ICOT Technical Memorandum: TM-0105

Th-Olik

Design of a High-speed Prolog Machine { HPM)

Ryosel Nakazaki. Akihiko Konagava. Shin‘ichi Habata,
Hideo Shimazu. Mamoru Uesmura. Masshiro Yamamoto,
{NEC Corp.
Minoru Yokora and Takushi Chikayama
(1COT)

April. 1983

985, 1COT

Mita Kokusai Bldg 21F {03} 456-3191~5

" :D | 4-28% Mita 1-Chome Telex ICOT 32064

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

| =
Faa |

Design of 2 High—-speed Prolog Machine (I'PM}

Rynsel Makaraki(w). AK1hiko Konagavai=). Shin'ichi Habata(s),
Hideo Shimazuis=), Mamorw Umemurais=), Masahiro Yamamotoi=).
Sinory Yokotal#¥) and Takashl Chiukavamalss)

[#1 [REC EBystems Research Laborstories. NFU Corporstion.
4-1-1 Mivazak: Mivamae-ku. Kawasaki 213, Japan
[#%1 ICOT Hescarch Center
Institute for New Generation Computer Technology,
Mita Hokusal Bldg. 21F. 4-28 4ita l-chome, Yinato-ku. Tokvo 10E. Japan

ARETRACT praject in Japan. The FGOS project oroanizes a
sequential inference machine (5I1MI108]. which
This paper describes a High-speed Prolos conslsts of a personal sequential inference machine
Machine (HPY) architecturs and its hardware (PSTIIST0GI0YY and HEM. The FS! ig suitable fTar
Siructure. which are developed a3 a product of refatively small-scale Prolog program execution. In
Fifth Generation Computer System (FECS) project in the SIM. HFA provides high performeance and large
Japan. HPM realizes high performance and provides memory capacity to exocute ProloT prograns too
& FRractical programming environment. A major HPY large and too complex to perform on the PST.
feature is & large mesory capacity and specialized HFM was designed to be 3 back-end processor,
hardwars for unification and stack operationz. HPM coneected to the PSI. HPM is highly specialized for
has 4 compiler-oriented architecture with Prolog program execution. FSI and HPY differ at the
high=level stack-control instructions. Furthermore, miching instruction level. The level of HPY s
the HP architecture provides side-gffect lower than that of PS[. Performance [mprovement inm
operations. nonlocal=exit control and mpultiprocess HPY 12 mainly dug to compiler optimization
support primitives, which are effective to develop techniques and specialized hardware modules,
Svstes programs. The performance is estimated at Compared wWith ElCrOprogran interpretation
280 ELIPS iKilo Logical Inferences Per Second) im techniques in the case of FSi. Although HPYM's3
gxecuting & determinlstic "concatemate® Mrolog instruction set ts different from that of PSI, most
program. The HPM processor is implesented with Frolog programs can be execuied on both machines,
high-spesd QUL (Current Mode Logict chips amd with The following section describes the HPM desian
1490 manosecond machine cycle, approach and system Overview. News, the HPM

archltectiure backaround 15 discussed and the
architeciure is summarized. Then, the HPY hardware
1. Introduction oraanization is described, Finmallv, HPY performance
15 estimated on a Proloo program example,
Recentlyv, the logic-programmjng language
PrologliI02103] has been considered to have

rossibilities useful ip the field of Artificial 2. Svsiem Overvies
intel ligence, such as retural-language processing o
and knowledge-based sysiems. Prolog is useful in Al The HPM gpals are as fol lew,
research dus te its arsument matching function, .
autematic backirackins cenirol amd internal (1) Realizing a high performance machine that
database-management facilities. executes Prolog language in conformity with

