ICOT Technical Memorandum: TM-0095

TH-(K05

Constraint-based Logic Database Management
- Structuring Meta-knowledge in Database Muanugement

Taiew Mivachi, Susumu Kunifuji, Koichi Furukawa
and Hajime Kitakami

February, 19835

1985, 1COT

Mita Kokusai Bldg. 21F (03) 456-3191--5

|[:DT 4-28 Mita 1-Chome Telex ICOT 132964

Minato-ku Tokvo 08 Japan

Inéﬁtute for New Generation__'Ct;mputer Technology

Page 1

Constraint-based Logic Database Management
: Structuring Meta-knowledge in Database Management

T. Mivachi, S Kunifuji, K. Furukawa and H. Kitakami
Instituie for New Generation Computer Technology (ICOT)
ABSTRACT

The semantic representation of knowledge and active utilization of structured
meta-knowledge are very important for constructing intellipent knowledge assimilation
functions and database management functions. This paper focuses on the profiles of the
functions 'constraint’ for the representation of the semantics of objectes in the real world.
A database model is proposed; Constraint-based Semantic Model for a logic database
(CSM) using Horn logic expressions. CSM easily enables users to describe static and
dynamic semantics of the objects and assimilate knowledge according to users’ purposes.
Furthermore, users can also manage objects in the real world by managing the logic
databases. Easily implementation of a prototype system of CSM logic databases using
Prolog was achieved and it was confirmed that a logic programming language is suitable
for building an intelligent database system.

1. INTRODUCTION

Advanced intelligent functions are required for the database management systems
necessary to build intelligent database systems. These inte]ligcri: functions are classified
into three large groups; 1} Knowledge Utilization Functions, 2). Knowledge Acquisition
Functions, and 3} Knowledge Representation & Management Functions. Several studies
have been conducted on Knowledge Utilization functions [L84,W81,5u83] and Knowledge
Acquisition funcrions [ID79,5h82 K84 BK82 M84]. In this paper, we propose a method and a
database model for Knowledge Representaion & Management functions.

The Knowledge Management & Representation functions are essential for accumulating
knowledge and extending knowledge utilization. One of those functions is as follows.
The database management system obtains and manages knowledge according to purposes or
aims declared by a user for maintaining the database consistently, So users can know the
contents of all the databases and the semantics, derivations and functions of knowledge in
the databases. They can also assimilate requisite knowledge from other user's databases
according to their purposes semi-automatically, Meta-level knowledge 1s used in such
functions. Thus, we need to structure meta-level knowledge to build the intelligent
knowledge management functions mentioned above. Some research pertaining to
‘constraint’ has been carried out [Ca76, NG76, SS80, BP83]. These projects were based on
the notion that using ‘constraint’ in semantic expressions is effective,

In this paper, Section 2 discusses semantic expressions necessary for a logic DB system

Page 2

to reflect the real world. Section 3 proposes a 'Constraint-based Semantic Model' for an
object-oriented logic database which trears ‘constraint’s as objects, and discusses irs
knowledge assimilation procedure. Section 4 reports on examples of execution runs of
programs written in Prolog.

Research reports referenced in this paper are : M84, which established the suitability of
using Prolog with a logic DB system for knowledze assimilation processing; SM84, which
propesed an easy method fer designing a Prolog-supporiad negative knowladge processing
system; and Ki84, on related knowledge accommodation processing. We also refer to the
research on integrity constraints by Cadiou[Ca76] and Nicolas|NG78), as well as some
research on DB maodel [Co70][Ch76][S81), and [HMSI]

2. EXPRESSING SEMANTIC RELATIONSHIPS IN A LOGIC DATABASE

Things existing in the rcal world are called “objects” Objects change and act
continuously. Actions are also regarded as objects. A world in which objects exist is
called an “object world;" knowledge in the object world is called “object knowledge." The
data managed in usual databases is object knowledge. Necessary conditions on objects and
relationships between objects covering action are called "meta-knowledge." Meta-knowledge
differs from object knowledge in describing the controls on object knowledge.

The meaning of an object and its relationships with other objects are important when it
changes or acts. The value of an object is determined according to the results of
evaluating completed actions. Therefore, it is very important to describe an object’s history
and meaning together with its environment, conditions, and the degree of importance under
which it changes or acts. A wide variety of meta-knowledge is incorporated based on the
aims and intentions of the users, so the meta-knowledge must be carefully structured for
describing, managing, and utilizing it effectively. The standard descriptions of aims and
intentions can be facilitated for the users by structuring the meta- knowledge. Moreover,
intelligent logic database management systems can contain opinions on each object and
opinions for managing the logic databases,

In this paper we propose a method for structuring meta-knowledge by clarifying defined
objects according to constraints which form part of the meta-knowledge itself,

2.1 Contents Stipulated by Constraints

A constraint is a restrictive condition on the validity of object knowledge covering
actions. Thus descriptions of constraints must cover state changes caused by actions.
More precisely, they have to describe the worlds, environments, times, conditions for
changes, and actions before and after the change occurs. An advantage of state change
descriptions over procedure descriptions is that the former are more declarative and more
comprehensive. The "basic constraint’ is expressed in the following format which allows
descriptions of the necessary conditions for state changes.

