ICOT Technical Memorandum: TM-0100

Th-CH 6D

Constructing the SIMPOS Supervisor
in an Object-oriented Approach

Takashi Hator (Oki BEleciric Industry),
Morthiko Yoshida (Mitsubishi Research Institute)
and Takumi Fujisaki {H-con Systems)

February, 1983

C198s, 1COT

Mita Kokusai Bldg. 21F (07} 456-3101 -5

'COT 4-28 Mita 1-Chome Telex ICOT J34964

Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Constructing the SIMPOS Supervisor in an Object=Oriented Approach

23 L1
Takashi HATTORI, Norihike YOSHIDA, and Talumi FUJISAKT

% 0l Eleetrie Industry Co., Ltd.
4L-11=-22, Shibauwra, Minsto-ku, Tokyo 108, JAFAN

#% Mitsubishi Resezreh Institute
2-3-6, ODatemachi, Chiyoda-ku, Tolyo 100, JAPAN

#4% B_copn Systems
T=8-10, Hishi-Shinjulu, Shinjulmu-ku, Telyo 160, JABRAM

Abstract

SINPCS {(a progremoing and opereting system for 5TH) is constructed in an object
oriented zpproach. This approach has reduced the zpecification and development
ei'forts of the gystem. It also makes it easier to change and extend the
s¥stem, Thls paper shads the effectiveness of this approach by taldng the
SIMPQS superviser Tecilities -- processz and stresm -- as exazples.

Table of Contents
1. Intreducticon
2., Process and Inter-Process Coomunication
2.1 Process Management
2.2 Strean Mznapgesent
3. Implementaticon
3.1 Frocess Implezentaticn
3.2 Streznm Inplementztion
i, Dewelopment Eistory
. Conclusion
Hote: This worlk has been done as part of the SIMPOS (formally Sequential

Inference [behine Software) project at ICOT {Institute for Mew Generatien
Computer Technology),

1. Introduction

SIHP0S [4] is a2 programoing and operating system for SIM (Sequential Inference
Mechine! [1], [2} (or BSI specifically) which is a Prolog-based personal
ccomputer developed zt ICOT, SIMPO3 has been developed as a systems software
prototype witiceh is aimed for providing 2 good programming environment on PSI.

Before we started the design of SIMPOS, we had come to a conclusion that
Proleg, as it is now, does not provide sufficient programming facilities to
write &n opereting systex in it. As & systen prograpming langeege, Prolog
laclks in modular progranning frezework and an efficient means for expressing
state cnanges.

The uwnderlying concept for cconstructing STIMPOS is an object-criented approach
in legie progremning. The object-oriented approsch, which has been proved s
ore of the useful scheres to deseribe system software [7], [8], [9], [101],
provides both modular prograoming frecework and the conecept of states with
abjects. Furtheroore, its encapsulation and inheritance mechani=ms facilitate
chenges and extensions of the system. This section explains the object-
eriented epproach we have taken in SIMPOS.

{1) Objeets in SIMPOS

An chject, which iz a building component in SIMPOS, is defined externally by a
zet cf operaticns which the object aceoepts to perform given goals. Interrally
it is implemented by & set of Prolog clauses and slots. The clauses define
whzt the eohject should perform when it aceepts an operztion, and each of the
slots holds & value or an object which represents the state or structure of the
object,

A set ef objects which behaves in the same manner is defined as 2 clasa, A
template of ebjects of the =sme eoless 13 pgiven by & class definition, and an
instance (object) is instantiated from this template.

