ICOT Technical Memorandum: TM-0091

TM-D091

Source-Level Optimization Techniques for Prolog
Hajime Sawamura, Taku Takeshima

and Akihiko Kato
(Fupitsu Lid.}

January, 1983

L1985, 1ICOT

Mita Kokusai Bldg 21F (U3) 456-3191~5
|(:DT 4-28 Mita 1-Chome Telex ICOT]32964

Minato-ku Tokyao 108 Japan

Institute for New Generation Computer Technology

SOURCE~LEVEL OPTIMIZATION TE(HNIQUES FOR PROLOG

By

Hajime SAWAMURA
Taky TAKESHIMA ©°

o
Akihiko KATO

* Hesearch Staif, Fundamenral Informatics Section,
** Senior Research Staff, Information Engineering
Seccion,
*¥** Associate Research Staff, Fundamental Informatics
Section,
International Institute for Advanced Study of Social

Information Science (!1AS-5158), Fujitsu Ltd.

Abstrace

A source-level optimizer for Prolog, a nondeterministic
logic programming language, is designed and implemented for the
purpose of Prolog program improvement.

The design principles of the optimizer include the following
three phases; (1) information extraction, (2) inline expansion,
(3} local optimization. In the phase (1), each predicate is
classified into any one of the three types: straight-line, tail-
recursive, general recursive, and is decided whether it is
deterministic or net, according to the concepts of determinacy:
a-determinacy and r-determinacy. In the phase (2), automatic cut
insertion is done to avoid unnecessary backtracking, and then the
predicates are expanded {(partially evaluated) by the inline
substitutions of their defining predicates to them, In the phase
{(3), various local optimization techniques are applied to the
resultant predicates of the inline expansions. As the local
oprimization techniques, are established (a) partial unification,
(b} propositional simplifications (deletion of multiple conjuncts
and disjuncts, deletion of redundant "true” and "fail™"
predicates, deletion of unexecutable parts, factoring), (c)
deletion of redundant variables by equality substitution, (d)
integration of equational predicates, (e) resolution of
disjunctive goals, etc.

Some theoretical considerations and results on the
optimization of Prolog are added, including the Church-Rosser
property of certain optimization techniques and the recursive

unsolvability of the determinacy of predicates.

1. Iotroduction

Program optimization is program transformation by which
programs are improved inte more efficlent ones, [t must he
examined at the different levels of the language hierarchy,
ranging from source to object. The aims and effects of the
optimization are different in each level, The merits of
optimizing programs at the source-level lie in the mutually
relating points that by the source-level optimization,
computation can be partially done in advance and various
redundancy in a program text can be eliminated in the sense of
sumbolic executlon.

This paper is concerned with optimizing programs in Prolog
[1], a nondeterministic logic programming language, at the
source-level, The basic purpose of the optimizing technigues
presented is to improve the excution time of programs rather than
space effciency., Prolog programs deserves optimization at the
source-level since it is a programming language derived from a
logic and hence it allows to describe algorithms in a rather
descriptive manner, compared with the conventional progranming
languages. Furthermore, the study of optimizing Prolog would turn
out to be useful as an aid for the efficient implementation of
nonprocedural languages.

So far, there has been neither so much work as to the
source-level optimization for Proleg nor other nondeterministic
programming languages except for [2], [3], ete. In [2], Chikayama
proposes a brief sketch of ideas on what sort of optimization
could be done in source code level of logic programming language

programs., In [3], based on unfeld/fold transformation techniques

[4], Tamak! and Sato present a heuristical transformation svstem
for pure Prolog.