<Constraint>::=<Pre-Conditions>, (<Pre-State> ->> <Post-State>), <Post-Conditions>

<Pre-Conditions>, <Pre-State>, <Post-State>, and <Post-conditions> above are goal strings

Page 3

written in a logic programming language equivalent to DEC 10 Prolog. The procedural

meaning of the basic constraint is presentsd below. The statement "An action satisfies the

corresponding <Constraine>" means that the following have been carried out in an object

world:

1} Check whether <=Pre-Conditions> arz satisfied.

2) If <Pre-Conditions> are satisfied, ferch <Pre-State> determined by evaluating
<Pre-Conditions>.

3) Re-evaluate <Pre-Conditions> for determining <Post-State> using the information of
<Pre-State>,

4} Create <Post-State> and replace <«Pre-State> with <Post-State>.

5) Check whether <Post-Conditions> are satisfied in the new object world.

Using the basic constraint <Constraint>, an object constraint <0OC> which stipulates the
validity of a piece of object knowledge is defined as follows:

<0C> ::= <Pre-Constraints> '("<Constraint>")" <Post-Constraints>
<Pre-Constraints> = nil | <0QC=>
<Post-Constraints> = nil | <0C> ... (81)

<Pre-Constraints> above represents the descriptions of necessary conditions or constraints
which are checked before a particular <Constraint>. <Post-Constraints> represents the
descriptions of necessary conditions or constraints following a particular constraint.
Therefore, the statement "<OC> is satisfied" means that the conditions of a particular
constraint and of its preceding and subsequent constraints are satisfied. By allowing
necessary limiting conditions to be described before and after <Constraint> like this, the
relationships between elements of object knowledge, or indirect causality, or embedded
causality can be described.

{(Example 1)

Pre-Constraints: An employee is promoted from rank A to the manager class (MC) and his
salary increases. (a)

Constraint: ' His jurisdiction is extended. (b)

Post-constraints: His property such as telephone sets increases. (c) (See 4.2 (B))

The possibilities for causal relations can be described here. They are the possibilities
that (a) causes (b) and that (a) and (b} causes {(c}. The causalities are {1} (a) causes
{b), (2) (a) and (b) cause {c) in example L

2.2 Constraint types

Constraints are broadly classified into the following two types:
a) Existential Constraint (EC)

There are conditions for preventing the existence of an object in an object world from
generating a contradiction in that world.
b) Action Constraint (AC)

Page 4

The conditions to be satisfied by an object world for a change in the state of an object
existing in thar world.

(1) Existential Constraint (EC)

An EC is a necessary condition for preventing the existence of an object in an object
world from producing a centradiction in that world [MB4]. Since it is a condition for the
static existence of an object in an object world, an EC is defined as follows.

<EC> == <State>, <Consistency Conditions>

<State> 1s the description of the state of an object existing in an object world.
<Consistency Conditions> is a set of necessary conditions for preventing the generation of
contradictions in an object world. An EC can be regarded as the basic constraint
independent of <Pre-Condition> and <Pre-State>, It represents necessary conditions for
defining the framework of an object world and stipulates the static state of an object in
that world. The concept of an EC is identical to that of an 'integrity constraint’ used in
lopic database.

(2) Action Constraint (AC)

An AC can be described as <OC>, We believe that the following four profiles of
constraints are indispensable for managing logic databases.

{a) Transition Constraint (TrC)

Generally speaking, time-sequenced multiple actions are generated in an object world. A
TrC stipulates conditions for the validity of the sequence of these actions. A TrC is
specified in an object constraint by the order of constraints. Thus, the TrC is identical to
<Constraint> when the actions in an object world are independent of other constraints and
time-bound sequences.

(Example 2) Example | is also an example of a TrC.

(b) Dependency Constraint (DeC)

When multiple actions take place in an object world, some of the actions may depend
on their new instances determined by other actions. A DeC stipulates the conditions for
the validity of dependency between these actions. A DeC is specified by shared wvariables
in the object constraint.

{Example 3) When an automobile is replaced with a new one, the gearbox changes from
manual to automatic; thus the driving method also changes.