Rezlization of these f{eatures for Proleg DEC-10 Proles(&].
programs requires huge working memory capacity and
extensve execution time. Prolog lamguage (2) Providing a large main memory capacity for a
processors on oonvontional computers lack the large scale Prolog progran,
necossary memary capacity amd periormance.
Therefore, FErolog appilcation programs on a 13F Providing a practically usable software
conwentional computer have been mainly limited to development support tool,
experimental wse, Inm order to make Prolog a
pracilcal langquase, an attractive anproach 15 to In order to achieve the {first goal. the
develop a high-level language machineld] with both authors develop & specialized Frolog processor,
i high pertormance Prolog processor and a large that iz, the HPM processor. and chose the following
real memory. Healizing & Proclos programming machine design appruach. :
cnvironment on Lthe Proing machine is also very
important for developing practical application - Back-end processor conflouration.
Prograins . -

A Hligh-speed Prolog Machine (HEM) is designed - Speclalized hardware-module for Prolog-
to satisiy these goals. HPY (s developed a5 a lanquage processing.

product of Fifth Generation Computer System (FULH)

- Compiler-orieated architecture with high level
gzack control INStPL.Clong.,

= Eifective compl ler sl bh aplimizatiaon
technigues.

From the aspect of an end u=zer., the dFl

processor works as a back-end processor for Prolog

programs:, as shown o Fig.l. This =system

configuration concentrates the desianer's efforis

realizing the high periornance back=end processor,
because complicated (nput/output controls are
offloaded from the HFY processor ta a host
computer, FE1, [n thiz machine configuration., HPEY
gxecutes [arge-scale Prolog programs. while PSI
controls inputsoulpul operation.

HPY provides & compiler-oriented architecturs
With high-leve! stack contraol ipstructions. The HPA
instructions realiee arqument matching functions,
stack control and backtracking control that suppart
non-deterministic control characteristic of the
Froloo lanauage. These {functiions are impiemented
Wwith functicnally specialized hardware modules apd
microprogrammed control. Tagged data are 3lsg
incorporated. Furthermore, these instructions are
useful for a compiler to opbtimize deterministic
control writtien in a Proleg prodram. The optimized
insiruction seguence can substantially improve HPY
processing performance and save required memory
capacity., by usthg tail-recursion optimization,
register-scoess optimlzation, and clavse-indexina
techniques[21T107.

In order to have a
provides a 64 Mega-wordlde bitssword)

large main memory, HPW
main memory

Communication netwark

-

s¥stem, Which 15 realized with 254 kKbit DEAX chips.
The merory 20231 iz mainly copsumed as working
[N L FES.

15 orde” to be uzed 45 a practicol software
development support tool. programming environments

ate realized on the HFY DLack-snd processor jtself,

-

The HFY processor 15 designed to execute
fundamental operating system lexcept for
input/outpet oporation). & compiler and 3 debugger

&% well as Frolos application software.
. Architecture
Tals section describes the design backsround

of HPM arehitecture from performance and softusre
Proguctivity wiew points. and deseribes a summary
of ithe basic HPW architecture.

d.1 Periormance [mprovemest
Cne of our wmajor design gcals is to realize a

hiqh pﬁrfprm&nce Proloa machine. In order to
achlg:uc the gpal, HPY adopts a compiler oriented
architecture, because a compller can remarkably

eliminpate run time overkead which occurs in direct
Frolog-proaram interpretation. UMM provides g
aigh-level stack control instructicon set proposed
by Warren[®). The features of the instruction set
are as fol low.

{11 Unification and backtracking control can be
compiled to a sequerce of register-access

instructions and stack control instructions,
that are of higher leve!l than converticnal
instructions.

