This i an example of the evaluation of parallel-and and the synehronization mechanism. In
this example, stream is represented by o list whaose Lail is undefined . that 12, an incomplete data
structure.  integers(2.s), «ift{zl}, outstreain t in the defimbion of primes and filker{p =1 r),
sUL(r L1} in that of sift are evaluated in parallel and the evaluation of 1f-part leg #= = [p 1],
#5 = [n  s1]) succeerds and then-part is evaluated only if non-lecal variables of if-part {c.g s)
are not Instanliated by the evilustion of if-parl; otherwise, just before the variahles are instan-
Lisled the evaluation of if-then-else suspends and wails until they are instantiated thraugh the
evaluation of zome olher expression. (Mete: Farmal semanlics of Qute docs not necessarily
imply fair evaluation. For example, consider the evaluation of primes(). It 15 first reduced to
Lhree processes integers(2 5], sift{s.L} and oulstream L. An implementation which centinues Lo
reduce inlegers{2 5] and never reduce the other two processes is & correcl implementation
Actual implementation of Qute provides fair evaluslion and it tries to reduce all the three

processes little by litte )



2.4, Implemeniatim

A lranslater of & Quic program wnte a Prolog program has been implemented under
TOPE-20 on DECEZIEN The translator 15 wntten in DEC-10 Proloyg
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& REVIEW OF EQLOG
March, 1985

Kazunori Ueda
C&C Systems Hesearch Laboratories, NEC Corporaticon

1. EQLOG = FROLOG U QBJZ2

Eglog [Coguen and Meseguer 84] is a language based on many-sorted
first-order logic with eguality. Included in Eglog and not in Prolog
are

{1} equality between (syntactically different) terms,
(2) strong typing, and
{3} (generic) modules,

Of these, (2) and (3) are related to many-sortedness, while (1) could
stand without many=-sortedness.

i1l the above festures are in fact common to OBJ2 [Futatsugi et al.
f5) based on equational logie. ITn particular, (2) and {(3) have been
intreduced in just the szame manner as in 0BJZ2. Therefore, we will focus
our attention to how eguality is introduced.

2. MANY-SORTED FIRST-0RDER LOGIC WITH EQUALITY
What 15 different from the ordirary first-order logic iz as follows:

(1) {(many-sortedness) There exists a coneept of sorts and each
pradicate/function symbol has its arity/rank.
{2) {equality) For esch sort 's', a binary predicate '=s5'" is defined.

In Eglog, the predicate '=s" is defimed by 2 set of Horn clauses,
The squality predicate is oalled explicitly or impliecitly in
generalized unification (some researchers call it universal
unification). During generalized unifiecation, each elause defining the
equality predicate is used as a3 oconditionmal rewrite rule, where the
¢l ause body acts &5 the condition.

2. GENERALIZED UNWIFICATION

The difference of Eglog and Prolog is that Egqlog uses generalized
unification where Prolog uses syntactic unification. In Eqlog, two
terms T and T2 of the sort & is defined to be unifiable ifF

Cli= T =1 T2

where C is a set of Horn clauses possibly defindng '=s8".

In general, there may be infinitary many sclutions (i.e.,
subatitution) for a generalized unification problem. Furthermore,
complete algorithms which gererate 2ll solutions and which explieitly
fail in case of no solutions have been found only for

{1) some specific unification problems (e.g.,, associative-commutative

unification}, and
(2) a class of unification problems which are described only by



(a) a set R of unit clauses which make up a canoniecal (i,e.,
confluent and terminating) terpy rewriting system, and/or

{b) a2 et E of unit clauses which make up a specifio theory for
which finite unificaticn alporithm exists,

For (1) above, Eqlog provides some shorthands (assoc, comm, id, ete,)
for speecifying theories satisfied by each sort.

Fqlog itself does not seex to limit the class of the equal ity
predicates defined by programmers to one for which a complete set of
solutions iz guaranteed to exlst, However, the authors conjecture that
Eqlog's unification algerithm generates a complete set of solutions for
an extended oclass of equality predicate which allows a 'conditiopal!
cl ause

™M =sT2 ;- B1, B2, ..., Bn.

a2 long as no Bi uses ‘=g directly or indirectly, explicitly or
implicitly (during unification).

L, NARRGW ING

Fqlog uses marrowing in general ized unification. Narrowing is also
called paramodulation by other researchers. Narrowing is a repetitive
application of one-step narrowing. Une-step narrowing rewrites T to T'
by

(1) finding a non-variable subterg T of T and a rewrite rule T1=T2
such that T0 and T1 are Syntactically unifiable by the mgu 5, and by
(2) replacing TO in T by T2 and applying § to T.

Narrowing is like SLD-resolution in that it is a unify-and-rewrite
operation,
The generalized unification of T1 and T2 is done as follows:

(1) Make a term e(T1, T2) where e i5 a new function symbel which can be
construed as a formal equal ity aymbol,

(2) Make a narrowing tree whose root is e(T1, T2) and whose paths
represent all possible mrrowing chains.

(3) For each node e(U, V), check if U and V are syntactically unifiahble
gnd if so, compose their DEu with all the substitutions obtained at
the marrowing steps from the root down to this node, and add the
result to the set of sclutions,

If the equality clauses contain a subset E described in Sectien 3,
"syntactiec unification' in the above procedure must be replaced by
E~unification throughout.

5. DISCUSSIONS

A useful programming language must have a ol ear semantics and high
efficiency, In this light, the major problem of Eqlog i3 its=s
unification al gorithm. Narrowing has not been implemented in a
programming language context as the authors says. However, it is not at
all clear whether an efficient and general narrowing algorithm exists:
there may be more than one redexes and esach marrewing chain may be
nonterminating, The generalized unification alporithn and the
resclution mechanism must interact with each other, Moreover, in order



to ensure completeness which the authors pursuve, the evaluation
mechani=sm of sequential Prolog is imadeguate,

Another problem from the programming=language point of view 13 that
of encapsulation,

Fquational (algebraic) specification of an abstract data type often
serves as the sipplest implementation by regarding the specification as
rewriting rules, FHowever, one may sometimes want to expliclitly give an
impl ementation for the sake of efficiency. FEglog seems to support this,
but not the separation of the specification and the impl ementation,

For example, suppoze we want to use lists to represent data of some
type. Then we have to eguate the result of some operation with its
representation because the abstract operation should immediately be
translated to its implementaticon. However, since the eguated values
belong to the same type, we have no means to encapsulate the
impl ementation.

A more elegant way to specify implementztion would be to deseribe a
separate module giving an implementation and then relate it to the
specification module. This could be achieved by supporting the
'‘derivor' notion [Goguen et al. TB], which is not yet considered in the
Eqlog freaomework.

Eglog might also be regarded as a specification languape. &
problen with Eglog as a specification language might be whether it is
truly more expressive than an equational languape like OBJ2.

The paper did not convinee me that the slgorithm for generalized
unification (Theorem 2} is sound in the many-sorted czse 25 well as in
the one-sorted case. It is well known that the usual deduction rules of
one-sorted eguational logic are not sound for the many-sorted case
[Goguen and Mesepuer 81]., However, the description of Theorem 2 is
common both to one- and many=sorted cases. The paper should have
contained a proof of (un)soundness,
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A Proof Procedure for the Algebra of FP programs

Atsushi TOCGASHI, Hireshi NUNOKAWA and Shoich NOGUCHI

Research Institute of Electrical Communication, Tohoku University

2-1-1 Katahira-cho, Sendai-shi 980 Japan

1. INTRODUCTION

In his Turing Award Lecture (Backus 78) and subseguent papers
(Backus 8la,81b) John Backus promoted a "funetional style" of programming
with an associated algebra of programs as an alternative to the conventional
"word-at-a-time oriented Non Neumann style" of programming. Programs in
this FP style are built from a set of primitive programs by a small set of
program forming operators (combining forms) and by recursive definitions.
The FP programs have extremely simple and clear semantics; the prinecipal
program forming operators are operations of a powerful algebra of programs

that ean be used to reason about and understand FP programs.