(e) Class Constraint (CIC)
A CIC is a constraint which is effective for all the members of a real or virtual class
existing in an object world. Unlike a TrC, the CIC is not applied to respective members

Page &

of an object class but to the entire class. A CIC is specified in the description of actions
according to pre-state and post-state,

(Example 4) When the salary of an employes at rank A increases 10%%, the salaries of all
the rest of employess at rank A also increase 109%.

{d) Time Constraint (TiC)
A TiC stipulates the validity of an absolute or a relative time for actions [Sh84 85].

{Example 5) Censtraint C2 1s applied 3 minutes after constraint CI is applied.
(Example 6) Constraint C8 is applied at 8 o'clock on every week day.

It 1s some possibile to characterize constraints as is_a relations or part_of relations, But
we do not regard them as special relations to be supported by logic database management
systems. We take the view that users can use them in the same way as other general
relations,

3. Compound Worlds and Semantic Expressions in a Logic Database

It 1s wvery important to represent objects in the real world accurately in the logic
database. If this is achieved, we can manage the objects in the real world by managing the
logic database. In this section, we draw a comparison between the real world and a logic
DB reflecting it. Generally speaking, a DB is used for multiple purposes and consequently
has one world corresponding to each purpose. The DB worlds corresponding to purposes
are called ‘'unit worlds’ and a set of unit worlds is called a ‘compound world.” A
compound world is created for a characteristic shared by many unit worlds. A compound
world represents a sub-real-world containing objects that will be interrogated by users.
(See Figure 3.1.) Objects in the real world are expressed as reflected objects (RO) in a DB.
The meanings and aspects of ROs in a particular unit world differ from those in other
unit worlds, and the characteristics of a unit world depend on the meanings of ROs and on
the relationships between ROs. To specify each unit world, therefore, means to specify the
conditions to be satisfied by ROs.

Real World Logic Database {(Knowledge Base)

Sub-Real-
World

Compound World 2 Compound

World 1
Unit World b
Unit World a

Fig. 3.1 Correspondence between real world and logic database

-~

Page &

3.1 Constraint-based Semantic Model

A constraint-based database model is useful for representing the real world semantically
in a logic darabase. _
This section propeses 8 Constrzine-based Semantic . Model (CSM) for logic databases.

Using constraint OC, the CSM expressss not only relztionships berween the contsnts of a
logic database but also ralaticnships berween the semantics of these relationships to reflect
sub-real-worlds in compound worlds in ths database, The CSM is a database model which

can express the staric and dynamic semantcs of relationships between objects.

[Definition of CSM]

Let DI, D2, ..., Dn be n (n>0) domains (not necessarily distinct). Relation R of degree n
1s defined as a subset of the Cartesian product X{Di:i =12,n}. Asan interpretation
model, this relation R is used with the well-formed formulae of first-order Horn logic to
define a logic database L. The constraint-based semantic model of a logic database is
stipulated by the binomial relation:<{Ll, L2, .., Lp}, {0CIL, OC2, ..., OCqg}>, where Ll to Lp
is a set of logic databases. (OCi is (S!) described in Section 2.1, and Lj's interpretation
maodel is Rj respectively.)

The CSM can express semantically the following three types of objects:

1) Horn logic expression: This represents the semantics of objects in a sub-real-world as
static semantic relationships between relations in the logic database.

2) Scenes, actions, and sequences of scenes: These represent the semnantics of changes or
actions which extend over many objects in the real world, expressing OCs declaratively
to provide necessary conditions for compound worlds in a logic DB.

3) Dynamic semantics change based on real values in unit and compound worlds in a logic
DB: These are also expressed as OCs.

Figure 3.2 1s a conceptual diagram showing semantic relationships (SRl to
SRqlstipulated by expressing attributes and their values.

To express these variously changing objects existing in the real world, the CSM has the
following five functions:

1) Expressing meta-knowledge (OCs) declaratively, using first-order Horn logic.

2) Adding OCs to a logic DB to expand the represented real world.

3} Changing relationships between OCs with ease.

4) Combining freely extensions with intensions into a semantic network.

5) Expressing abstract concepts by using relations, attributes, and instances.
(Expressing relations, attributes, and instances as objects.)

Page 7

(tv OCs(ECs and ACs))

RI{Relaticn 1) z//:/f: 7“& -

°%
FIELENIZ
X

(Ssmantics Ralanionship: SR1

_EL

_-‘__‘—!——-—_'_;—_-.—_-._______
DIi(Domain 1) D2 D3 D4

Fig. 3.2 The concept of descriptions of semantics and relationships between relations in CSM.