HFM Preocessor

Hest
Frocessor

Haost
Processor

Interface

Prolesg

Processing Unit

_
—_)

Fig. 1 HPM

S¥s5tem

Cache Memory
Main
Memory System
G4M words
38 bits word

configuration

(21 Griimization techniques, Suck as
“olanse=ndexing” and “Rall-, ETUrsion
A lle3tiull Lilsy wal € FpploiaTiu,

Csing the clanse-lindexing’ technique, &

nopoeterministic program exceoublon Can be
deterministically executed. Consider a process to
find a specific clause 1n a procedure
composed of lots of clauses. Wlthout the
‘clause-indexing” techmigue. an eNecuter moss SCan
the «¢lauses one by one uniil emcounters the
objective clouse. On the other hand, under the
teconidue providing a hash table for finding the
clause. an exesuter can directiy find out the
ohjoctive clause, and never backiracks for the
other clauses. For example. suppose a Prolog
Program contalns the ol suses:

capital_cievi Tokyo', "Japan™i.

capital cityl 'Washington' . "USA°).

capital _citvi 'Paris’ . France'},
[f the first toput argument 15 "Washington', only
the second clause |5 selected with the hash table

and executed.
‘Clause-imdexing” 15 also applicable o the

following llst-processing procodurc.

copcatenatel[1.X,X).
concatenatel LKy, 2, [X9YED)
i=Concatenabely L. VL),

in this case. ‘clause-indexing” |is achieved by
providing il TLag=branch” instruction which
recoanizes whether the {irst input arsument is a

variabie. a nil or a list. Using the technique,
‘concatenate” is executed deterministically as long
as the [irst aroument 15 not a variable.

Figure 2 shows @5 complled codes for the
‘concatenate’ ProOgras. ‘switch_on_term AD”
Instruction 5 provided for deterministic execution
using cladse-indexing technigque. This instruction
checks the tag type of the first argument within a
regizter (AD). and branches to ong of {0UF Ways.
depending on the fag tvpe: a variable, a list, a
siructure, or a constant (& nil). After branching,
unification instructions are performed. ‘get’
instrections correspond to top level argumeents of
t e clause header. and ‘unify' instructicns
coerrespond to list (sktructurel! argumenis. The
“get_list' Instruction 15 used for both matching of
exisling lList siructure, and ereation of 2 new 1ist
structure, depending on Lhe correspondlng argument
LvPe, 4 list or a variable.

The c¢odes are executed nomdeterministically
when the first arqument within the register (AQ) is
a wariable. “try_me_else’ instruction 15 used for

Saving the havkiracking infarmation, and
‘trust_me_else_fail® imstructien {5 uwsed for
recovering the previous state. In additiom., all

arquments are Saved fh registers (Al. X1 indicate
the regisier number) (o achieve tail
aptimlzation.

4.2 Programming envirooment suppart

The other HPW desian seal is to provide a
practical prodramming environment., On designing a
Prolecg mackine architecture, it (5 an impartant

FeCUrsion

-

state

definition:

LofICALG e Lo wasmand e
concatenalel [NIY]Z. DNIYZ]D
-concatenatedY . RLYED.
compiled code:

coencabenates3:
sWitch_on_term AQ

ep Lr variabple
Jump L1 list
fail structurs
ljump Le constant
Lry _me_slse 3,81 concatenated
Le:
get_mil af [:.
aet_temporary_value AZ.Al LA
procesd 1.
sl
L}ruﬁ:_nﬂ_ﬂlse_fali concatenatol
get_list Al L

unify temporary_variable 53 X!

unify_tempurary_variable a0 Y1.7.

get_list A2 L

unifv_temporary_value X3 b

unify_temporary_variahie 42 ¥7]1:-

gxecute-relative concatenatelY,Z,¥Y2),
concatenatesd

¥ig. * Example of complled ooxde for concatenatess

whelher
written

the programming environment is
in the Prolos language or not. In
order to maximize the performance of the Frolog
processur, the authurs chuse too owrlite all the
programming environment in Prolca. inciuding
gperating systeam functions, such as process
managsemcnt. memory managemant, inputsoutpoat
controi. This cholice requires to extend the Prolog
lapguage to provide the following =ystem
facilities.

choice

wWholely

{1} Some xinds of side-efiect operations.
(2) honlocal-exit control for exception handlins.
(31 & muliiprocess environment support primitives.