The present paper is concerned with a mechanical proof procedure for
algebraic laws in the FP programs algebra. In his lecture (Backus 78)
Backus illustrated some useful algebraic laws, some of them require a certain
extent of consideration on programs to prove them. We propose a new
mechanical proof procedure for the program algebra, which is an extension
of the Knuth-Bendix completion algorithm (Huet 81). This provides us a
mechanical reasoning about algebraic laws whose proof usually requires

induction on objects or functions.

In chapter 2, we will briefly survey preliminary definitions such as
sorted algebras, algebraic specifications, term rewriting systems and so on.
The groundwork which will form the basis of this paper is also discussed. In
chapter 3, we specify a FP system as a term rewriting system as in (Dosch
& Moller B4, Moller 84), some properties of the resulting system and its

relationship with the final model semanties of the associated specification are



discussed, Finally in chapter 4, we describe the modified Knuth-Bendix
completion algorithm tg pProve the algebraic laws of the Fp pPrograms.

2. PRELIMINARY DISCUSSI0ONS

In the following sections We prepare the groundwork which will form the

basis of this paper.
2.1 Sorted Algebras

This section is a brief survey of manyv-soried algebras, see (ADJ T8,
Huet & Oppen 80, Wand ). This provides the key to the following
discussions, It is assumed that we are given a finite set 5 of sorts, which
are the names of the various objects under consideration. A (S-sorted)
signature is an S*x5~indexed family of disjoint setg Zw,s of symbols, where
S* denotes the set of all finite sequences on § including the null string . A
symbol fezw.s is called an operation symbol of sort s with rank w, written
by f @ w -3 g, When w = A f is called a constant., For ease of notation, let
.= Utw.s)e s*ys Zyw,s» and we use I to denote a signature.

A 2 -algebra (or an algebra in short) is B pair {h,EA]. where A js g
S-index fumily of sets Ag, called carriers of sort s, and Zﬁ is a S-index
amily of operations such that fa : Ay x...x Ay, ——> A, whencver f . 81,
<ee28p => 5€2, One of the most useful algebras is the term algebra which

consists of terms, Now we define a term on the signature,

Let X = Use 5 Xg be a disjoint unien of denumerable sets X, of
variables of sort s 5. For g sig‘naturez, Y ~terms (or terms whenever 5~ is
clear from the context) of sort s are defined in the wusual way, see (ADJ
78). The set of all3°-terms of sort s is denoted by T(Z,K}S. We define
TE,X) as the disjoint union of the sets TE.K}$ for seS. The corresponding
algebra with the usual definition of operations is called a term algebra.

Let A and B be two algebras on the same signature (8,5). A morphism
from A into B is a S-indexed family of mappings 11S AL - B, such that

hsifﬂ{al" - .Bn}} = fE[hﬁil[al} pees |h5n{3-n}}



for every f : sy,...,8, -=*> s, and for every a; in Ag. A morphism ® : A -3
B is ecalled a substitution if A = B = T(2,X). Substitutions are uniguely
determined by the values of the variables,

A wvaluation (of wariables in A) is a funetion v : X --> A, Any
valuation induces a morphism vt TE,X) --» A in the obvious way. If t is
a ground term, the value of t in A is uniquely determined independent {rom

the valuations. We denote this value by t,.

An equation is a pair of terms, denoted by t = t'. An algebra A
4 .
satisfies an equation t = t' if v7(1) = v (t") for every wvaluation v : X --> A,

A satisfies the set of equations E if A satisfies every equation in E.

2.2 Algebraic Specifications

This section briefly reviews basie notions and properties about algebraic

specifications for systems, following (ADJ T8, Musser 78,80).

Definition Given a signature (5,30, a specification is a triple SP =

{8.5,B), where E is o set of equations of the same sort.

Any specification induces the congruence relation =g on T(,X).
Intuitively, EF. is the congruence relation identifying exactly all terms, the
equality of which is deducible from E. 1f A is an algebra, let =, denote the
congruence relation on terms defined by t =4 t' iff v#(t} = v#{t‘] for cvery
valuation v in A. Given a specification sP = (8,Z2,E), an algebra A is

SP-algebra if A satisfies E,

Proposition 2.1 Let SP = (8,E£,E) be a specification. An algebra A is &
SP-algebrs iff =pC =, holds.

Proposition 2.2 For any specification SP = (8,5,E), Im(E) = TE) /g is

an initial SP-algebra in the sense that there exists a unique morphism h :

Im(E) --> A for every SP-algebra A.

Let 8Py = (S, ,E‘;],ED] he the distinguished subspecification of SP. Note
that each operation symbol in EU takes a type in S; and every term in
T(Zg,X) takes a sort in Sg.



Definition SP = (S,Z,E), or E, is (with respect to SPj)
(1) consistent if and only if t “gp 1" whenever t =g t' for all ground terms
t, t' in Ti}:n}:
(2) sufficiently complete if and only if for every term t' in T&)gor sp€ Sy,
there exists t in T(&5)., such that t =x t.

Definition A context of type, & == s', is a term C(x) of sort &' such

that C(x) contains at most one variable x of sort s,

Definition TLet SP = ($,5.E) bhe a specification with SPy. We define a

relation ~g on terms by t ~-g U iff C(te) =g C(U'8) for every context C(x) :
8 ==> Sy, sp€ By, and for every ground substitution 8.

Intuitively, -g distinguishes exactly those terms which  behave
differently in some context of the distinguished sort or substitution.

Proposition 2.3 We have the following properties on ok

(1) -g iz a congruence relation on TE, X).

2.3 Final Model

For the rest of this chapter we assume that the specification SP =
(8,2,E) is both consistent and sufficiently complete with respect to the
specified subspecification SPy.

Definition An algebra A is an interpretation of SP if A satisfies the
following conditions:
(1) TFor ground terms t, t' in T(Eﬁ} t =gp t' whenever ta = t&‘.
(2Z) Every a in A can be represented by some term t in TF), i.e. ty = a.

Proposition 2.4 If A is an interpretation, then A and the quotient term

algebra TE) /= A 4re isomorphic.

Definition An interpretation A is a model of SP if and only if A
satisfies every equation in SP.

Proposition 2.5 Let A be a model of SP. Then the restriction of A to
Zy is an initial SP,-algebra.




Lemma 2.1 Let A and B be interpretations of SP. A mapping h : A -
B is a morphism iff h(i,) = ty for every ground term t.

Proof. The "only if" part is easily verified by structural induction on
terms. On the other hand, suppose h : A --> B is a mapping such that
h(ty) = tg for every ground term. Let f : sy,...,8;, --> s, and a;€ Ag for
i=1,...,n. Since A is the interpretation of SP we can choose a term t; such
that t;, = a; for each element a;. By assumption higy) = h(tja) = tg.

h(f&{ﬂlw . 15111” = hlfﬁitm.- . -tng]J
h{f[‘tl,. . *tnjﬁ]
f{t] 'R :tn]B

fpltipgs - otnp)
fEl:h':ﬂ‘L) aoww :h(an)j -

L

i

S0 that h is a morphism.

Corollary 2.1 Let A and B be interpretations of SP. Then there exists

at most one morphism h @ A -=-> B from A into B.