The results of prior research and our CSM are compared below in terms of ability to
express constraints. The prior research refers to work on the "Integrity ; Constraint,"
“Integrity Checking," and the "Trigger." In "Integrity Checking” [MGT78], by the Nicolas
group, Existential Constraint (EC) and Transition Constraint (TrC) were studied as 'State
Law’ and ‘Transirion Law.' Part of the research on the "Trigger” [{Ca76] is on Time
Constraint (TiC). The CSM has the means EC and AC (TrC, DeC, CIC, TiC) explained
in Section 2.2 to express the real world. These means include the above functions. However,
when using Prolog, the CSM cannot have the Time Constraint (TiC) expressibility.

3.2 Consistency

DB management to prevent contradictions in a DB is important for the knowledge
assimilation procedure. In a DB designed by using the CSM, the presence of
non-contradiction under Clark’s conditions (sufficient conditions for guaranteeing
consistency of Negation as Failure) can be defined in detail. If non-contradiction is
detected in a DB, the DB is said to be ‘consistent’ and satisfies the conditions shown
below. Each demo(W,G) statement in the conditions corresponds to 2 'W = G defined
in first-order Horn logic and means that G is proved from W in first-order Horn logic.

<Consistency check?>

non_contradiction(Compound_world, R-objects) ->
demo(Finished_Constraints_list, Pre_Constraints),
demo(Compound_world, Pre_Conditions),
demo(Compound_world, Pre_State),
demo(Compound_world, Pre_Conditions),
substitute_state(Compound_World, Pre_State, Post_State},
demo(Compound_world, Post_Conditions),
non_contradiction(Compound_worldl , Following_Constraints),

Page &

not{demo{Compound_world, not(Existence_Constraint))}.
Compound_Werldl 1s defined corresponding to Following_constraints in the OC.

Some dependent characteristics berween constraints stipulating the consistency of
a legic DB exist globally to be checked for DB comsistency. These
characteristics are called "Consistency Checking Dependencies (CCDs)." When new
knowledzz is stored in a DB, the Action Constraint to be first checkad (AC(a)) is stored,
and AC(a) specifies the AC to be checked next (AC(b)). Since checking AC(b) is
reguested by requesting checking AC(a) in this situarion, AC(b) is said to be 'dependent’
on AC(a). This relationship is expressed as "AC(a) => AC(b)." Constraints expressed by
OCs make up a tres structure and are checked by the 'depth-frist’ method. Each EC is
checked after the corresponding AC is checked. (Ses Figure 34.) Here, 1t 1s assumed
that unique AC is determined corresponding to new knowledge. By referring to CCDs, the
user can determine what meaning an added OC has in the DB and how this OC is related
with other OCs. CCDs can be used to evaluate the applicability of OCs to the real

world.

ACL (Action Constraintl)

A\

AGL ACS R
Ag\\A.C-‘r ACT ACS
ACS ACIO

Fig 3.4 Checkingaction constraints

3.3 Assimilation management of a logic database

Knowledge can be assimilated to a DB determined by the CSM-defined semantics of
objects and inter-object relationships semi-automatically according to the aims of the users.
There are two kinds of knowledge: input knowledge and knowledge about this input
knowledge and stored knowledge. This section explains how knowledge is assimilated to a
logic DB determined by CSM-defined object semantics. Basically, the knowledge
assimilation procedure consists of the following three steps:

I} Detecting new knowledge which will produce a contradiction if added to the DB, and
eliminating it from knowledge to be assimilated.

2) Adjusting knowledge in a compound world to keep them consistent when new knowledge
is added to them.

3) Adusting the DB (a set of compound worlds) to keep it consistent when new knowledge
is added to it

These steps are devided into the 10 substeps below. (Step n is detailed into substep
ni.) Procedures consisting of combinations of these are also possible. (See Figure 3.5.)

Fage 9

1a) Contradictory new knowledge is detected (by a check using an EC) and this knowledge
is not added to the DB. (Ia)

2a) New knowledge is assimilated to the DB and no other changes occur in the DB.

7h) New knowledge is assimilated to the DB and then propagating changes occur in a
compound werld. (Ig)

2¢} New knowledge is assimilated to the DB and then a change a occurs in all members of
a class in a compound world. (Id)

2d) New knowledpe is assimilated and then a change occurs in a compound world at a
specified time.

2s) New knowledge is assimilated to the DB and then a combination of the changes
mentioned in 2b) to 2d) occurs in a compound world.

3h) to 3e) New knowledge is assimilated to the DB and then the propagating,
class-dependent, time-dependent, and compound changes mentioned in 2b to 2e occur in the
DB. (Ie)

In Figure 3.5, the nodes outside Database 1 represent user's requests for knowledge
assimilation. Changes resulting from the requests can be retrieved by the user. On the
other hand, each node inside Database 1 corresponds to a change or an action. An arrow
between nodes indicates the flow of propagation or influence of a change or an action.
The check in step 1) is done on the flow indicated by each arrow. The user should
confirm the results of this check if he needs to know about changes made by knowledge
assimilation in the DB, In this way, consistent knowledge can be added to the DB.