Tnheritance mechanizm is provide to define a mew classz with other classe=s using
'is_a' relations. If a class inherits obther clesses, the class has externally
all the operations of those classes and the operaticns defined in its=elf,
Internally, the clauses of the same operation are OR'ed, and the slctz are put
together, *

A depon predicate is a faeility which makes object-oriented programning with
muitiple inheritance easier and more effective, Assuee that a demon predicate
is defiped in a2 component class which a certain eclass inherits. When an
vperztion on the objent of this class iz ealled, the demon predicate will be
alse called implicitly. This class does not reed to call the operations
explicitly. Two types of demon ealls are supported; 'before' demons and
'after' demons. A 'before' demon is called before the primary predicate of the
main elass, and an fafter' demon is called after that., The demons are AND'ed
with the primary predicate,

(2] ESP
ESP [3] is a Prolog=based object=oriented progreoming language, in which SIHPOS

1

iz described. ESP provides the programming feeflities deseribed above, 2
clasg definition in ESP consists of the four parts in the fellowing syntax.

class <class name> has

[<neture definition> ; 1 «2a.. inneritance
{ <class siot definitiony ; } .
{ <clzss clause definition> ; | weies Class

[instance
[¢instanes =slot cdefinitiend> @ } -
{ <instanes clauze definition> ; } 1 ..:.. instance
[looal
{ <local clause definitien> ; 1 1 local
end.,

The inheritaznge part def'ines the super classes which this class inherits, A
list of the super closses can be specified, Their order is relevant, because
the operzticn definiticns given in these elasses are OR'ed in this order. This
class itselfl ecan be specified in this list.

The ¢lass part defines the claszs object. The elass objeot is referred to when
an object is crested or when a1l the objects of this class have ecertain
features in common. This part has two sub-parts. The slot definition defines
the =lots which this class object haz, and the clause definition cdefines the
operations which this elass object performas.

The instance part defines the template of objects. Thnis part consistzs of two
sub-parts, too. The =lot definition defines the zlets which an instanee of
thi=s class will have, and the olause definition defines the operations which
this instanece will execute.

The loczl Fart defines the predicates which can be called only within this
class. It has been introduced so that Prolog predicates can be defined and
executed in ESP,

2. Process and Inter-Process Coemmunicaticn

SIMPOS is largely divided inte the programming syster and the operating system.
The programming system provides users with programming tools, including
editors, an interpreter/debugger, and a librarian. The operating system [5]
provides basic execution environments and input/output facilities. It is
further divided inte three layers: the i/o medium systems, the supervizor, and
the kernel. The structure of SIHMPOS is shown in Figure 2.1.

Frogrzmming system
Coordinator
Editer Interpreter/Debugger Librarian

[
I
|
I
P
'
Operating system |
I

T T |
I/0 pediuz sy¥stems !
Windew letwork File Printer i

I
L R Y T AR |
Supervisor !
Process Pool Stream World Timer H

I

: Kernel H
: Processor lemory Device i
':4!l!llll-!rtt-tlti'ltrtitt-ti-ii-iiii-itlili=

| Hardware |
1
1

Figure 2.1 Layered Structure of EIMFIS

In order to explain the cbject-criented econstructicn of SIMPDS, we take as
exanmples the process and stream managepents whick are included in the
supervisor [6]1. In this scctien, we will briefly describe the concepts and
fapilities of processes and streams.

2.1 Process Management
(1) Process

In 3IMPFO3, 2 process is an acotive entity which executes a2 program. & process
iz in cne of the four states -- running, ready (te run), suspended, and
dormant. A running process iz the cne which iz currently executing a progrsm
on & processor. A ready process is in 2 ready gueue waiting to be run. A
suzpended process is not in the ready queuwe., Its execution has been suspended
for sope reason, ordinsrily when it tries to get an object from an empty
stresm, and when those reasons are removed, it beconmes ready and is put into
the ready gqueue. A dormant process i3 not managed by the supervisor.

& process is defined a5 zn object which accepts operations to control its
state:
o To activate a process
tactivate(Process, Program)
Te suspend a process
:suzpend(Process, Reason)
o To resume a process
sreczure(Process, Reason)
0 To terminate a process
sterminate(Frocess)

(4]

Scme processes in the system are allocated to interrupt proceszes, such as trep
hendlers, deviee handlers, and the garbapge collector. These interrupt
processes are not dispatched by the supervisor, but by the hardware on an
interrupt ocr & trap.

fnother kind of specizal process i1s a boot process, which is created and
activated by the hardware, not by ancther process, when the system is
booctstrapped, The multiple process environment in SIMPOS is ipitiatec on the
boot process. The supervisor must make it under its control, after the systen
haz stzrted.