Proof. Suppose hy, hy, are two morphisms from A inte B. By the
definition of the interpretation we can select a term t for each element a in
A such that t, = a. By Lemma 2.1 hy(a) = hy(ty) = tp = hg(ty) = hg(a).
Hence, the result follows.

Theorem 2.1 (Wand 79) If SP =(5, ,E) is a consistent and sufficiently
complete specification wilh respect to 5Pj, there exists a final model Fm(E)
of SP. Furthermore Fm(E) is characterized in the following way:

A ground eguation t = t' holds in Fm(E) if and only if there exist a
finite sequence of ground terms t = tg,....t, = t' and a finite sequence of
SP models Aq,...,A, such that t_q45 = a5 fori=1,...,n.

Proof. Let Q denote a relation on T@) defined by t Q t' iff there
exist a finite sequence of ground terms t = ty,...,t, = t' and a finite
sequence of 8P models Ay,..., A, such that tio1ail T YHai fori=1,...,n. @
is mot, in fact, void since TEL) .FfE is one such instance of SP models. It is
clear from the definition that Q is the least congruence relation including the
induced relations =, from models A. Thus Q satisfies E.

Now we shall show T = TE)/Q is the final model of 5P. To show that T

is an interpretation, suppose s Q t and s = {3,...,t, = t is the



corresponding sequence such that Lo1a; = tiai for some model A;, where s
and t are in T I:}EG}. For each term l; we can choose a term t'i in T&,) such
that t; = t'; since SP is sufficiently complete. Hence tja; = t'ja; holds for i
= 1,...n. Let us consider & sequence s = th'seonty' = t. Note that
tii1'ai = ti'ay for each i, Since each t;' is a term in T@&y) and each A is a
model, ;_;' EEH t,' for i = 1,...,n. Thus s g0 t- So that T is not only an
interpretation but a model of SP by Proposition 2,1,

Suppose A is a model of SP. Recall that A = TG /zp. Let us define a
mapping h : T@)zp - T by h(lt]zy) = [t]q. where t is in T(Z)., h is a
well defined morphism by Lemma 2.1. Corollary 2.1 implies this is the only
morphism from A inte T. This completes the proof of the theorem,

Corollary 2.2 Let T = Fm(E) be a final model and A a model of sp, If
an equation t = t' holds in A, it holds in T also.

Proof. Suppose t = t' holds in A. To prove the conclusion of the
corollury it suffices {o show that H{t}T = B{t‘]T for every ground
substitution 8 by the construction of the finnl model. Let @ be any ground
substitution and v be the valuation in A defined by wv(x) = 8(x),. Since A
satisfies t = t', 8(t)p = h(v* (1)) = n(v* (1)) = 8(1)p, where h : A > T is
the unigque morphism.

2.4. Equational theories in final model

The discussions in the previous section supggest that the equational
theory in the final modcl can be characterized in the similar way,

Let us define a relation - on terms: t - t' iff there exist a finite
sequence of terms t = tgsraeaty = t' and a finite sequence of SP models
Al*“'""‘n such that i1 = t holds in ""i for i = 1,...,n. ~ is obviously a
congruence relation. The direct consequence from Corollary 2.2 is the next
Theorem.

Theorem 2.2 t ~ t" iff t = t' holds in the final model of SP.

Proof. The "if" part is obvious from the definition of -. The "only if"
part is verified by Corollary 2.2.



Lemma 2.2 Let t = t' be an equation. In the final model t = t' holds if
and only if t8 = t'8 holds for every ground substitution 8,

Proof. Since the "only if" part is abvious, we prove the "if" part only.
Let us assume that t8 = t'8 for every ground substitution 8. Suppose v is &
valuation in the final SP model T = Fm(E), then there is a ground
substitution 8 such that v(x) = B(x)p for each x in X. By assumption té =
'8, i.e. 8(Dp = 8(t)p. Hence v¥(1) = 8(t)q = B(t)p = vH(t). This means t
= 1' holds in T.

Lemma 2.3 For ground terms t and t', t = t' holds in the final model T

whenever t -p 1",

Provf. To prove the lemma it suffices to show that T(Z)/~g is an
interpretation. Suppose there are two ground terms t, t' in T(Ly) such that
t #gg t'. however for every context C(x) : s --> s5, C(t) =g C(t"). By
taking C(x) = x as a context, C(t) = t # t' = C(1") since 5P is consistent.
This vontradicts the assumption. Therefore we have obtained the result of

the lemma.

Theorem 2.3 For terms t and t', t = t' holds in the final model if and
only if t - t'.

Proof. Let t, t' be terms. Suppose t = t° holds in the final model, By

Theorem 2.2 suppose t = tg,...,1, =t and Ay,..., A are the corresponding

n
sequences of terms and SP models respectively such that t;_; =5 t; for i =
l,...,n. Let C(x) : s --»s; be any context and & be any ground
substitution. Since A‘i satisfies ‘1’—1 =t it also satisfies C(4_,8) = C{I_i'ﬂ],
Note that both terms C(t;_;#) snd C(t;#) are ground terms of the sort s; in
S5p- Without loss of generality, we can assume that the both terms C{ti_lﬂ]
and G(tiﬂj belong to T{LDJ since &P is sufficiently complete. These
considerations imply that C(tj_;8) EEIZI C(t;8). Hence, C(1;_18) ;E C(y8),

On the other hand suppese t -p t' and let 8 be any ground
substitution. Then we have t8 “E t'é., By Lemma 2.3 t8 = t'% heolds in the

final model, So that the proof is complete by Lemma 2.2

2,5 Term rewriting systems



Definition A term rewriting system (on the signature ¥,) is a set of
rewriting rules R such that Var(l)> Var(r) for every rule 1 => r in R.

The reduction relation -->p associated with R is the finest relation over
T(3,,X) containing R and closed under the operations substitution and
replacement. That is

(1) M ":’R N implies M@ ——}B NG;
(2y M ":"R N implies P(u <- M) -—-p Plu - N).

Equivalently, -->r 1s the finest relation containing all pairs 18, 8r such

that 1 > r in R and closed under replacement (2),

From now on, we shall use --> for ~=?p. We use the standard notations
-1> for the transitive closure of -->, -2> for its transitive, reflexive
closure, and <-> for its symmetric closure. MNote that r:ib is the same as the
congruence relation =5, when R is considered as o set of equations.

Definition R is Church-Rosser (or R has a Church-Rosser Property) if
and only if for all M and N, M =g N if and only if there is a P such that M

-%> P and N -> P,
An equivalent characterization is "confluence” .

Definition R is confluent if and only if for all M, N and P P -I> M and
——;r N implies there is some @ such that M --> & and N --} Q.

We say that M is irredueible or in normal form (relative to R) if therc
is no N such that M --> N, that is, no subterm of M is an instance of some
left hand side of a rule in R. We say that N is a normal form of M, denoted
by M!, iff M __;-. N and N i= a normal form relative to R. When R is
confluent the normal form is unique, if it exists. A sufficient condition for
existence of such a normal form is the termination of all rewritings:

Definition R is Noetherian (or finitely terminating) iff there is no

infinite reduction sequence.

Let 1 ->r and I' ->r' be two rules in R. Assume u is a non-variable
occurrence in 1 such that 1/u and 1' are unifiable with a mgu &, We say that
the pair ( I(u<- )8, ré )is eritical in R.



To sum up the results obtained in this chapter, we have

Theorem 2.4 Let SP = (58,5,E) be a consistent and sufficiently complete
specification with respect to the specified 5Py and Fm(E) the final model of
SP. Suppose t, t' are terms, then the following claims are eguivalent.

(1) t =~ t': C(18) =g C(t'8) for every ground substitution 8 and for every
context C(x): s ==> sy, 55 in S5p.