In this paper, we describe the optimization method for
Prolog, without restricting it to pure Frolog, and propose a
practically useful optimizer which is the first attempt as far as
we know, Our approach differs significantly from the current
situvation of program transformation [4] as mentioned above
because our optimization method may be weak but general, in
contrast with strong but specialized program transformation. Our
optimization method has been established by the following three
design principles:

{1} Information extractian,

(2) Inline expansion,

{3} Local optimization

In oprimizing programs, it is convenient to extract
information from the program text beforehand. In the present
paper, we deal with predicate types and determinacy. Each
predicate is classified into any ane of the three types:
straight-line, tail-recursive, general recursive, and is decided
whether with the help of r-determinacy it is a-deterministic or
not. These concepts are defined in Section 2.

Before programs are expanded in-line, cuts are inserted into
the place where unnecessary backtracking could occurs, so that
the optimizarion of nondeterminacy in terms of backtracking can
be partly realized. In general, the main purpose of the inline
expansion are twofold: to delete subroutine linkage overhead and
to increase opportunities for local optimizations by providig
more global program units for them {5]. The inline expansion for

Proleog is done in such a way that the predicates{goals) are

expanded (partially evaluated) by the inline substiturions of
their defining predicates to them, This must be subject to the
execurion mechanism of Prolog programs, that is, the leftmost and
depth-first execution. Although the inline expansion may tend to
make program sizes rather large in general, such an aspect of the
inline expansion is left untouched in this paper.

Various local optimization techniques are devised, which may
be independently applied to an imitial program text, or applied
to those predicates which were made longer by the inline
expansions. They consisgts of (a) partial unification, (b}
propositional simplifications(deletion of multiple conjuncts and
disjuncts, deletion of redundant "true" and "fail" predicates,
deletion of unexecutable parts, factoring, ete.), {c)] deletion of
redundant varibles by equality substitution, (d) integration of
equational goals, (e} resolution of disjuncrive goals, etc,

The optimizaion techniques in conventional programming
languages are c{assified into two groups: interprocedural
technique and intraprocedural one. The inline Expansiun is an
interprocedural technique and the various local optimization
techniques are intraprocedural one,

We do not intend to provide a formal treatment of source-
to-source transformations, nor to prove that certain
transformations, under specific semantics, preserve program
equivalence, This paper is not concerned with considering the
program improvement for Frolog from the complexity-theoretic
point of view, neither. Our purpose is, rather, to elucidate or
pursue possibilities of natural and intuitionistic optimization
techniques for Prolog at the source level, In other words, our

main concern lies in presenting some ideas on what sart of

gptimization could be done at the source-level of Prolog
programs.

The remainder of the paper is divided into 5 sections.
Section 2 contains the norations and definitions needed to
describe various optimization schema. Sections 3 presents the
optimization techniques and the optimization schema together with
their application conditions., Section 4 contains some theoretical
considerations and results which are useful for validating the
implementation issues of the optimizer, as well as the results
concerning the recursive unsolvability of the determinacy of
predicates. Section 5 describes the outline of the Proleg
optimizer implemented in Prolog and some illustrative examples,
Finally , discussions and concluding remarks are included in

Section B.

2. Notational conventions and definitions

We assume that the readers are familiar with the syntax and
the semantics of Prolog [1]. Here, only the notations and
definitions needed to describe the optimization schema, which
will be introduced in the succeeding sections, are given.

A Prolog program is a finite set of clauses of the form "H
: - El' ses 4 Bn.“, where n>0. H is called the head and Bi's are
calld the goals or predicate calls., Given a goal (a predicate
name), a set of clauses whose heads have the same name and arity
as the goal (the predicate name) is called a predicate definition
of the goal (the predicate name), or the defining clauses of the

goal {the predicate name).

It should be noted that we use the distinguished symbols for
syntactical variables ranging over the syntactic domains of

Prolog.

[Notational conventions]

(1) The letters P, G, H (with or without subscripts)
represent goals (predicate calls) or heads, which are of the form
of predicate names followed by some arguments, letters X, Y, Z
(with or without subscripts) represent variables, letters t, s
{with or without subscripts) represent terms of Prolog, and
letters p,q,r represent predicate names or propesitions.