{2) Progranm

4 progrem tells what a process should perform. It is an instanee of & program
class, When many processes execute the same program independently, ezach
process is given & program instance of the sa2me program class. These programs
shere the code but have & different set of instanee slets, The entry of the
main program is defined 25 an instznee predicate of the program.

A program, efter heving been instantisted, is given to & process Lo be
executed. This is ezlled a progran inveocaticon. To keep track of progran
invocations, a process has an invoestion stack. Dach time 2 program is
invoked, it is pushed inteo the staclk, a2nd beecomes the current prograz of the
process. A prediccte for & progranm invooation is defined 2s:

tinvoke (Prograa)

where 'Frogren' is a3 progranm elass. The main program is specified by the
instance predicate :goal(Program}. When this predicate is called, 2 program
instancs is ereated and pushed into the invocation stack of the ealling
process, However, when a new process is activated, the activate predicate is
called with 2 prozram as an argument, because the prograr instance should be
pushed inte the invocation stack of the new process, not of the calling
process,

2.2 Stream Management
{1} Stream

4 stream is a pipe through which ebjects flow. It i3 used for synchrenizatioen,
comtiunication, and mutuwal exclusion among processes. TwWo major operations on
4 strezm are:

o To insert an cbject into the stream
:put{Stream, Object)

o Tc remove an cbject from the stream
iget{Strean, Object)

If the =tream is empty, a get operation czuses a calling process to be

suspended until another process puts an object. This feature of streams i=
essential for process inteéractiens. A stream ean be shared by multiple
processes., Each process can put or get objects from it at any time, and is

y

served on a first-in-first-out basis.

{Z) Stream variations

Variocus types of streams with additionzl features are defined. For example,
pricrity control and bounded buffer control are zdded. HAlso message-based
copnunicatien feclilities, channels and ports, are provided.

A channel iz 2 message-based communicstien primitive., It is useful te deseribe
pultiple-client/multiple-server intersctions. Two major operations on a
channel zre:

o To send 2 message to the chanrel with specifyinzg a ssnder (channel)
for & reply
szend(Channel, Messape, Sender)
o To receive & messape from the charnel with & zender returned
sreceive(Channel, Message, Sender)

A port iz a messzge-box for two-way communication based on channels. Four
major coperations on a port are:

¢ Te send a meszare to connected ports
taend(Fort, Message, Sender)

o To receive a message from the port
irecaive{Port, Message, Sender)

¢ To ecnnect the port to aznother
reonnect(Port, Another port)

0 To dizeconect esch other
:dizconneet(Pert, Another_port)

Z. Toplementation

This section shows the implementation of process and stream. Al though we

Eve =zeversl ESP ecodes as examples, they are pot complete.

3.1 Process Inplementation

{1} Process

Class 'process' defines instance predicates for controling process statuz, and
class predicates for process crestion and ldentification. Part of class
'proceas' in ESP iz as lollowa,

- — - e . T T i e e e S e e e s e

class process has

nature with_link,
weiting frame ;

attribute ready_gqueus,
instance_array ;

Helates 2 process to its context_number,

roreate{Class, Progess) 1= 1,
% Make an instance and initiate it, If hardware processes
£ are exhausted, then fail,
tereate{dcontext, Context_number, Staclk nmumber, Context),
iereate corelPROCESS, Process, Context), ! o

toreate_core(Class, Process, Context) -
:new(Class, FProcess),
:tget_number{Context, Context_nuzber],
set_vector_elexent{f#processlinstance arrey,

Contest_mumber, Process),

iself(#process, Self _process),
Propessleontext := Comtext,
Procesalpriority = 0,
Processlsub priercity := 0,
Frocesslparent_proceszs ;= Seif process,
radd_child{Self process, Process),
Proceszlworld := Self processlwaorld,
Processluser := Self processluser,
Frocess!ztatus := dormamt, ! ;

instance

zttribute cantext, % Harcdware PCZ
priority, % Corresponds te interrupt level
sub_priority,
pesk count = 0,