(2) t - t'": there exist & scquence of terms t = fp,..., 1, = t' and a
sequence of SP models Ay,... A, such that t; ; Sp; 4, fori=1,...,n.

(33 t =1" holds in Fm{E},

{4) t8& = t'0 holds in Fm(E) for every ground substitution 8.

3. FP SYSTEM AS A TERM REWRITING S5YSTEM

In this chapter, we specify the Backus' FP system as a term rewriting
system as in (Dosch & Moller 84, Moller 84). Operation symbols are
partitioned into two types, constructors and extenders. Constructors are
used to create object / function terms in the system and extenders to define
manipulations on the constructed objects, the meaning of them are specified

as rewriting rules.
3.1 FP system FUNC

The FI' system emplovs a variety of atomic data types such as Boolean
values, natural numbers, characters and so forth. As an example a simple

system for the Boolean valucs is specified as follows:

syvstem BOOL
sort; bool
5] . - L . _—
constructor; T, F, Ny * A -7 boaol
extender; NOT : bool --» bool

rules;
NOT(T) -> F
NOT(F) =-> T
NOT(1pge)) = Zbool
end svstom



In the sequel we assume that a primitive system ATOM is defined as the
disjoint sum of the primitive data types. Based on ATOM a system OBJECT

is specified as follows:

system OBJECT = ATOM U
sort; abject
constructor;
e, T—Ubj : A =—> object
in : atom --> object
_& . object, object -=> gbject

extender;
pro : object --» atom
hd, tl, null, apndl, apndr,
distl, distr, id : objeet --> object

_ = _: _ : object, objeet, objeet --> object
riles:
pro(®) > ! iom Prolioni? > latom
pro(in(a)) > a pro{x & yv) > I—atom
hd(in(a)) -> L obj hd(x & y) < x
ey > L:jb] T‘“iﬂ-hj} - l&bj
tlfin(a)) -» -!-Clbj thix & v) > vy
null{f) -> iﬂ(T) null(lﬂbj} -2 :-ﬂbj
nuli{in{a}) ->» L‘ij hd(x & y) -> in(F)

apndl(x & @ & 8) -> (x & )

apndl{x & (y & z) &8 §) -> (x & v & oz}
apndl{x) -> L:-hj otherwise

apndr(® & x & 9) > (x & @)

apndr((x & y) & z & ) > (x & apndr(v & z & @)
apndr{x) -» Labj otherwise

distl(x « @ & 8) - ¢
distl(x & (y & z) & ) > ((x & V&) s distlix & z & 8))
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distl{(x) -» iﬂbj otherwise

distr(d & = & #) > @
distr{(x & y) & z & @) -» ((x & z & @) & distr{y & z))

distr({x) -» lub] otherwise

id{x) ->» x

(in(TY) = x; ¥v) = x (in(F) = x; ¥v) = ¥
(u =2 =x; y) > x otherwise

end system

Note that the usual sequence X = (X;,Xs,...,X,) can be represented by
the constructor term as:

{xlaxi&...&x aﬂ]={x1&(x2m{...&[x

N & 0)...)

n

In the FP system a fixed set of "program forming operators", i.e.,
combinators, is used for combining the basic funetions into complex
functional forms. In the segquel we define a system FUNC that describes

functional forms without recursion.

svstem FUNC = OBJECT U
sort; function
constructor;
&, * {primitive functions) :A --> funection
" : objeet --> function
“, %, # : function, function --» function
/., B : funetion --> funection

-=» ; : function, function, funection -=> funection

(note G : empty function; f . atomic function corresponding to the primitive
function f; ° : composition; $ : construction; # : parallel construction;
constant; -->; : conditional; / : insertion; @ : apply to all)

extender;

: function, object --» object

rules

B:x > @ forx# !_ubj

11



®:Lobj > loby
fox => fi(x)
Xy -»>x fory#

%:lobj > lobj

Lobi

(£5 ghix > ((f:x) & (g:x))
(FFgx$y) > ((Iix) & (g :y)

(f # gh:x -> lobj otherwise
% ghix -> (f:(g:x))

(f =>gih)ix => ((£:x) D (g:x); (h:x))

H:(x ) -S> (x &
M:(x & v & 2) =% :(x & (fly & 2)N

ffix > L:ubj otherwise
er:9 > @

Of:(x & yv) -> ((f:x) & (Bf:v))

Bf:x -» L::hj otherwise

end system

3.2 Discussions on the resulting system

To relate the above system with the Backus' original FP system we cali
a4 ground term of sort object, a sequence, if it is constructed only by
constructors, i.e. a term in TEﬁ}nhj. Similarly terms of sort objeet and sort
function are called object terms and function terms respectively.

Proposition 3.1 Every ground object term is redueible to a sequence,

Proof. We prove this property by structural induction on ground
object terms. Let t be a ground cobject term.

Basis: If t is .!.ubj- 8, or in(a) for some atom a, t is a sequence.

Induetion: (1) Suppose t is of the form (t; & ty). As an induction
hypothesis, we assume that ty -2 t1' to o ty' for some sequences t;" and
t'- Thus, (17 & tp) == (1)' & t"), and (1;" & t,") is a sequence,

(2) Suppose t is of the form t = pi(ty) or (t; = tai tg), where pf is
& primitive function symbol except the conditional and each tj is a ground
object term. To verify the result we must show that t is reducible to a
sequence whenever each 4 is reducible to & sequence. We shall show this
only for the case t = (t; => tg; t3). Other cases are similar to this case.

12



Suppose ty is reducible to a sequence t;'. By the previous discussion t;'

must he of the form L::hj?

sequences tyy' and tyo'. Even if ' is described in the alternative forms t is

@, in(a) for some atom a, or (tyy' & ty5") for some

reducible to a sequence by the rewriting rules for the primitive function

symbols,
(3) Suppose t is of the form t = f:t;, where { is a ground function

term and ty is 4 ground object term. To complete the proof we must show
the following assertion by structural induction on ground funection terms:
Fvery ground object term f:t is reducible to a sequence if t is
reducible to a sequence.
This can be easily verified in exactly the same way as in (2), so we

omit it,

Proposition 3.2 The FP system described above is a Noetherian and

confluent term rewriling system.

Proof. The confluence is obvious, since there is no overlapping on the
left hand side of the rules. The Noetherian property can be easily proved
by structural induction on object terms in a way similar to the proof of

Proposition 3.1.

Let FP = (5,%,E) be the specification of the FP system, where E is the
set of equations defined by ignoring the orientation of the rewriting rules in
the system. Let FPy be the one for the system OBJECT. Reecall that 3, Gy)
is partitioned into the set of constructors 3V (E‘,j} and the set of extenders

¥ &
¥ =55 UL zo 5§ UE§
To establish sufficient completeness and consistency for FP we will prepare

the next proposition.

Proposition 3.3 FP satisfies the following conditions (called "the

principle definition" investigated in (Huet & Hullot 82)). (For later use we

shall state these properties 1,2 more abstractly)

Property 1: For every ground term M in T(Zﬂ}, there exists a constructor
term My, i.e. a term in T@g), such that M Sgq M.

Property 2: For constructor terms M and N, M EEGI N only if M = N.

Proof. Property 1 follows from Proposition 3.3. Since there is no rule

which rewrites a sequence, Property 2 holds.

13



We ean further strengthen the above properties in the following way:
Property 1': For every ground term M in T@&), there exists a constructor
term My, i.e. a term in TEE}, such that M =g M.

Property 2': For constructor terms M and N, M g N only if M = N,

Proposition 3.4 FP is consistent and sufficiently complete, so that

there exists a final model Fm of FP.