{2) The boldface letters S and T (with or without
subscripts) represents (possibly empty) sequences of goals which
are delimited by commas., If S is an empty sequence, it denotes
"true" predicate, A boldface letter A (with or without
subscripts) represents a nonempty sequence of terms in Prolog.

(3) If S{X) is a sequence of goals in which a variable X may
occur, then S{t) represents a sequence of goals obtained by
substituting a term t for every occurrences of a varible X in
S(X).

(4} The boldface letters P and Q represent vertical rows of
goals and clauses.

(5) If t is a term of Prolog, then t' is a term obtained by

renaming all variables in t.

In order to illustrate that a sequence of goals (or a clause
) is transformed into an optimized one possibly by using
appropriate predicate definictions, we use a horizontal line which

corresponds to derivability in logic,

[Optimization schema]

The optimization schema is a figure of the form

where P and Q are called an upper sequence and a lower sequence
of the optimization schema respectively.

In our optimizer, predicate definitions are classified into
three types: straight-line, tail-recursive, general recursive.

According to them, programs are expanded in-1line.

[Types of predicate definitions]

{1) A clause H :- S is said to be a straight=-line clause if
there is no predicate call with the same predicate name as that
of the head H in S,

{2} A predicate definition of a goal, P, is said toa be
straight-line if all the clauses of P are straight-line clauses,

{3) Let a predicate definition of a predicate name p, P, be

where,

{i) there is no predicate call with name p in SI’ cea Sn

and,

(i) Pl' e Pn are atomic predicates and there exists at

least one predicate call with name p among Pl’ cus g Fn'

Then, the predicate definition P is said to be tail-recursive .

{In our optimizer the restriction (1i} is actually weakened, so
that P, may be, for example, of the form "G] : GEH provided that
"P,o:- G].“ and "Pi:~ GE‘H are tail-recursive.)

(4) If a predicate definition is neither straight-1ine nor
tail-recursive, it is said to be general recursive.

The determinacy of a predicate plays very Important roles in
optimizing nondeterministic programs; actually in expanding a
predicate call by its defining clauses with cuts and in inserting
cuts into the place where unnecessary backtracking may occur. The

exposition will be described in the next section.

Our definition of the determinacy is as follows.

[Determinacy of a goal (a predicate call)]
A goal (or a predicate call) is deterministic 1f when it is
called at most one clause of its defining clauses succeeds, and

when it is backtracked it never succeeds again.

In Section 4, it is shown that it is undecidable whether for
any predicate it is deterministic or not, Therefore, the concepts
of algorithmically decidable deterministic predicates must be
introduced.

We need the two kinds of concepts of determinacy which are
mutually defined. In the following definition, we assume that the
constructs dynamically modifying a program, such as "assert",

"retract" etc., do not appear in the program.

[a-determinacy and r-determinacy]
A predicate call pl(A) is termed a-deterministic or r-

deterministic 1f it satisfies the following mutually recursive

conditions.

(i) If p is a built-in (evaluable) predicate of Prolog and
plA) is deterministic, then p(A) is a-deterministic and r-
deterministic.

{1i) Let a predicate definition P of the predicate name p be

HI HE 51!

Hi 1= 8, [1,] 512., where the cut symbol "!" (if

any) is rightmost.

Ho o:- Sn‘
Then, for each i (l<i<n), if either (1) or (3) of the following
conditions holds, then p{A) is a-deterministic, and for each H,
which is unifiable with p(A), if (1)}, (2) or (3) holds, then p(A)
is r-deterministic:

(1) There is no cut symbol in the body of the i-th clause, it
is the last clause in the predicate definition P, and every goal
of Sil and Si2 is a-deterministic or r-deterministic,

{2) There is no cut symbols in the body of the i-th clause,
p(A) is not unifiable with any Hj (i+1<j<n) and every goal of sil
and 512 is a-deterministic or r-deterministic.