A practical operating system requires a lot of

Informations which are chansed rapidly.
Although the stale transiltlon may be jmplemented
without the notion of side-eifect. this is mot a
suitable way to construct @ real progromming
enviran®ent. In crder to realize fast state
trensition. the language provides a rewritable data
structure called 'vectaor®. The vectors are used for
various system information tables such as pProcess
control biocks. file contral biocks, etc.

The language also provides glcobal data access
sechanism called "svstem s5lot” and ‘process slot'.
The system slots hold data objects ldenlified
unigquely in the system, such as the current active
process control block. Interrupt handler tabie,
elc. The process slobs hold data objects identified

phiguely in the process. such a5 the current lopot
stroa. cnd Lhe ourrent cutput stream.
WOLLdCEL -l e COLIr™L 15 Pepruilo.a.z s b et

‘catcn and throw'. The ‘catch and throw® provides a
) so return directlv 1o ap ancestor goal hevond
o - “calloreturn® conlrols. This is useful for
dealing wilh errcrs and interrupis EnCoUnter e
during execut:on of rprograms. For example, a Proleod
flstener mavy be written iy foliows.

listener_top - repeat,
catchlabort_Ligtener.abort_msdl.
start_listener.

short_msg - printi‘executlon is aborted’l,
nl.fail.
1n the above ProgTam, if the qoal
‘throwlabor: listener) in the descondent goals of
"catchiapors _listener.abori_msgd” is called. all
choirs-polnts betwssn the catch soal and the throw

goal are pruned. Then & catch-hardler “aborti_msg”
i3 caliad next. 1f Lhe catch-pancer fails. 1t acts
as if the cateh goal fails. If khe catch-hander

sycceeds. the next goal of the catch gnsl, that 13,
stari listener 15 called as the continuation goal.

The primtives to support & multiprocess
enviTonment are:

(1) Process context-exchange operation.
(2} Asvnohronous firmwaressoftware trap management
{3) Interruptstrap disable or enable contreol.

These primitives are provided as butit_in
predicates to construct whole sSoftware system io
Frolcg. The multlprocsess eavironment supported by
WP is bascd on the messsge passing paradigm such

a5 Csendsreceive’ apd Casynchromous-signmal ', The
aultiprocess envivanment provides asynchronous
irputsoutput data transfer. reak-interrupt from

kevboard and foresround/background job control.

3.3 Bazic HPY architecture
Basic REW arcnitecture features are summar|Zed
in the following.

3.3.1 Data areas

HP provides six data
runtime status. The areas are
area, heap, global stack,
stack.

The system area contains the information
required for memory management and process control.
This ares 15 also used for micro program working
spaces. The code area contains compiled codes. The
heip contains data structures that create side
effects when updated.

The global stack comtains structures and lists
instantiated in the unification process {using the
‘structure copying' techniqued. The local stack
contains frames for variable binding and execution
control. The trail stack contains references to the
yariables to be unbound when backirack occurs.

areas for holdins
sysiem area, code
iocal stack and trail

3.3.2 Eegisters and frames

_ HPM provides the following hardware registers
faor defining the curremt status of & Prolog
computation. The main contral reglsters arc:

LE = last environment-{rame pointer

Lo ig=: cholce-point-frame pointer

ot - sV s L Lt slaise pannt frlwe Jnamrer

LIOP: iocal stack-top pointer

GTOP: alokal stack=-top pointer

TTOR: trarl stack-top pointer

WTGP: hezp-top pointer

GRACK: bhacktrack pointer for dlobal stack

SP struciure pointer

PC: program counter

CF: next goal address

LEV: progedura-level counter

CoTs current data-table pointer
fm additton, HPY prowvides 32 argument reglsters
AD. AL, . A31) for passing the arguments (o a

procedure. The argument registers are alsc used for
hoiding the values of temporary variables that are
variakles net referred to in the rest of goals ina
cldause.