Proof. Sufficient completeness is clear by Proposition 3.1, so we prove
only that FP is consistent. Let t, t' be ground object lerms in T(Zy) such
that t EE t'. By Proposition 3.2, t and t' can be reducible to the unique
normal forms t! and t'! respectively bLy applying only the rules in OBJECT,
since no program forming operator appears in both t and t'. Thus, t EE'I} t!
and t' =g, t'!. Since both t! and t'! are sequences, t! =g t'! implies t! = t'!

by Property 2'. Hence, we have t “ro t'-

3.3 Algebra for FP programs

Definition Let f = g be an equation of sort function. f = g is an
algebraic law in the FP algebra iff f “g E-

Lemma 3.1 Let F(u) be a function term which contains at most one
variable u of sort funetion. Suppose f, g are ground funetion terms such
that f:t EE g:t for every seguence (equivalently for every ground object
term), then F(f):t =g F(g):t for every sequence t.

Proof. By structural induction on F(u).

Theorem 3.1 Let f = g be an equation of sort function. The following
three conditions are equivalent.
(1) f =g is an algebraic law, i.e. ~g £-
(2) f8:t = gh:t for every ground substitution @ and sequence t,
(3) (f8:t)! = (gh:t)! for every ground substitution 8 and sequence t.

Proof. The proofs (1) => (2) and (2) => (3) follow from the definition

of ~g and Proposition 3.2 respectively. (2) => (1) can be proved by
Propesition 3.1, 3.2 and Lemma 3.1.
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To conclude this chapter we will state the main theorem obtained in this
chapter which relates the algebraic laws for FP programs with a proof
procedure in the final model of FP.

Theorem 3.2 Let t = t' be an equation consisting of function terms t,

t'. Then the next alternative assertions are equivalent.

(1y t =1t'1is an algebraic law.

(23 t = t' holds in the final model Fm of FP.

(3) t8 = t'86 holds in the final model Fm of FP for every ground
substitution 6.

(4 1 -t

(5) th:x :E t'"8:x for every ground substitution 8 and sequence x.

(6) (t:x)! = (t'6:x}! for every ground substitution # and sequence x.

(T) C(t8) ->> y iff C(1'8) ->> y for every ground substitution 8 and for

every ground object term v.

4. A PROOF PROCEDURE

In this chapter we present a proof procedure in the algebra of FP
programs. This is the modified wversion of the Knuth-Bendix completion
algorithm in (Huet 81). The subsequent discussions give the basis for the
proof procedure which will be described later,

Proposition 4.1 Let E, E' be sets of equations (on the same signature)
such that E' contains E, that is EE is contained in EE"

(1} 1If E is sufficiently complete (has Property 1), so is E°,
(2y If E' is consistent (has Property 2), so is E.

Lemma 4.1 Let E be a sufficiently complete set of equations and E' be
a set of equations containing E. Then the following are equivalent.
{1y E' is consistent.
(2) E is consistent and E' {(equivalently each equation in E' - E} holds in
the final model Fm(E) of SP = (5 3,E).

Proof. (1) => (2): By Froposition 4.1 it suffices to show that E' holds
in Fm(E). Let M = N be any eqguation in E'. Suppose C is a context of sort
sg in Sy and 8 a ground substitution, then C(M@) 531 C(N8). Note that
hath C(M8) and C(NB) are ground terms of sort 8p- By assumption there are

ground terms My and Nj in T(E-u}sn such that C(M8) = M, and C(N&) EE
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Ng- Thus, Mg =g Ny. Since E' is consistent, the above formula implies
My EEl] Ny, therefore C(M8) g C(N®). This means that the equation M = N
holds in Fm(E) by Theorem 2.4.

(2) => (1): Let My and Ny be any terms in T(Zy) of sort s5 in 8§,
such that Mg =g Nj. Then there exists a finite sequence of terms in T o
My = tg....t; = Ny such that ti-1 g t; for i = 1,...,n. By definition for
each t; in the sequence there is an equation L = r in E', an occurrence uy

and a ground substitution B, such that

(al) t‘l—i"rui. = ]'iﬁi.' t."l = ti—l“'li &— rig). or
() ty_glu; = 16, = gy < 18).

Let C;(x) be a context defined by Cy(x) = tj{u; <~ x) for each i, where
X 1s a variable which does not appear in the sequence. Since each equation

]_1 =1 in E' holds in Fm(E),

ti_l = Ci[l.lu'j EE Ci(riﬂ} = ti- a1
ti-1 = Ci(ri®) Zg Ci(48) =,

corresponding to satisfaction of (a) or (b) above respectively for each i.

Hence, My =g Ny. Since E is consistent, My =gg Np-

Corollary 4.1 DLet E be a consistent and sufficiently complete set of

equations and E' a set of equations such that E' contains F. Then, E' holds
in the final model Fm(E) of E if and onlv if E' is consistent.

Recall that Zy is partitioned into Z§ a set of constructors and Zj a set
of extenders. Based on Huet and Hullot's work in {Huet & Hullot 82) we

have the subsequent modified results.

Proposition 4.2 Let E be a consistent and sufficiently complete set of

equations. For two terms M, N of sort sp in Sy, M = N holds in the final
model Fm(E) if and only if M@ =g N8 (equivalently Me =pg N8) for every
ground substitution 8.

L.emma 4.2 Assume that E is a consistent and sufficiently complete set
of equations with property 1 and 2. TLet M = ::(Mi,..,,mn}, N =
¢(Ny,....Np) with ¢ inZ§. M = N holds in the final model Fm(E) if and only
if M; = N; holds in Fm(E) for i =1,...,n.
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Proof. To verify the "if part” suppose M; = N; holds in Fm(E) for i =

1,...,n. Let C(x) be a context and ® a ground substitution. Then

C(M8) = Clc(My8, Mg6 ... , M_8))
=g Cle(N;0, Mgb ..., N, 0))

111

E C({:(NIEI I";EE = . ] Nnﬂj]
C(Ng).

On the other hand, suppose that the eguation M = N holds in Fm(E),
c(M;8,...,M_8) ':'E c(N4®, ..., N, @) for every ground substitution 8 by
Proposition 4.2. Since M;8's and N;0's are the ground terms of sorts in §;,
by assumption for each i we can choose constructor terms t, t' in T(Znﬁ)
such that M8 =g t; and N;# =g t'. Thus, clty,...,t,) =g ¢ty
This implies C“l""*tn] = e(ty"s «..,1y"). That is 4 = tj-' for each i. From
this we can deduce M;# = N:8. Since both M;8 and N;® are terms of sorts in

E’EI Mi = Ni holds in Fm(E) for each i by Proposition 4.2.

Corollary 4.2 Let E be a consistent and sufficiently complete set of

equations and E' be a set of equations containing E. Suppose M =
E(]"-‘ll,.. . ,Mn}, N = c{Nl,.”,Nn} with ¢ ir1ZS and E' contains the eguation M
= N, Let define E" by E" = E' - {M = N} U {M; = N; | 1%i¢n{. Then, E' is
consistent if and only if E" is consistent. If E' is consistent (equivalently E"
is consistent), E" satisfies Property 2, furthermore Fm(E') = Fm(E"}.(Note
that both E' and E" are sufficiently complete and satisfy Property 1).

Lemma 4.3 Let E' be a sufficviently complete set of equations with
properties 1 and 2. If e{My,...,M) =g €¢'(Nq,...,N) holds with ¢, ¢' in
}_‘,E and ¢ £ ¢, then E' is not consistent.