\

Ia Ia

Ib Ic I Id 1|
5

I.-" f./ &
Compound World / \ Database 1
(b1) (c1) Compound
(cl) World 3 |
€2) Compound Compound
e2) World 2 World 4
] -
e e ©

Fig 3.5 The processes of knowledge acquisition

Each constraint described by an OC works successively. They can be easily described
and changed and can clarify the semantics of a object.

(Example 7) In 2.2 (Example 1), the management world of the employee's state corresponds

Page 10

to compound world 1, each of the management worlds of money, of authorities, and of
furnitures corresponds to compound worlds 2, 3, and 5 respectively.

3.4 Advantages of a CSM-Controlled Database System

A CM-—contrelled DB system has functions to reflect users’' purposes or aims thus
supporung their intelligent activitiss and knowledge management. The functions are: a)
The vsers can make brief declarative descriptions of the semantics of each object in the
real world in the logic database using OCs. b) The database svstem can assimilate new
knowledze and its related knowledge according to the users’ intention and aims. ¢} The
users can manags cbjects in the real world by managing ROs in the logic database. This
section discusses the two interesting functions: 1) the knowledge acquisition function, 2)
the function for managing the design and life cycle of a logic DB system.

(1) Knowledge acquisition function

In a CSM-controlled DB system users need only describe the meanings of knowledge
items corresponding to applications by using constraints (OCs). Then the DB system
acquires semi-automatically the knowledge according to users’ aims. (See Figure 3.6.) The
same constraint is used to control not only addition but also deletion of knowledge.
Knowledge acquired by the DB system includes knowledge users have learned unconsciously
and knowledge they have failed to learn. These two types of knowledge may be used to
make up common sense. Learning like this is possible because learning stimulated by the
assimilation of element knowledge is repeatedly stipulated by multiple constraints (OCs).

Knowledge Base
Knowledge 4
Knowledge | Knowledge 2
C:J\.,- Knowledge 1 Knowledge 5~ _
INPUT Knowledge 3 ‘ "% Common
Py “ Sense A
Knowledge 6~

Fig. 3.6 Semi-automatic assimilation of knowledge and common sense

(2) DB design and life cycle management function

An intelligent activity support system should have a function to support not only the
DB manager but also to support users in DB system (DBS) design, DBS management, and
applications programming. (Sece Fig. 3.7) Users supported by such a function need only
describe the meanings of objects in a logic DB, then the life cycle management function
edits and outputs the descriptions of users’ aims and the contents of a DB to facilitate DBS
redesign and management evaluation.

Fage 11

\ DEE Desipn 5

*n
/DESDesné/,:> <\

jDE:S Management) ;‘ﬁrnung Application >

Programs

R

Fig. 3.7 Unifying design and management of DBS and creation of application programs

4. KNOWLEDGE ASSIMILATION BY THE CSM

The CSM can assimilate knowledge about input knowledge to a logic DB where the
meanings of objects and semantic relationships between objects have been defined. This
chapter explains how to use the CSM with the logic programming language Prolog to
mampulate a logic DB,

4.1 Syntax of semantic expression

In a logic DB, knowledge is expressed by facts (extensions), rules (intentions), and
constraints (OCs: ECs and ACs). (See Section 3) Constraints are meta-knowledge items
expressing the meanings of objects and inter-object relationships and thus are expressed
according to syntactic rules different from those for extensions and intensions.

To specify OCs, the following conditions must be satisfied:

a) Each object must be expressed independently.

b} A declarative expression format must be used.

¢c) Procedural interpretation must be possible.

d) Expressions must be brief.

These conditions must be satisfied because:

- If a) is satisfied, OCs can easily be added, modified, and deleted.

- If b) is satisfied, OCs can easily be interpreted and expression misses can be detected.
- If ¢) is satisfied, operations executing OCs can easily be interpreted.

- If d) is satisfied, the users’ burden of describing OCs is reduced.

(A) Existential Constraint {EC) syntax
ECs are defined in statements including references to the :rclcvant compound worlds and
objects as well as a message indicating the detection of a contradiction as follows:
check_EC(Compound-world, Object, EC, 'contradiction indication message’)
ECs in check_EC frames are defined according to the following syntax:
<ECs> 1= <EC>,<ECs> | <EC>;<ECs> | <EC>
<EC> 1= <Ls> —-> <L>

Page 12

<Ls> u= <L> <Ls> | <L>;<Ls> | not{<Ls>) | <L>
<> o= pot{<l>) | <G>
<G> u= <goals of Prolog>

(B) Action Constraint (AC) syntax
An AC is defined in a check_AC frame according to the svorax below., The dewmils of
an AC arz described as goal strings in Proleg.