The nunber of interrupt mask nestings
suspend _reascn = nil,
(suspend rezsens := List :- :create(#list, List)),
suspend_flag = nil,
status t= opdl,
% nil(=dead), dormant, suspended, ready, (active)
% and =ome others
parent_process,
{ children processes :z List :- :create{#list, List) },
killer proeccss, 2 which terminates this process
{ invocation_stack = List :- :ereate{flist, List)),
{ resources = List 1= :create(#list, List)),
world,
user,
interpreter_instznce,
% Interpreter instance whieh runs on this process
{ elock iz Cloeck :- :ereatel(@#process_plock, Clock))
% The elapse time of this process
:activate(Process, Program) :=-
% Give Program to Process, and make it ready.
:status{Process, dormant, on_activate), !,
tentry_of _invoke(PBrogram, Entry),
:zet_entry_point(Processlcontext, Entry),

6

zactivate(Processlcontext),
iset_priority(Processlcontext, 0),
iclear_masks(Process),
:inhibit_interrupt(#process),
Process!status := ready,
:add{#processready_gqueue, Process),
talloi_interrvpt{dprocess), ! ;

iresume{Procsss, Rezson) 1=

Rezeove Rezson frem 'suspend_reasons'. IF there's na
such HReascon, then feil. If 'suspend reaszons' beccmes
empty, then make Progess ready. I already resumed,
then do nothing.

tinhibit_interrupt{#process},

ZCHECKE REASOH

B WO RE WL

{ Process!status == suzpended, |,
i Reason = =stream(Strean), !,
Process!suspend reascn := nil,

{ Processlsuspend_flag == nil, I,
Proce=s!status = prezdy,
:add{dprocesaslready_queue, Process)

: true J,

sallow_interrupt(fprocess)

i 4 oircoove!{Processlsuspend_ressons, Reason), !,

{ sempty(Pracess!suspend_reasons), 1,
Processlsuspend_flag := nil

i true J,

{ Processlisuspend _reason == nil,
Processlsuzpend flag == nil, !,
Processistatus := ready,
radd(#proeess Iready_queue, Process)

H true J,

:allow_interrupt{f#process)

: tallew_interrupt{#process), I,

fail)

Progesslatatus == pready, I,
tallow_dnterrupt(dfprocsss)
:allow_interrupt{fprocess), |,

fail),

-

-

L

:suzpend(Propess, Rezscn) :=-
Add Reason to '"suspend_reasons', I Process 15 ready,
% then make it suspended.
siphibit_interrupt(#process),
SCEECK REASOH
{ Process!status == ready, !,
{ .Reason = stream(Stream), 1,
Processlsuspend _reason := Stream
H sadd_last(Process!suspend_reasons, Reason),
Processlsuspend_flag := on),
Processistatus := suspended,
iremove(#processlready_queue, Process),

7

:allow_interruept(dprocess)

Processlztatus == suspended, |,

{ Reason == stream{Stream), !,
Process!suzpend_reascn := Strezam

: sadd_last(Process!suspend_rezsons, Reason),
Process!suspend_flag := on),

:allew_interrupt(fprocess)

rallow_interrupt(#orocess), !,

fail },

L

end.

S S e e T R 0 S S . S s s o o o P . i o i e e e P

Figere 3.1 Part of class '"process’

As shown above, class 'process' inherits two classes for chaining procass
instances; clazs 'with_link' is inherited to put the process into the ready
gueue, wWhile class "waeiting frame' is to put the process into the waiting gqueus
of a stream.