in order to deal with procedure call and
backtrack comtrol. the local stack containg three
kinds of f{rames: an eaviroament-framc. a choice-

point-frame and a catch-frame. The environment-
frame econtazins values of {permanent) variables and
imformation needed Lo continue progeam eXecutlon
(P, 0T, LE., CLC and LEV). The choice-point={rame
contains an address (continuationty of an
alternative clause and runtime status required for
backtracking (LC, CLC, PC, CF. LEV. CDT. LE, TTOF,
oTOP, n and a0.....An-1, where n is the number of
arguments). The catch-frame (s provided for a
ronlocal-exit using ‘calch and throw'. The catch-
frame has the same Information as the cholice-point
frame, but it nas a label and a continuation to a
catch-handler in place of the alternative clause.

1.3.3 Instruction set

About 180 machipe instructions (inclodbmg
around 100 built-in predicates) are available in
HFW. The instruction set Ls classified into &
categories, f(.e., ‘get’, ‘put’, ‘unify'. ‘control’,

“index' and built-in predicates,

The ‘get’, "put’ and ‘unify” instructions are
provided for unification. They correspond to the
arouments of 9goals in a clause. The “control”
instructions are provided for procedure inwocation
and environment-frame allocation. The "lndexing’
instructions are provided for backtracking control
and for ‘clause-imndexing'. Bullt-in predicates are
provided for primitive operations, such as
arithmetic, inputsoutput functions etc.

4. Hardware
The HFM architecture can be implemsnted on
conventional computers. However, conventional
computers have limitations in execution speed and
maln memory capacity, necessary for practical

Prolog programs. The HPM attains the following
aobjectives from the hardware design aspect:

implementing fast argument matching and stack
control mechanisms.

Providing a
single user.

large main memory capacliy for a

Al (IR processor 15 realized by using
Ml eeDErnEs Sl n techneloge aed AL device
rechnology, Gu P mEeZGEY SYR Il PrLUIUST o et MEsd
word pemory (256 Mega bytes. I6bitswocdtb,

4.1 Svestem Configuration

The HEPY system 15 & high-level languaye
machine for & single uvser. Tt conmsglsts of an 007
crocessor. a host computer znd A main memory sSyYstem
as shown 1n Fig.3.

Tha PSI is provided as a host computer. which
controis inpetsoutput devices. an HEM processor
interface apd other extarnal system interfaces. P5Si

provides an excellent man-maching (nterface and a
local area network Interface. [n this
conf igquratian, a large Prolog program is offlodded
{rem the PSI and executed sm the HPEWL

The HPY processor consists of & Prolog
processipg unii, a cache =[emory and a host
ProCcessor interface untt. The HPFM processor

directly interprets [nternal objoct data and codes
by wsing its microprosram and hardware, whose cycle
time s 100 nano-seconds.

The memory system conslsts of two main memory

4.2 Prglus wrocessor

The maln -onsiaccation is designing the Prolog
i leesadl b3 L8 ForfoFmIBIS. Lo WECOD rralmo3
high perforaetce naching, the HPMW processoy cen
simultanenusly execute several funchional modul es.
instruction fetching, instruction deccding.
argument matching betwcen a gosl and A head af a
Prolog PEOYT G, stack pointer manipuiation,
floating-rpoint arithmetic operation and fixed-point
arithmwelic operation. Thesc functional modules are
connected o a JI6-bit long data bus. the same az 3
cache memory and a host processor interface. Figure
1 shows the Prolos processor confisuratioo.