Proof. Assume that E' is consistent. Suppose (My,...,M) E'E‘
e'(Ny,...,N ) holds, c(My8,...,M_8) EF.‘ c'(Ny8,..., N 8) for every ground
substitution 8. Since E' is sufficiently complete and M;8's and N;B's are
ground terms of sorts s; in 5;, there are ground terms p;, q; in TQp) such
that Miﬂ EE‘ Py Nj@ :E‘ gq; for i = 1,...,n. Hence, c{pl,,_,,,pn) :'_.Er
e'"(qQy,...,4,). Consistency of E implies c¢(py,....pp) “pg ©'(dy.....q,). By
property 1 of E there are constructor terms p;'. q;' such that p; EE‘D Pi's 4
=gp ;' for each i. So that e(py's 5Py “gp ©'(qp's...,9,"), and
c[plT,,...pn’} # c'(gqy'y....q,"). This contradicts the Property 2 of E,
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Corollary 4.3 Let E' be a sufficiently complete set of equations with
property 1 and 2. Let M = e(My,...,M ) with ¢ in § and M g N. If N =
e'(Ny,...,N,) with ¢ inZ.§ and c # ¢', or N is a variable, then E' is not

consistent.

Proof. The former case follows from Lemma 4.3. For the latter case
consider a ground substitution @ that substitutes a term c‘(Nl,....Nn] with
e inZ§, ¢ # ¢ for N. Then this case reduces the former one.

Now we present the modified Knuth-Bendix completion algorithm to
prove algebraic laws in the algebra of FP programs. In the following, Ei is a
finite set of equations, and Rj is a finite set of rewriting rules for i. Every
rewriting rule in R; has a label, which is a natural number. We dencte by k
: 1 =>r the rewriting rule with label k. Finally every rewriting rule in k; is
marked or unmarked.

A Proof Algorithm

Let FP = (S,L,E) be the specification of FP svstem FUNC introduced in
chapter 3 and R the set of rewriting rules in FUNC. Note that for the
ground objeect terms M, N, M =g N iff M! = N!, where M! denotes the unique

R-normal form of M.

Initial Data:  an equation t = t' to be tested as a law;
a reduction ordering >

Let Eg := {t=1t};
l{u = R;
i:=10; p := |R].

Assume that every rule in R has a unique label and marked.

loop

(A) Reduce Equation:
Select an equation M = N in E;; delete it from E;:

E; :=E -|M N}.

Reduce the terms M (resp. N) to obtain the R;-normal form M!
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{resp. N!) by applying rules in R of any order, until none
applies. (This can be puaranteed since Ri is not only confluent,
but Noetherian,)
if M! = N!, then let
Eipqp = B3 Ry = Ry 1= 1.
elseif both D! and N! are object terms such that at least one of
them begins with a constructor (if M! is a object term, so is
M!, and vice versa.),
if M! = e(My,...,M ) with ¢ inZ§,
(a) if N! = e(Ny,...,Ny), then let
Bjay 1= By U{M = N; | 1sjsnf;
Rioq = Ry 1 = il
(b) if N! = ¢"(Nq,...,N,) with ¢' inZf, ¢' £ ¢, or N! = x
(N! is o variable), then stop with "disproof".
(e) if N!1>NM!, then let
Il =N, r=M.
(d) otherwise stop with "failure".
else do as above.
elseifl M!I>N!, then let
l=M!, r=NI.
elseif N!>M!, then let
1=™N!, r=NDN.

else  stop with "{ailure",

(B) Add New Rules:
Let K be the set of lubels k of rules I -> ry, in R; whose
left-hand side 1 is reducible by 1| -> r, say to " . Let
B, = B U{L' = rp [ k&l = ryin Ry with k in K};

p = p*tl;

Riq = [0 lj => ry' in Ry with ] EKjU{p:1> r},
where 1'j'f is a normal form of ry using rules from Ry U1 -> r{. The
rule coming [rom Ri are marked or unmarked as they were in Ri'

the new rule | —->r is unmarked;
1 := i+l.
end.
endwhile

(C) Compute Critical Pairs:
If all rules in Ry are marked, stop with success.
Otherwise, select an unmarked rule in R; with the least label k. Let
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E;.; be the set of all critical pairs computed between rule k and any
rule of R; of label not greater than k. Let R;,q be the same as R;.
except that rule k is marked;

i:=i-1,

endlcﬂE

Before giving the results of the proof algorithm, we state it more
precisely. The algorithm goes through successive passes on sets of equations
and rewriting rules. Initially, we set Ry = R, and Ey ={t = t'} the set
consisting of only one equation to be tested as a law. By econstruction every
E; is a Noetherian term rewriting svstem, because 1% r for every rule 1 - r
in Rj. In the main loop of the algorithm an equation is removed from E; and
simplified by the current simplification set R; into a candidate pair (M!, N!),
In the standard completion algorithm if M! and N' are not comparable in the
ordering >, the algorithm stops with failure. Otherwise, let 1 be the
greatest, and r be the smallest. We place the new rewriting rule 1 --> r in
Ri+1- The rules from R; whose left-hand side is simplifiable by the new rules
are placed in E;,,, together with the remaining equations. The other rules
from R; are placed in Rjyq. after possible simplification of their right-hand
side, using rules in Ry U {1 -—> ri.

In our proof algorithm, new failure cases are added, when the ordering
would oblige to consider a rewriting rule with a construetor in T.§ as a
leading operation symbol at its left-hand side. Also we have a new case of
termination, whenever M! and N! start with different constructors, or one
starts with a construetor and the other iz a single wvariable; we then stop

with "disproof" as a result.

Besides the cases of failure and disproof, the only departure from the
standard completion algorithm is when M! = e(My,....M,), N =
e(Ny,...,N,) for some constructor e inZ§. We then set Ris; to R;, and Eiq
to {Mi =Ny | 1s i:{-n} added to the remaining equations in E;. This step is
called "induction step” by Huet and Hullot in (Huet & Hullot 82). To state a
relationship between E;, R; and Eii1» Ryyq more precisely let

= E; U Ry.
By Huet's result we have in general =¢i C =gi+1+ If the step from i to i+l is
not induction step =, = SEq+1 -

At every step i, whenever §; is sufficiently complete (satisfies property
1), so is £, (so does §,,) by Proposition 4.1. And initially € ={t = t'} U
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R is sufficiently complete and satisfies property 1, we can deduce that every
£; is sufficiently complete and satisfies property 1, where we treat R as a
set of equations rather than a set of rewriting rules.

Proposition 4.3 Let E be a set of equations defining a canonical term
rewriting system, i.e. confluent and Noetherian, such that there is no rule

whose left-hand side is a constructor term. Then E satisfies the property 2.

Lemma 4.4 If Ei is consistent (satisfies Property 2), so is £i+1 (does),
and furthermore Fm(fy,4) = Fm(fy), i.e., the final model of £;,, coincides

with the one of £i.

Proof. If step i is as in the standard completion algorithm, then =g =
55:-1,_,1, and the result follows. If step 1 is an induction step, we get the

result from Corollary 4.2.

Corollary 4.4 1f E U {1 = l’j‘ is consistent, then Ei are consistent, and
Fm(E) = Fm(%;).

Theorem 4.1 Main Theorem for the preoof procedure in the FP Algebra.
(1} If the algorithm stops with success, the given equation t = t' holds as
an algebraic law,
(2) If the algorithm stops with disproofl, 1 = t' does not hold.
(3) If t =1t does not hold, the algorithm stops with either disproof or

failure.