(2) Program

A prograzm executed by a process must be an instance of .scme program class which
inherite elass 'azs program' which gives 2 basie fracewerk for programs. On
process acbivation, the goal predicate defined in each prograo class is
eutomatically invoked. For example, a progrzm that reads charzcters and writes
them on a window iz coded as bellow,

D . . o S e g e Y T .

class parrot has

nature as_program ;
instance

igoal{Program) :=-
icreate(dwindow, Window),
ractivate(Window),
loop{¥Windew) ;

local

loop{Hindow) 2=
:rezd(Window, Char),
{ Char == etx, !
: :write(Window, Char),
fail) ;
loop{Window) = 1,
loop(Window) ;

L e e o T T ——

Figure 3.2 An example program: class 'parrot’
]

To ewscute this program by & new process, you must do &s:

iereatel fparrot, Parrot_Program),
icreate({fprocess, Process),
:activate(Process, Parrot_Program)

On invocation of & program, the progran is pusned onte the inveocation stack of
the process and the instance predicate :gozl{Program) iz called. Vhen the goal
finishes, the program is popped from the inveocation stack., If the stack
becones empty, the process terminates.

Class "as_program' is partially defiped s3:

e v - i - s s

class as program has

sereate(Class, PFrogram) :- 1,
inew{ Class, Program), ! ;

instance

igoal(Program} ;
% A top-level predicate with a defzult name,
% This must be overridden by a user program.

rassign(Frogran) := !,
%2 Push Program into 'invocation _stack',
:ael f{¢process, PFrocess),
:add_program(Process, Prograa), ! ;

iresign(Program) :- I,

£ Pop Program frem 'invocatien_staelk'. If it iz the root
% program, then the process dies,

:sel f(#process, Process),

:remove _program(Process, Any_program),

('no_programfProcess), |,
:die{Process)

: true), 1 ;

iresign_core(Program) - !,
% Pop Program from 'invocation_stack'.
:sel f{#process, Process),
:remove_progran(Process, Any_program), ! ;

:imvoke(Program) - I,
% Invole the defazult goal.
iassigni{Program),
{ :goal(Program), !,
iresign(Program)
: sresign{Program),
fail }, ! ;

and.

Figure 3.3 FPart of class "as_program’

{3) Interrupt process

in interrupt process is instantiated from elass 'interrupt_process', which

inheritz class "process!

since an interrupt process is a special kind of

process, Unlike an ordinary process, an interrupt process is resused with an
& software trzp, and when suspendsd, it relezzes the procsssor.

interrupt or

Thuz, class '"interrupt_procsess' coverrides the instancs predicates

iresume of class 'process'.

isuspend and

Fere is part ¢f class Tinterrupt_procesa’.

class interrupt_process has

nzture

attribut

instance

process |

e context_stack,
stack _pointer ;

attribute Interrupt_inde: ;

iresume

Process, Resson) :-
:inhibit_interrupt(fprocessz],
“CHECK BEASOQY
{ Process!status == suspended, !,
(Neason = strezm{ Streac), !,
Process!suspend_reascn := nil,
{ Processlsuspend_flag == nil, I,
Processlstates := ready,
STRAP TO FROCESS
H trus J,
tallow_interrupt (dprocess)
. :remove({PFrocess Isuspend_reasons, Reason), 1,
{ tempty{ Process!suspend_reasons), !,

. Processlsuspend_flag := nil
; true J,
{ - Processlsuspend_reason == nil,
Processlsuspend_flag == nil, |,
Processlistatus = ready,

- STRAP TO PROCESS

: true J,

iallow_interrupt(#process)

i iallos_interrupt(fprocess), I,

fail)
H Processistatus == ready, !,
tallew_interrupt(fprocess)
sallow_interrupt(f#process), 1,
fail), I 3

-

10

:suspend(Process, Reasen) :-
5 Add Rezson to 'suspend reasonz', If Progess is ready,

£ then make it suspended.

tiphibit interrupt{dprocess),

SCHECK REASCH

{ Frocessistatus == ready, 1,

{ HReaszon = strean(Strezm), !,
Processl=zuzpend _rezscn iz Stream

; :add_last(Proces=z!suzpend_reasons, Reason),
Processlsuspend_flag := on },

Processistatus := suspended,

WHRELEASE PROCESSOR

SALLOCATE PHOCESSOH
vy

%ZET REASQN PROPERLY

Processlsuspend _reason := nil,

selear{Processzlsuspend_rezsons),

Process!suspend flag := nil,

Procesns!istatus := pready,

:allow_interrupt(fprocess)

Processistatus == suspended, !,

{ Feason == strezm{ Stream), !,

“ Processl!suspend_reascn := Stream

H radd_last(Process!suspend reasons, Reason),
Process!suspend flag := on },

;allow_interrupt (#process)

tallow_interrupt(#process), I,

fail), ' ;

L

e e T B B s . . e —— - e - (—

l-"igu_r-e 3.4 Part ef alass 'interrupt_process!