The Frolog processar executes ipstructions
sequentially in a pipeline mode with three stages,
instruction fetching, decoding amd execution. The
fetching stase and the decoding stage are
preprocessed befure an execution stage besing. AL
the instrucstion fetching stage, an instruction
reqister receives a ong-word instruction from a
cache memory, At the instruction decoding Stage,
the insiruction is decoded apd the decoded results
are latched in a Parent-dddress Register {PAR) and
a Current-Address Register (CAR). These regisiers

umits. a svstem coptrol umit amd & service point to respectlve registers in a two-port J2-word
Frocessor with 4 maiptenance console. loternal Data Hegister File ({(DEFY. The register file
object code and data are stored in the 36-blt wora contalns argument registers and temporary
malp memory units. reaisters, described in sectlon 3.3.
Mo st
Procassaor Main Memorey —_ ___je———
Unict | < CRIi TT
1:[- —crz b
W] Ml |
Host : |
Processor | I—-—
interlface| Cacne - MAR
—_— Floating
' Memaory Falint
i Arlthmertie
I ’ i Unit
1 - .
l Data hus
I i _
e] : *
— |FDR | tCDH |
Data
Register
File
CAR ﬁ |
MAR:Memory Address Register [¥}1/Vntu= :cmn-ratorJ
CR ‘Contrel Registers e
I lwstrucktion ReZister
PAR:Parent Address Register
CAR:Current Address Register
FORE:Parent Data HKegistaer
CODR:Current Datn Rawisler
Fis. a3 HPM Processzsor hardware configuration

At the execution stase 0fF an HPM tnstruction,
ap grooment-zatonong module anmd a4 staci-polroc.
e il 2 e P e Al M1l N

regard to Jhe araumeni-mabtching module.

dirca s di |-’I:Il.|i.|._.|.l

algumest

data ard temparary data in the data resister flle
are compared usimg 3 tssSvalue comparator. The DRF
anzhla simul faneous dccess 12 both argument
registers apd tesmporary registers. Ia regard to the
stack naloter manipulatich moduie, the HEY

Processar can update stack pointers in the reaister
Filoy w=ing an ALL abd & tag generaftor. Tuos=way
readswrite access wo the control register filas is
possible by dlviding the files into btwe register
files. Dividing into two redlstar files provides &
way to oompare and modify vartous pointers in the
control register files simultansously. The HPU
architecture resuires many cantrol registers. The
48 control regisiers are assisned (o stack polniers
and other registers specified ln HP architecturs.
The=ze registers are also assigned to WKt
registers used by microprogarams. The usage of these
registers and the checkling function of Tagsvalue
’:CLJ'.IP-';TSQ":.-I!' Areg SnoWn 45 mlCro-progran DPEE'GT.LC-I!'.:] n
Clg.d.

;ﬁ\

The microprogram memory structure is an 50-%it

word snd L1 E word memory size. 4 mICroliasiruc:ion
LS wmd Wi imed . TLalIn oNkIa. sTrmliheT oo b
execated in parallei. The instruction decodos and
the tagsvalue comparstor are composed of
random=arcess memctries. instead of random fogic

CLOCUNLE.

The cache meaory. which holds 1P instructicns

and data, has an acceas time of 100
nano-saconds. The cache memcry adopls a set-
associlative strategy with four compariments atd a

write-throuah menory interface. The cache memory
capacity is @ K words., Another possible cache
aomory confiduration considered provided 1wo cache
mEmOrles. an ipstructichn cache amd a data cache.
This cond fgurat san iz eifective if the HPJ
processor Erequently requires simultancous accesss
to instructions and data, But, most instruction

fetching eveles are hidden duripy execution, which
malnly accesses reqisters. [n Flg.4. {nstruction
fetching operalions are Jdescribéed in only Lime 3
abd time G. The other ingtruction {etchina
operaztions are hidden im ®Bain micro-program
operations.