Proof. For {(1): 1f the slgorithm stops with success, say at s-ﬁ:p n,
the resulting term rewriting system Ry, is conlluent and Noetherian and
contains E' = E U |t = t'}. By assumption and Proposition 4.3 R, is
sufficiently complete and satisfies property 1 and 2, since there is no rule
whose left-hand side is & constructor term. So that the same result holds for
E'. Now we shall show thal R, iz consistent. Supposc it is not, then there
are two ground terms M, N in T(Eu]' such that M =; N, M #;, N. Since E
satisfies property 2, we can choosc constructor terms Mﬁ and N'ﬂ such that
Mg Sgg Mg, Ny gg Np. Hence, My =p Ny, Mg # Nj. However, My, Nj are
Ry, -normal forms and My =g Ng implies My = Ng. This contradicts that My #
Npy. Thus E' is consistent. By Lemma 4.4 t = t'" holds in the final modecl of

the specification. We also get from Corollary 4.4 that Fm(E) = Fm(R).
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For (2): If the algorithm stops with disproof at step n, it means that
£, is not consistent according to Corollary 4.4, By Lemma 4.4 this means
that E' is not consistent. Lemma 4.1 shows that t = t' does not hold in Fm.

For (3): Assume that the equation t = t' does not hold in Fm. By
Lemma 4.1 E' is not consistent. So without loss of generality let M, N be
constructor terms such that M =g, N, and M Ffgo N (i.e., M # N). If the
algorithm doesn't terminate, it generates an infinite confluent set of
rewriting rules R', and M and N are eventually reducible to cxactly the same
term. But this is impossible sinece no rules generated may treduce a
constructor term. Hence M = N. But this contradiet the assumption. So that
the algorithm stops either with disproof or failure.

3. CONCLUSION

In this paper we have presented s proof procedure for algebraic laws in
the algebra of Backus' FP programs. At first we have formulated the Backus'
FP system as a term rewriting system, some properties of the resulting
system and its relationship with the final model of the associated specification
were investigated. Finally we presented a proof procedure for the algebraic
laws in the algebra of FP programs.
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l. Introduction

There have been proposed many formalisms of parallel object
griented programming based on the actor theory (see [113. In this short
paper, we present a formalism in which each message has a color and the
color allows an object 1o zend a message 1o itself recursiveliy. This
approach completely unifies the nbhject as a multiple-entrance procedure
and the object as an independent computational process.

We hove built an experimental system according to uvur formalism on
fommon Lisp (see [2]). The reason of the selection of Common Lisp is
that il completely supporis the functivnal closure.

2. Message
A meussyye consists of the following five components:

target abjert
clar

message identifier
arguments
continuation.

B OE OB B O

The targel object is the object thal lhe message is directed to,. The
color of a message 1s unigue Lo our appraach! each message has a color
as one of its compunents. We assume thal there are an infinite number
of colors and a new color is always available, (The internal structure
of volors is not relevant.? The message identifier is the name of Lhe
message; in a window system, for pxample, a message to a window may have
a messane idepntifier such as 'EXPOSE or :STRETCH. (Since our
experimental svstem is implemented on Common Lisp and Common Lisp



kevwords are used for message identifiers, we prefix @ colon before a
message jdentifier.) Theoretically, the messaye jdentifier mav be
included in the arguments of the message, but from the practlical point
of view, we do not consider & message identifier as an argument. The
continuaiion of a messaye is 8 functional closure whichk is invoked when
The targel object has completed the execution of the method that
curresponds 10 the message identilier of the message, & message may
have no condineation, in which case, the coniinuation is 1reated as NII .
In contrast ta the message identifier. the conlinuation is included in
the arauments ot Lhe message and. by conventinn, the koevword argument
CRETURN of the message always has the continuation as i1s value {spe

(217,

When a message arrives al an objecl and lhe object is ready to
process the message, the method of the object thal curresponds to the
message identifier of the message is execuied. The method may return a
value, and Lhe value becunes the value of the message.

. Color

An obiect can process wmore than one message at a time, bBut they
should be of a same color, While an object is Processing a message (Or
messagesd, the object is considered to have the color of the message (jt
is rolored with the colar af {he Message ),

When an objeet has no color, i.e, il is processing no message, |1
Can Drocess a messJage as s00n as the mesEgye arrives at itl here,
Prucessing o4 message means 1o invoke the method of 1he obrjectl 1hat
vurresponds 10 the nessage identifier of lhe messane.

When an object has a color, i.e. it is DFUCESSING 4 MESSAgE Or
fessoges, méssages ot other ecolors than that af Lhe object are queded in
the order ui their arrival, and messages of the same color as that of
the object are processed immediately., A% will be explained in Sectlion
B, the messages thal an objecl |s processing {i.e. Lhey are of a same
colort fnrms & stack and only the method that corresponds (0 the top of
the stach is aclive,

hen the control reaches the end of the method, the object loses

the color of the message: if more than one messages are bheing processed,
the objerct loses the color after atl the messaars have been procesased.
4, ODbject

An Object is a collection of methods, each corresponding 1o a
distinct message identifier. A method takes & form of & Tunelion: it
has a lambda-)ist and & body (sequence of forms), An ocbject |s created



by evaluating the form:
{0, <method-list>}),
where o method takes the tollowing form:
(<message-identifier? ¢lambda-1ist> . <bhody>).
For example.

(0 DIWALUE (N2

CIF (= N 03 | (% (<= SELF :VaLUE (1= N H3¥))
will relurn an object with one method, which, given a message with the
message identifier VALUE and the argument W, returns the factorial of
. The form beginning with <= is a message sending torm, which will be

explained in the sequel, end S3ELF is a pseudo variable that holds the
nbject as its value, The use of SELF iz not theoretically essential: we
can create the objeci by svaluating the following LET form:

(LET ©{5FELF
0 CIVALLDE (ND
CIF 6= N O) 1 (=% (€= SELF :VALUE (1= M1} NXID}DD
SELF ¥
in which SFIF is explicitly bound 1o the object itseif.

H. Message Sending Form
A message is scni to an object by either of the fullowing forms:
{¢= <pbject? <message-identifier? ., <argumentisi)
1k Cobject? <message-identifier? ., {argumentsk),
(A1l the arouments in buth forms are evaluated, <- and <& are functions
and notl special tforms nor macros. ) Evaluwaling these forms creates a

message as described below,

The messsaye created ia the first form has the fol lowing components:

target. given in the form

color: ihe ¢olor of the sender object
identitier: qive in the form

arguments: given in the form

cont inuation: the continuation thal receives Lhe value

of 1he messege and compules Lhe rest of Lhe
method ot lhe sender object.



This continuation is canstructed implicitly by the form and not
expiicitly supplied as an argumeni. The value of the message becumes
the value of the form. For example, lel us consider ihe following

me thod

CIWVALLUE N
CEF 4= N O0) | (% €<- SELF :VALUE (1= NI NI}

which contains the message sending form
(€= SELF IWALUE ©1= MY),

This message sending form creates a message wiih the folloewing

cumponent st

target: the value of SELF (the sender objeci)
color! the cofor of the sender object
identifier: VAL UF

Arguments. the value of (1= W) and the continuation
continuation: the following continuation

(10 M (=2 RETURN (2 M NJb),

The continualion is explained in Section T. &ince the rest of the
method SVALLE is passed 1o the targel object as a continuation., the
control of the sender object suspends untif the contlinuation is invoked
by Lhe targaet object (or ather objects). This fars carresponds to what
ts cabled "now type” in [1],

In the second form, Llhe message has the following component s

target given in the form

color: newly creaied

identifier: given in Lhe farm

arguments: given in the form

continuation: the value of the :RETURN kevword arqument

in the farm, ar NIL §if not supplicd,
The farm has nu value {or has value NIL) and the control of the sender
object does nol suspend. This form corresponds 1o what is called "paosi
1ype® in [11.
&, Method

A method takes the following form!

timessage-identifiar? Clambda=1ist» . <body>).