As shown above, the interrupt handling mechanism is encapsulated in eclazz
'interrupt_process'., MAnyone whe does :iresume(Process, ,..)] need not be

ecncernsd at all with whether scheduling or 2 trap takes place, that is,

whether Process is an ordinery process or 2n interrupt process.

(4) Boot process

4 boot process is & sole instance of elasa 'boot_process', which executes the
boot progrem inheriting class 'as_boot_program'., After initiatiom, this boot
process goes under control of the supervisor, and zets exactly as an ordinary
process, For this to be possible, c¢lass 'boot_process' inherits class
'"process' and overrides the predicates, iereate and :activate.

3.2 Stream Implementation

(1) Stream

A stream consists of two queues; a queus of processes walting for events (in

11

the case of stream, for an abject being put) and a queus of objects whieh are
waiting to be taken out by processes,

Class 'weiting queue' defines queues of the first. Tnis queue iz constructed
on a doubly=linked list, and fraces (entries) in the gueue must be instances of
class "weiting frame', Class 'process' inherits class 'waiting frame'. Class
"rpost_gqueus® defines gqueuves of the szecond. Any class of objects, including
integers, atoms, and strings, can be put intoc the gueue,

& stream hzsz 2 'post_gueus' slot which has an instance of elass 'post_gueue',
rather than it icherits ¢lass '‘post_queuws', It is because 2 channel, which i=
a2 variation of strean, will have a post queue for ressages different rom that
cf & strean. Class "channel' will inherit class *strezm' with overriding its
'post_gueue! slot {sse 3.2 (2))., If class 'stream’' has inherited class
"post_queue', it would be difficult to implement 2 channel in such & way.

A gtream alsoc has 2 '"waiting gqueue' slot which has 2n instance of class
"waiting gueue', It mignt be better that class 'strezm' inherits class
'waiting gueue' rather than that it has the slot, But we chose to have the
slot because of =some subtle problem when initiating a stream.

welting queug post_oucue
-~ Y
has: H
gtream..:

Figure 3.5 Class relations of elaszs "stream?

Part of clasz 'streamn' is shown in Figure 3.6.

class

————

. . . .

stream has

tereate(Class, Strean) i-
inewi(Class, Stream);

instance

attribute { waiting queue :

= Q 3
(post_queue 1= Que

:- :create{fwaiting queue, Queue)
;- :create{dpost_queue, Queue));

:put (Stream, Object):-
:irhibit; interrupt{fprocess),
sadd_object(Strean!post_gueus, Object)
(tempty(Streamlwaiting _queuve), !,
H runhook(Stream 'waiting queue, Process),
:resume{Process, stream(Stream)) J,
:allow_interrupt (dprocess);

iget(Stream, Object):i-
;inhibit_interrupt{#process},
{ :remove_object(Stream lpost_queue, Object), !

12

: :=elf(d#process, Process),
shook(Strean lwaiting queus, Process),
;suspend(Process, stream{Stream)),
irenove_cbject{Streanlpost_queue, Object), 1,
tallew_interrupt (#process);

i i i e i e e s e s g e . Y

Fipure 3.6 Part of class 'strezm’
{2) Strean veriations

Several variaticns of streznsz zre cdefined on Ltop of elaszs '"streanm', which is 2
rrimitive plass for 211 other stresm type classes., EEP is powerful enough to
ioplement these streazsm variations guite ezszily. They are delfined by inmheritins
class '"strezn' and changing or sdding functions of it.