timg instruction zaln micro-program operation
| switch_on_tera A load the first word(30) of DRF into COR, check the A0 tag @ list
2 calewlate ‘jusp Lg' instruction sddress
a read “jump L3’ instruction iato [R --- pipeline control
4 lead operand svilable of “jump L=’ into PAR --- pipeline control
3 jump L= calotulate 'get list A07 ipstructiop address, addressed relatively
[read ‘get_list A0 Instrustien inte IR --- pipeline control
7 load an operand svllable of ‘got_list 40" ipto FPAR --- pipeline control
8 get_list AD check the first word{A0) tag list
g load list pointer ip A0 into Structure Fointer{SF) in CR, set ‘read fiag’
] unify_temp_var 13 load 57 into MAR, cheek ‘read fiag’
It read the hezder element of 2 list into POR
[SP=35P+1, ¢heck the PDR tag ° constant
13 lnad POR imta the farth word{X3) of DRF
14 unify_temp_var AQ foad 3P iato AR, check ‘read flag® --- structure read node
15 read the taii element of a tist inte FOR
18 SP~=5P+1, check the PDR tagz : constant
17 foad PDRE into the first word(A0) of DRF
13 get_list 42 check the third woprd{42} tag @ reference
14 load the third werd(A2) of DRF into MAR
20 : read referenced word into COR
21 lead global stack top pointer{GTOP} iz CR into SP, cheeck COF tag : unbound
22 update GTOP
23 write list tag and 5P value into the unbound-cell pointed by MAR
24 check the unbound-cell address usiog CRI, CRZ and ALY
25 lead operand svllable of next instruction --- pipeline control
25 unify_temp_val X3 load 5P into MAR, check ‘read flag' ---structure srite mode
27 SP=—5P+1, check the forth word(X3) tazg in DRF ! constant
28 write X3 inte the header element of a list pointed by MAR
24 unify_tesp_var A2 load 5P intn MAR, check ‘read flag' --- structure write mode
30 load tail list element address io 5P into the third word{A2) of DRF
31 write unbound data into tail alement
3z pxecute relaiive Inad tail list element address in 5P ipto the third word{i2?) aof DRF
33 concatenate/3 check local stack boundary with loca! stack-fop pointer{LTOP)
34 check global stack boundary with glohal stack-top pointer(GTOR)
35 load operand syllable of gext igstructicm --- pipeline contral

Flg.d

Daterninate Concatenate Timing and Execution Frocess

il

Tne aethors finished
arocssscr hacevare, A @ resnalt. has Feroue
Pousiolt to esilmiee (185 harfware s.ze. The deoiog
processor ls compased nf 795 boards. including a
clock bozrd. One bosrd contaims 64 L chips. The
logic densicy of & CIL chi® i5 roughly Lwice that
of an off=-the=speli TTL IC, on the averace, The CUL
gato delay 15 arcund 0.7 nano-seconds.

d4ato

dﬁhnggtnu the HPY

5. Performance tztimatlon

The HES performance estimate (s based onm a
microprogram execpt(on for & deterministic
aserutlon of Lthe "coencatenate” procedure explained
in the architecturs section. Linen

"I-caticatenate([a.b.C.d. e If L9, X0, where X 13 2
vartable, i3 exccuted, the machine (nstructicns and
micro-aperations in Fig.d are repeatedly execuied
carrozponding to the second “concalenate” Clause.

The 9 machine imsiructions are execuled 1n 35
machine cvcles. when the hit ratie in the cache
memary 1€ L00%. in this case, HPM executes the
deterministlc concatenate clauwse at 280 ELIPS, The
HFY performance 15 much better than the periormance
on conventional machines, which are twpically
arcund 30 KLIPS[I0]. The PSI performance is also
around 30 KLIPS(6). Moreowver, the HFY perf{ormance
can be improved by Qotroducing a more effective
instrection prefetching control and more lntensive
micro-branch operation.