1f the ifombda-list has the “RETURN keyword argument, it is given the
continuation of the message. ln this case, the continuation should be
cal led by the continuation calling form {(see the nasxt sectiaon), if it is
necessarv, As an example, lel us consider mak ing a hinary semaphore.

(LET (400 {MAKE-WQY)2
1 (iP (&KEY RETURND

( TF (OENDP 00
(=% RETEREN NILD
(END RETURN Q311

[T

CLF {QENDP 0
RmIL
(-» ROCTURM (DEG 0332310

The method :F has the RETURN keyword argument, while IV does not. The
forms beainning with -» are continuation callina forms and will be
explained in the next section. In lhe above example, we assume that
MAKE=0 makes a gueue (which may be realized by a list and & pointer 1hat
points to the last cell of the list), ENO engueues an elemenl in a
gueue, DEQ dequeues an element from a guewe and returns the degueued
element., and QENDP checks if a gueue is emplty.

If the lambda-1ist does nol have the "RETURN keyword argument and
the cantinualion of the message is not NIL. the value of {the last form
Gaft the budy of the method is (implicitly) applied Lo the continuation
of the message after the controal ol the method reaches its end: see the
method above. (If the continsation is NIL, noihing happens. ! This
convention may seem guite ad-hoc, but very wseful in practice.

7. Conbinuation

Ear cxplicitly creating a continuation. the following form is

prepared:

(0D dyariabier . (body®h,
which creates a continuation that returns the value of {the last form)
of the body when called with the Cinitiall value of the variable. (The

variaible is, of course, local to the continualion,)

Tor texplicitly} calling a continuation. the following form is
prepared-

{-» <continuation? <valuedl,

which calls the continuation with the value as the (initiall value of
1he variable of the conlinuation, if the continuation is not NIL. The



cantinuation calling form returns the valuye of (the last form of) the
continuation, {(If the continuation is ®BIL., the value is NIL.)

A continuation can be called only once. When a continuation is
called, it commits a suicide after evaluating its body, This paint is
vague in moast of the formalisms of parallel object oriented programming.
ke think that the suicide condition should be explicitiv stated in the
semantics of the language. because wilh the svicide condition., the
implementation becomes guite simple for implicil continuations.

8. Discussions

Since the messase sendina form is restriclied lo the two tvpes aiven
in Seclion 5, at any instance of the execution, there is ai most one
artive objecl colored with each color. 1t means that a color nay be
considered as a process (having its own processor and stack) that
travels the world with objects as stlepping stones, The sccond message
sending form creates a new color: it creates A new process and initiates
il with the message.

Each obiectl may send a message to itself. directly or indirectiy,
as far as the color of the message (s the same as that of the objeat:
i+, recursion is possible in our formalism, It means that an object
can play the role of 8 recursive pracedure in the aordinary sequential
ianguage. In this sense, our formalism generalizes the ordinary
trecursivel) procedural language to the parallel one.

It is obvious ihatl simple loops are realized by sending a message
recursively. Tor esample, the (terative version of factorial may be as

follows:

COCIVALUE TNY (<= SELF :LOOP N 113

CIL00F (1 Fo
CEF t» 1 03
(4= LOOFP (1= N} (= F NI
Firr.

The recursive call can be easily converied to a ioop by the technigue of
tail-recursion optimization. From the practical point of view. however.
the construct af loop should be included as a primitive one. Here., we
iust wanted to show ihe generality of our approach.

We can extend the formalism so that the colors may have priorities,
Special colars (e.a. emergency colors! may be defined and given the
highest priority: it will be processed even 1f the object is colored
with another color.

In & multi-processor environment, there are at |east two methods to



implement our formalism. The first one is tn assian a processor to each
color as discussed above., This is more suited to a one-processor
multi-programming environment. But, in & multi-processor environment,
each process should access the shared memory in which the code of each

aobject resides.

ln the second method, a processor is assigned to each object.  An
object has a local memory and a stack: the code of ithe object is placed
in Lhe tocal memory. and a new frame is constructed on the stack. each
time the object Is invoked,

G. Hamming s Problem

45 an example, we give the solution 1o the Hamming's famous
problem: to fist all the numbers of the form 2=Exixd3zx jz53xk in lhe
increasing order. First, we define a function MULTIPLIER-CHANNEL thal
returns an object with ftwo methods ‘PUT and :GLCT.

(NFFUN MULTIPLIER-CHANNEL (M)
(LET (0 (MAKE-0Q1)
(R (MAKE-Q¥)}
(1 (IPUT (N
(IF (OENOP RY
(EHO W G
(- (DEG Ry W22
(CGET (BRCY RETURMG
(TF (OENDP Q1
{ENQ RETURN R
{=% RFTURN C(DEQ Q)232k12

The merger object can be crealed by evaluating the folluwing form:

CLET (M2 (MULTIPLIER-CHANNEL 21)
(M CMULTIPLIEH=CHANKEL 310
(M5 CMULTIPL IFR-CHANNEL B3
(X2 20
(53 37
(NG 5D
(N 1000
MINY

CroraLoor o

CSETD MIN (MIN X2 X3 X5))
f4h M2 TPUT MIN
(¢Bh M3 PUT MINDY
(€ M5 (PUT MINY
CIF (= MIN X273 (SETQ %2 (<= M2 GET12}
CIF (= MIN ¥3) (SETO X3 (<= M3 IGET13}
CIF = MIN K51 (SEIQ@ %5 (<- M5 IGFTI1Mi



CIF ¢ CDECF WY 03 (<= SELF :100P3I3)3).

This will return an object with one method :{00P, After receiving the
message 'LOOP, it will successively supply first (00 numbers to the
three multiplier-channels,

Note thal we are assuming that the order af the messages sent from
the same sender are kept, if they arrive at the same target.

G, Simulation on Common Lisp

In the simulation on Common Lisp. an ocbject is represented by a
d-tuple with

meEssage quaue
message counter
closure,

The message aveue nueucs the messages Lhat have arrived at the object,
The messaue counter counls how many messages (of the same color) are
beina processed in the object. The closure is the code af the ubject
represented by a functional claosure of Common Lisp,

A continuation is represented by & 2-tuple wilh

alive 11ag
ciosure.

The alive flag keeps whether the conlinuation is alive or has committed
A sSuicide.

P is implemented as a macro, which is expanded into a complicated
closure-generating form. Far cxample. the abject

CL o Crval UE (N}
CIF €= N 0) 1 (% (<= SELF :VALUF (1~ NYY MIdds

expands 10 something like

(1 aMBDA ()
(LET C(OMTT (OBJFCT-NEXT-MLSSAGE SELF) 1)
{CASE (MESSAGE-1D MTT)
{ {VALLE
{AaPPLY
H'{LAMBDA (N BKEY RETURN)
(IF = N 0}
{=> RETURN 1)
{QSEND SELF



{CAR (ORJECT-S5TACK SELFI» (1= NJ
RETURN
(10 RAEZ (-> RETURN (*x RB3 NIX}I})
(MFSSAGE-ARGS MIT )1
¢T (ERROR "THE MESSAGE “5 135 UNDEF INED. ™
(MESSAGE=1D MTTHd213 10,

Nate Lhat the implicit :REIURN argument and the implicit continuation
{form) are generated, OBJECT-REXT-MLSSALE relurns the nexl message 0
1he miessage QUEUE.

i1l is also a macra, hut simpler than !,

Objects and continuations are both represented by a closure with no
argument {see abowve ).

¢= and ¢% queucs the object and the message Lo & queud cal led the
clasure gueéue, -2 gqueues the continuation and the value.

The dispatcher repeatediy degueues a closure (representing an
object or a continuation) from the Gueud and calls it.
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