{a) Channel

A chammel is different from a stream in that it ha= a post gqueue for messazes
rather than for generzl objects and that it handles & sender of messapges,

Clazs 'ohannel'! is defined by inheriting elz=s 'strean' znd adding several
predicatesz. Part of claszs 'channel' is shown in Figure 3.7. Althouzh 2
chanpel uses the predicates and slots inherited from a streaw, the slot
'posb_gueuve' is overridden in the channel, so that the post queue of the
channel can menage messages more efficiently.

class channel has
nature strecm;
instance

attribute { post_gueua =
Queue :- :creste{dpost_gqueue_for_messaps, Queus) J;
% Overrides 'post _gqueus' of class 'stream!?

:send{Channel, Messapge, Sender) :-
t3et_sender(Message, Sender),
iput{Channel, Message);

:receive(Channel, Message, Sender) :=
iget{Channel, Message),
iget_sender(Message, Sender);

end.

Figure 3.7 Part of c¢lass 'channel?

The predicates, :send and :receive, are defined by using :put and :get of clazs
"strean'. Note that all the predicates of class 'post_queue_for_message' which

13

are czlled by & channel must be conpatible to those of class '"post_gueue!
cslled by 2 stream. A message is defined by eclass 'message’.

{pj Port
Class 'port' is easily implemented by inheriting class 'channel'. 4 port has
en additional s=lct czlled "cui_port' which containz 2 list of connected ports.

Class '"port! adds itz own predicates suech as :connect and idi=ecsnnect.

eclass port has

nature channel ;
inztance
attribute (out_port iz List :- :ecreate{$list, List));

izsend{Pert, Message, Sander) :- 1,
:count{Portlout_port, Countl,

[Count == 1, I,

iget_first(Portlout_port, OQut_port),
:channel izend(Qut_port, Hessage, Sender)
istiek_tap(Portlout_port, Tap),
send(Port, Tap, Message, Sender) J;

-

loecal

send{Port, Tap, Message, Sender):-
{ iget{Tap, f_portl,!,
icopy(Message, Hew_message),
ighannel ;send(A_port, New_message, Sender),
send(Port, Tap, Messagel,!
true };

-

end,

. S S GO, S . S S . S S . 5 . o i . e

Figure 3.8 Part of clazs '"port'

{c) Bounded-buffer function

A bounded ehannel, whieh i3 a2 channel with a bounded buffer, iz used for
buffered message communication. It has two waiting queues; one is for
processes waiting for messages and the other is for processes waiting for
buffers., The slot 'post_gueue' in e¢lass "bounded channel' contains 2 bounded
post queue instead of & post queue by overriding the slot of class 'channel’,

The eclass relauionﬁ of a2 bounded channel is illustrated as follews, A

semaphore which is a2 component of 2 bounded post queuve ipherits a walting
queue,

14

weiting_oueus

post_gquene segmaphore i '

i sessarasi DAS
! :
bounded_post_gueun
ha=

@ mwm R w

bounded channel

=
]
Fa

B E R B E S B R EE RS AR RS R

Figure 3.9 Class relaticns os class 'bounded channel!

Tae definiticonz of clzss '"bounded_channel' and class '"bhounded

shown in Fipure 3.10 and Figure 3.17.
predicates.

™

The latter iz an example of

poat

GuEuz' Sre

usings demaon

T T T T 7 S e PR R W

class bounded_channel has
nature channel ;

:erezte{Class,” Channel, Limit) :-
:erezte(Class, Channel),

ioreate(fbounded_post_queue, Queue, Limit),
Channel 'post_queue := Queue;

instance
attribute poat_queoue;

end.

Figure 3.10 Class

'pounded channel?

class bounded _post_gueue has
nature post_gqueus;

tereate(Claszs, Queus, Limit) -
:ereate(Class, Queus),

rereate(Psenaphore, Semaphore, Limit),
Queue lsenaphore = Semaphore;

inztance
attribute =emaphore;

before
tadd_object(Queue, Object) i~

:p_operation(Queue !semaphore);

15

arter
iremove_cbject{Queue, Object) :i-
vy_operztion{Quevelsemaghore);

end.