check_AC(AC_ID, Input,
[actions(Pre_State ->> Post_State),
local_conditions(Class_Constraint_Attributes,
Pre_Conditions, Post_Conditions),
compound_world(Unit_World_Name_List), time(Time_Constraints) |,
global_conditions(Global_Pre_Conditions, Global_Post_Conditions),
action_constraints(Pre_Action_Constraints, Post_Action_Constraints),
Importance }.
Global_Pre_Conditions 2= [[World_Namel, Post_Conditions][PrCR]
Global_Post_Conditions = [[World_Name2, Post_Conditions][PoCR]
Pre_Action_Constraints =
[[Pre_World_Name, Pre_Action_Constraints]|PrAR|
Post_Action_Constraints =
[[Post_World_Name, Post_Action_Constraints]PoAR|

In a check_AC frame, the first argument specifies the identifier of an AC, The second
argument specifies new input knowledge. For updating knowledge, the second argument
should specify new relations and old relations in the format “"update("oldtuple’ newtuple’).
For requesting the dissmilation of knowledge, old relations should be specified in format
"remove (‘tuple’)".

The third argument describes the contents of an action as:

a) Actions
1) List of pre-action states of objects
2) List of post-action states of objects
b) Local conditions: necessary conditions in each unit world
1) Class constraint attribute list
2) Pre-action environment attribute list
3} Post-action environment list
¢} Unit world name list
d) Necessary constraints related to time.

The fourth argument specifies a list of necessary conditions which extends over many
worlds before or after the action in the database, The latter term specifies final
conditions the database must satisfy. This term provides means to check whether an action
has been completed appropriately and the resulting changes made. An example of this type
of constraint is the limit of the total budget over the whole database.

The fifth argument specifies conditions related to other actions. The former term

Page 13

specifies a list of necessary preceding actions and a list of prohibited preceding actions for
an action using correspending constraints, The latter term specifies a list of constraint
names representing knowledge assimilation objects which should take place successively. As
a result, the successive occurrence of acrions is dascribed, so is the shift of a scene. A
transition constraint is specified by their order and a dependency constraint is specified by
the shared variables they contain.

The names of constraints applied to preceding actions should be written to represent the
preceding actions. The scene or propagation process before the object action is
conditioned by this AC.

The former term in the fourth argument and elements a-1), b-2), ¢) and d) in the third
argument specify the scene before an action. Class constraint attributes specified by b-1)
in the third argument themselves become the objects of a class constraint. The elements in
a) in the third argument specify changes made by an action, and b-3) provides necessary
conditions after these changes.

The sixth argument specifies whether an action assimilates important new knowledge. If
it is important, the history of the knowledge can be described and stored for later
reference. The history description format is "sys-memory (ID, history)".

A question-answering module for inserting constraints into databases was easily
constructed.

4.2 Knowledge assimilation Prolog program execution examples

This section presents examples of executing knowledge assimilation programs under the
following three conditions:
1} Facts are input,
2} The DB satisfies Clark’s conditions (sufficient conditions for Negation as Failure) [CI78).
3) Consistency has the meaning explained in Section 3.2.
Since Prolog allows declarative expressions, the programs are written in this
language. ECs and ACs can easily be expressed according to Prolog-determined
SYMtax.
Examples of programs applying an EC and an AC are presented below together
with necessary consistency check functions for knowledge assimilation.

(a) EC application example
Necessary function: Preventing the assimilation of contradiction-producing new
knowledge to a knowledge base.

New knowledge: A baby (Yoko) was born to the couple Norio and Yumiko Yamada at
hospital H. The hospital has registered Yoko as their second daughter after making a
genetic check on her. Execution result: The result of the check is found erroneous, and
the message Dr. Gregor Johann Mendel says "No!™ is output. This is because a baby
having blood type B can not be born to a couple one of whom has blood type A and the
other type O. (See Figure 4.1.)

Page 14

Notio (type A)——Yumiko (tvpe 0) Database
Contradiction
s Bt —
Yoko (wype B) Tomoko (type A)

Fig. 41 Contrzdiction check using an EC

Input inguiry and cutput messaoe:

| 7- assimilate{[family]blood_tyvpe(veko,b) I parent]).

—— A New knowledge is assimilated !

yes

| ?- assimilate({{family] father(voko,norio),[parent]).

— Input conflicts with the Intesrity constraint !

Dr. Gregor Johann Mendel says " NO I ™

EC format:

(check_EC([family], father(X F),
(blood_type(F FT),married(F,M),blood_type(M,MT),
blood_type(X,BT) genes_match(FT MT CBT)-->member(BT,CBT)),
‘Dr. Gregor Johann Mendel says " NO ! ™))

An EC defined in this format specifies the blood types of the parents and the baby as
well as possible blood types of the baby. The EC to be applied to the relation "father” is
based on the fact that the baby must have one of certain possible blood types.