{3) There exist cut symbols in the body of the 1-th clause and

every goal of 512 is a-deterministic or r-deterministic,

It can be easily checked that if a predicate p(A) i1s a-

determinisic or r-deterministic, then it is deterministic,

The definitions of a-determinacy and r-determinacy have been
given, depending on the three concepts: cut's behavior,
deterministic built-in predicates and upnlfiability statically
determined. In other words, they never refer to what types of
arguments a predicate takes when it is called., These two
concepts, a-determinacy and r-determinacy seem to be less
complicated and better concepts than other computer-checkable
determinacy Iln the sense that they can be determined without
committing the semantics of a predicate. Here, by the semantics
of a predicate we mean to prescribe the domain of terms in which
the predicate succeeds. However, prescribing such a semantics
for a predicate beforehand would be obviously impossible.

Note that if a predicate call is a-deterministic, it is
always deterministic without depending on its argument form. In
gther words, an a-deterministlc goal is absolutely deterministic
in the sense that it does not depend on its argument form in the
goal. Therefore, when a goal plA) is found to be a-deterministic,
we sometimes call the predicate p a-deterministic or simply
deterministic. In contrast to the absolute determinacy of a-
determinacy, an r-deterministic predicate call is relatively
deterministic since its predicate depends on how it is called.
Furthermore, in our definition, a deterministic predicate except
for built-in predicates can not be determined to be a-
deterministic if the number of its defining predicates is more
than 2 and there exist no cut symbols in them. At the
propositional level, that is, when the predicate to be examined

is a propesition, a-determinacy coincides with r-determinacy.

Example 1. The predicate p is a-deterministic.

pla) = writelal), nl, !, writela2).

plh} 1= writelb),.

Example 2. The goal gf{[a,b]) is r-deterministic, but the goal

q{X}) is not.
qlle]) = write{e), p(X).
qlla|X]) - writela), p(X).

where the predicate call p{X) calls its defining clauses given in

Example 1,

3. Optimization techniques for Prolog programs

Various optimization techniques and optimization schema
together with their application conditions are presented in this

section.

J. 1 Parcial unification

In conventional programming languages, so-called calling
mechanism [3] Is conveniently eliminated by soubroutine expansion
technique, In Prolog, however, a large part of calling mechanism
is often remained as an equational goal which expreszes
unifiability of a goal with a head of its defining clauses.
Partial unification reduces the process of runtime unification to
some extent. Furthermore, in our optimizer, the results of
partial unification, a sequence of equational goals, are used in
the further stages of the successive optimization process, such
as the equality substitution described in the subsection 3.3.7.

And finally, the remaining equational goals turns out to be

integrated into one equational goal by using the optimization

schema: integration of goals described in the subsection 3.3.8,

[Optimization schema 1] (partial unification)

An equational goal, which expresses unifiablity of the two
terms of the both hand sides in Prolog, is transformed into a
sequence of equalities in a solved form [6] if it exists,

otherwise, simply a goal "fail™.

—————————————————————————— , OF —----=ommm=-==s=--==
K! = 1], eee g Kﬂ - Tn fail
where Xl, Caa Xn are variables occurring in the upper equality
and Tl‘ e s TrI are terms.
Example 3,

piX,g(Y,X,c)) = plhiZ),glZ,hi{d),c))

X = hid), Y=4d, Z = d

2. 2 Automatic insertion of cut symbols

Cuts should be inserted into the place where unnecessary
redo could accur on backtracking, %o that the optimization of
nondeterministic programs based on backtracking can be parcly

realized. We accomplish this in the following case.

[Optimization schema 2]

i il! i2®
H, - Sn'
H]_ - Sll
Hi :- SiI' , Si?'
H - .
n n

where either of the following conditicons is satisfied:

(i) If there exists no cut in S;,» then the i-th clause is a
tast clauwvse of :Ee program and every predicate in Sil is a-
deterministic or r-deterministic,

(ii) if there exist cuts in Sil' then no cuts accur in 512,
and every predicate In 511, occurring in the right side of the
rightmost cut symbol in Sil is a-deterministic or r-

determiniztic.