R N ——— = —— e i e ——— i

Fizure 3,11 Clzss '"bounded post_gueue!

4. Develomment History

The desipgn of SIHPOS wasz begun et ICOT in the f2l13 of 1982, The functional
specificaticn was preparsd at the end of fisecal 1982, and the class
specification was completed a2t the end of fiscal 1983. In parzallel with these
activities, ESP iz defined znd implemented on a cross systen,

The first P37, which was produced in December 1583, wzs made available to the
sof tware group in Mereh 1954, and other F3Is later., Single-process envircnment
supports were made available in April and enabled simple program debugging on
F3XI., In May, the IFL became operational, so &5 to ellow linldng programs
directly on PSI. With multiple-process envirorment facilities which were
supported in June, each subsystem was able to be fully debugged.

Vlhen the window subsysten was runnable on PST for the first time, we mezsured
the processor time of charzeter input/output and mousze tracking for performance
evzluation. The result was quite unsatisfactory. A character input with
echoing took & lew seconds., Tne reasons were analyzed to be overhead of
inter-process comnunication and process svitching, the =speed of the P3I
micro-interpreter, and overhead of oblect-oriented cells and slot acocessing
inplenented in software.

To remedy this situstion, we redesigned and recoded the supervisor and the
windew system. This reconstruction of the system was quite ezsily done
(actually in & few weeks) without much affecting the rest of the system,
because of modularity of the object-oriented approach in ESP. Also, the
firmware group of PST improved the micro-interpreter and implemented
object-eriented calls and slot accessing in fircware. With these efforts, the
time of a charzoter input has become 30 ms. The process switening time, for
exanple, has been.reduced from about 20 ms to 2 ms.

5. Conclusion

From our experience with SIMFOS, we believe that the object-oriented approach
is an effective means of reducing the effert of both specification and
implementation. Although one of the well-known drewbacks of this approach 1s
the overhead originated from its dynamic pature of execution, it is excusable
as far 2s the gystem i= running on a powerful personal workstation, considering
it provides a flexible and extensible system as needed for a good prograoming
environment. However, further research and development on object-oriented
systems should be pursued for wider applications.

16

Aolnowledgements

We would like to thank S.Saite (E-con Systems), H.Watanabe, M Tatzishi (both

Ol

Elestrie), and U, Shimazu (MEC) who were the members of the ETHFAS

supervisor graup, 2= well a= the members of the 3rd Lab., of ICOT who were
imvelved in the project of SIMPUS and P2L.

Reflerences

(11
[21
(3]
[41
[5]
)]
(7]
[E]

(9l

S.Uchida, et al., ™Jutline of the Personal Sequential Inferenece [aeobine
PSI", Hew Ceneration Computing, wol.1, no.1, 75-T% (1983).

T.Chikeyama, "ILO Reference Manual®™, te appear &s ICOT TH.

T.Chilkzyzma, "ESP Reference lanuzl", ICOT TR-044 (Feb, 19547,

S.Takapi, et 21,, "Overall Design of SINMPOSY, ICOT Th-057 (April 1933) and
the Procesdings of Second Internatienal Logie Programming Conference (July
1984).

T.Hattori, et al., "STMPOS: An Operzting Systen for 2 Perzonal Prolog
Machine PSI", ICOT TR-055 (April 1984).

T.Hattori and T.Yokol, "The Concepts znd Facilitiez of SIMPOS Superviser",
ICOT TR=056 (April 1084).

A.Goldperg and D. Hobson, Smalltalk=-E80: The Language and its Implezentation,
Addison-Wesley (1583).

D.Weinreb and D.Moon, "Flavors: Messape Passing in the Liszp Meehins®™, MIT
A.T.Lab. A.I.Memo No.602 (Nov. 1980).

D.G. Botrow and MM, Stefik, "The Loops Manual®, Xerox Corp. (19E3).

[18] G.Cuwrry, et,al,, "™ Traits: An Approach to Multiple-Inheritance

Subelassing™, ACH (1982).

17