(b) AC application example
old knowledge: - Relations: employee(E , ENAME, Rank, SAL, DEPT),
aveSAL(Rank, AVERAGE _Salary), rate(DEPT, Rate)
- Yamada 15 an employee at rank A.
- AC stipulating that "if an employee is promoted from rank A o the
manager class (MC), his salary increases to ‘average salary of SMC:
SMC= MC x departmental_rate,' and his jurisdiction expands.”
New knowledge: Yamada is promoted from rank A to MC.
Execution results: Yamada’s position is updated to MC, his salary to SMC, and he is
given jurisdiction MC (including permission to enter RoomX1). Then he gets a telephone
as his texture,
In this example, the management system automatically performs the necessary actions for
retaining consistency in the corresponding worlds when Yamada is promoted and his
Jjurisdiction expands. The user need only check the updated results.

Input inquiry and output message:

I 7- assimilate([employees] rank_up(Rank,emp(EN,n_yamada Rank SAL DEPT),mec),[A]).
— New Knowledge is emp(4,n_yamada mc 1176 researcher)

— New Knowledge is authority(mc,4,n_yamada researcher)

— New Knowledge is fixtures(telephone,4,n_yamada)

— AC is equipments(34,35,33 check_AC(8,equipments_request(4,n_yamada,mc),[[acti
ons([}->>[fixtures{telephone 4,n_yamada)|} lecal_conditions([],[][equipments_ch
eck(4,n_vamada,mc)|) compound_world([equipments]), time([]}]],global_conditions(f
1I1),action_constraints([],{1),1))

—- Constraints are checked !

— AC is authority (32,3331, check_AC(3,authority_check(4,n_vamada mc),[[actions(
[}->>[authority(me 4,n_yamada researcher)]) local _conditions([],[[[¢mployess]em
p(4,n_vamada,me 1176 researcher)]][1),compound_world{[authority]) time([]) 15l
obal_conditions([],[]),action_censtraints([].[{{equipments] [equipments_reguest(
4,n_vamada,mc}]]]),1})

—- Constraints are checked !!

— AC is employees(29,30,28 check_AC(4 rank_up(a,emp(_69 n_yamada a,_110,researc
her),me) [[actions{{emp(4,n_vamada,a,700,researcher)]->>[emp{4,n_yamada me,1176,
researcher)]).local _conditions([] [dept(3,researcher,98)],[1176 is 1200+98/100])
compound_world([employess]) time([]}]],global_condirions({}.[]).action_constrai
nts([].[[[authority],|authority_check({4,n_yamada mc)}]][).1})

— Constraints are checked 1!

AC furmats:
check_AC(4,
rank_up(RANK, emp(ENO,Ename,a,SAL,DEPT) mc),
[[actions{[emp(EN Ename aSALpre, DEPT)] ->>
[emp(EN Ename mc,SALpos, DEPT)]),
local_conditions([],
[dept(DN, DEPT, DeptRate)}],
[(SALpos is 1200 * DeptRate / 100}]),
compound_world([employees]), time([])]I,
global_conditions([], []),
action_constraints{[], [[[authority] |authority_check(EN Ename,me}]]]},
1}

check_ACI(S,
authority_check(EN Enameme),
[[actions{[] ->> [authority(mc EN Ename researcher)]),
local_conditions([], [[[employees] emp(EN,Ename me, SAL researchtr}l] (.
compound_world([authority]) time([])]],
global_conditions([], {1},

action_constraints([], [[[equipments] [equipments_request(EN Enamemc}]]]},

1)

check_AC(B, :
equipments_request(EN, Ename,mc),
[lactions([] ->> [fixtures(telephone, EN,Ename)]),
local_conditions([], [], [equipments_check(EN ,Ename,mc)]),
compound_world([equipments]},time([])]I,

Page 15

Page 16

global_conditions({], (),
action_constraines({]. []).

1)

5. SUMMARY

We stated that structuring meta-kaowledge 15 indispensable to build an iatelligent logic
database management system which can assimilate new knowledge and manage logic
databases according to users purposes and aims. We offered a Constraint-based Semantic
Model (CSM} for structuring meta -knowledge based on "Constraint,” TUsers of a
CSM-controlled DB system need only describe knowledge and each object-associated scene
semantically and declaratively. Then, the system assimilates and manages data and
knowledge for them. If users express the design of a DB in CSM-supported formats, the
C3M not only designs a DB but also manages it and creates application programs. A DB
can easily be modified when a new purpose or meaning is generated, because users can
easily look up the semantics of a reflected object (RO} in the database. The CSM also
allows the flexible expressions of abstraction using relations, attributes, inter-instance
relations, and their meanings. We investigated the constraint types required by CSM and
the expressive power of CSM. The knowledge assimilation and management functions use
the "depth-first” method to check Consistency Checking Deperdencies (CCDs) between tree
OCs (ECs and ACs). By this methed, the functions can determine which new knowledge is
to be rejected and perform processing to retain consistency when new knowledge is input
into each compound world and each database.