6. Conclusion

The authors have been developing the HPW
hardware and software system, which can execuie
large Froiog programs for practical applicaticnms.
HE4 provides & hign level performance with a
spacialized processor and a large capacity Lln the
maln memory. as well as a practical programming
coviroonent with compiler. interproter, debugger
and ather system programs. HPM hardware will bBe
dvdilaole as the fastes Prolog machipe In the
warld by this late summer of 1965, The HFWM baslc
software svstem will also be available. A5 a
resuli, HPY enhances the possibility of making ihe
Prolod languade a practically usable language from
a4 prototyping language. HPWM provides a compiler
oriented architecture «ith high Llevel stack control
jnstructions. In order to realize a practical
programming envircnment on HPM, its architecture
provides slde-effect operations, nronlocal-exit
support primitives. The

control and moltiprocess
Frolog machine was developed by using MS] functicn
level A, chips.

The HPY can execute a Prolog list
concatenating program at 280 KLIFS. From the
hardware configuration viewpnoint, it has a
possikility to improve performance by adopting
intensive pipeline processing and specialized

hardware for umification. Further evaluation is
necessary on practical Prolos programs, including
system functicns overhead and appiication programs
productivity.

& single-user computer can provide a better
prodramalhg environment for knowledse (Information
processing and other software products. HPM should

e more compact to be used &% A slngle-user

comoutes, In the [iture, it is necessary 1o
resedit: 1P Bechil. alcabiciuls dle Rdcla.ms
conf iguration. considering L5l Lechnslisy-
Development of optimization technigues is also
necessary to improve the HPW perfornance.
Acknow| edaments

The authors would like two express thelr
grateful thanks Lo Toshio Yokol anmd Shun' ichi
Uchida (ICOTI, amd Yasuo Hato (NEC) {faor their
continuous encouragemest and to Ratsuva Hakozaki

[SETY for his valuable advice and suprort. Thanks
areg also due to Hazuo Taki. akira Yamamoto, Hiroshi
Nishikawa (ICOT). and Kazunmor: Uega (NEC) as well
as to Noriko Eidima ONECY for thelr fruttful

dizcussions and machine implementation researching
efforis.
pBeferences
1. Kowalski. R., “Logic for problem Solving®.

Morth Hollamd Fublisking Co.. New York, 1974.

2. Warren. D.H., et al.., "PROLOG-=--the language
and tts implementation compared wWith LISP®,
SIGART/SIGFLAN Notfces, pp. 109-115, Aug. 1977,

3. Konagava., A. and Umemura., W.."EKnowledge
[nformation Processing Language: Shapelp®, New
Generation Computing, Vol.2, No.2. Pressed by
Chmsha. Seringer Verlag 1984, pp.i95-201.

4. Chu, .. "High=Level Language Compyter
Archiiecture”, Academic Press,1375.

5. Uchida. 5., "Inference Machine! From Sequential
to Parallel" Froc. of 10 Lthe [ptermaticnal
Symposium con Computer Archltecture, June 1883,
PE. 410-418,

€. Uchida. 5. and Yokoi, T., "Seauential Inference
Machime: EiM Progress Report®, Proc. -of FGCS
"84, Tokvo, Now, 1584,

V. Nishikawa, H.. et al., “The Personal Sequential
Inference Machine (PS[1): [ts Design Philosophy
and Machine Architecture, “"Logic Proorassng
Workshop '83. Universidade MNova de Lisboa. June
1953, pp. 53-73.

8, Bowen, D.L., " DECsystem-I0 PROLOG USER'S
MANUAL" Department of Artificial [ntelligence
Univ. Of Edinburgh, Dec. 19E81.

9. Warren., D.H., "AR Abstract Prolos Instruction
S5et”, Tech. report 309, Artificial Inteiligence
Center, ER[Internatiomal. 1983

10. Tick., E. and Warren. D.H.., "Towards a Pipelined
Prolog Processor®, 18984 Internatfonal Symposium
on Logic Programming, 1EEE Computer Societv,
February 1584,

11. Warren.DH.,"4n Improved Prolog Implementation
which Optimises Tail Recursion”,.Resesrch Faper
15346, Dept. of artificial Intelligence, Univ. of
Edinburgh, §280.