Our future targets are:

- Implement the controls of time constraint using a logic programming language like ESP,
- Improving the expressibility of OCs

- Heightening usability

* Acknowledgements =

Our hearty thanks go to ICOT Research Center Director Mr. K. Fuchi who gave us the
opportunity to conduct this research, researcher Mr. H. Kondo who helped us so much,
and to the staffs of 2nd Research Laboratory.

* References

[BBG78] C. DBeeri, P.A. Bernstein and N. Goodman; "A Sophisticated Introduction to
Database Normalization Theory,” Proc. of the 4th VLDB Conf., Berlin, 1978.

[BK82] K.A. Bowen, R.A. Kowalski; "Amalgamating Language and Meta-language in Logic
Programming," Logic Programming (K.L.Clark and 5.-A.Taernlund eds.}, Academic
Press, pp.153-172, 1981.

Fage 17

|[BP50] J. Barwise and J. Perry; "Situations and Attitudes,” MIT Press, 1983,

[Ca76] I.M. Cadiou; "On Semantic Issues in the Relational Model of Data,” Math
Found. Comput. Sci. Mazmkiewiez. Vol.45, Berlin Heidelberg New York, Springer,
1976,

[C178] K. L. Clark; "Negation as Failure" in Logic and Data Bases, H. Gallaire and J.
Vinker (eds.), Plenum Press, New York, London, pp.263-322, 1973,

[Co70) E.F. Codd: "A Relational Model of Data for Large Shared Dara Banks," Comm.
ACM 136, pp377-387, Jun. 1570,

[Ch76! P.P. Chen; "The Entity-Relationship Model-Toward a Unified View of Data,” ACM
TODS, Vell, Nol, Mar, 1576,

[D79] R. Davis; “Interactive Transfer of Expertise: Acquisition of New Inference Rules,”
Artificial Intelligence 12, pp. 121-157, 1979.

[K84] H. Kitakami, S. Kunifuji, T. Miyachi and K. Furukawa; "A Methodology of
Knowledge Acquisition System,” Proceedings of 1984 International Symposium on
Logic Programming, Atlantic City, pp.13l-142, Feb. 6-5, 1984,

[HMS81] M. Hammer and D. MecLeod; "Database Description with SDM: A Semantic

Database Model," ACM TODS, Vol6, No.3, Sep. 1981

[L84] D. Li; "A Prolog Database System,” Research Studies Press, 1984.

[M84] T. Miyachi, S, Kunifuji, H. Kitakami, K. Furukawa, A, Takeuchi and H.
Yokota; "A Knowledge Assimilation Method for Logic Databases,” New Generation
Computing, Vol. 2, No. 4, pp. 385404, 1984, also in Proceedings of 1984
International Symposium on Logic Programming, Atlantic City, pp.lI8-125, Feb. 6-9,
1984,

[NG78] J. Nicolas and H.Gallaire; "Data Base: Theory vs. Interpretation,” in Logic and
Data Bases (H. Gallaire and J.Minker,eds.), Plenum Press, New York London,
pp.34-54, 1978.

[R78] R. Reiter; "On Closed World Databases,” in Logic and Data Bases (H. Gallaire and

J Minker, eds.), Plenum Press New York London, pp.53-76, 1978.

[Sh84] Y. Shoham; "Facts and Counterfacts in Temporal Reascninng,” Technical Report,
Yale University, 1984,

[Sh85] Y. Shoham; "Notes on Tempeoral Reasoning,” Technical Report, Yale University,
Submitted to IJCAIBS, 1985. ’

[S 81] D.W. Shipman; "The Functional Data Model and the Data Language DAPLEX, ACM
TODS, Vol6, No.l, Mar. 1981,

[SM84]) K. Sakai and T. Miyachi: "Incorporating Naive Negation into Prolog,” Proceedings
of Logic and Conference, Monash Univ. Jan. 1984

[St80] G.L. Steele; "The Definition and Implementation of A Computer Programming
Language Based on Constraint,” MIT AI Lab. AI-TR-595, 1980.

[SS80] G. Sussman and G. Steele; “"CONSTRAINTS — A Language for Expressing
Almost- Hierarchical Descriptions,” Artificial Intelligence 14, pp.1-39, 1580.

[W8l] D.H. Warren; "Efficient Processing of Interractive Relational Database Queries
Expressed in Logic,” Proc. of VLDB, pp. 272-28], 198L