Example 4.
rilcl) - writel(c), ', p(X}.

r{{a|X]} :- writela), p(X).

r{lc]} - writelc), !, pl(X), !.
r{fal|X}] :- write{a), pix}, !'.
where the predicate call p(X) calls its defining clauses given in

Example 1.

3, 3 Inline expansion

A Prolog programs has, by nature, several alrternative
clauses for a predicate. Due to this nondeterminancy of Prolog,
inline expansion techniques is rather complicated in Prolog than
ordinary programming languages. Here, a natural method for inline
expansion of Prolog programs is presented, That is, " a predicate
call is replaced by a disjunction of alternative clauses of its
defining clauses, each preceded by a sequence of equational goals
which represents the unifiability of the call with a head of its
defining clauses., "

It is noted, however, that this replacement is valid only
when none aof alternative clauses has cuts in 1ts body. Because,
the cuts brought into the original clause cause a different

control flow in general. The next example shows that difference.

(a) Before inline expansion:

P-
a := h, !, cC.
a - d.

(b} After inline expansion:

p-
a - b, ', c.
a - di

In the program (a}, suppose the predicate call ¢ fails,
Then, the predicate call a fails and the control backtracks to q.
On the other hand, the failure of the predicate call ¢ in the
program [(b) causes the predicate call p to fail.

Thus, the existence of cut symbols in the called predicate
have a serious influence upan the possibilities of inline
expansion., In what follows, the methods of inline expansion are
formally introduced, together with the conditions which allow to
expand a predicate call by using its defining clauses which
include curs,

In this paper, a clause with no body, "P.", is identified
with a clause "P :- 8,", where § i3 empty, consequencly "P :-

true, "
4. 3. | Inline expansion by programs with no cut
An goal G is expanded by its defining clauses with no cut

as follaws,

[Optimization schema 3]

G.

Hl - 51-

H_n e Sni

G‘Hllll SII ¥] ’G=Hnl‘ Sn'
H :- 8

-

H 1= §_.
n n

where S, (l<i<n) does not contain any cut, H; (l1<i<n} is a

L

defining clause of G, and G = Hi', Sll simply denotes G = H, if

Si is empty.

Example 5.
append{|a,b],Y,Z).
append([X|L1},L2,[X|L3]}) :- append(L1,L2,L3).

append{[],L,L}.

append([a,b],Y,Z) = append({_X|_L¥],_L2,[_X[_L3]},
append(L1, L2, L3) ; append{[a,bj,Y,Z) = append([], L, L).
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

append([],L,L).

3, 3. 2 Inline expansion by programs with curs
(1) Cut schema (case 1)
We consider here such a special case that each of the

defining clauses which are used for inline expansion includes

just one cut symbol in it,
Let such a defining clauses be

H1 - Ell‘ ', 512.

-

H :-8 ., !, §

. . nim n "
n . | H, :- S,. | H . ("[" denotes "or")

nz*
where S, ., 512 (l<i<n) and Sn does not contain any cut symbol,

and

where if 8§ aor §,
il i

seq

C i Li] "
if Sil or Si2 is empty, the body SI]’ ', 5}2 denotes

"t " when both Sil and 512 are empty,

"1, 8, ", when only S, is empty, ar
i2 Y il Pty

" P B
Si]' ' ", when only 5]2 is empry.

Then, a goal G is expanded in-line, following the schema.

[Optimization schema 4]

G.

Hl T - Sll' ', sz.

H - snl, r, 5n2‘ iHn - sn. an.

G=H"' 85" -»8," ;. ; G=H', Sn;, ->S8.,"|G=
] i)

H.'s S, | G =H

Hp == 8 !ty 84,

Hot= 8 ., 1, 8 o. | H :- 8. | H_.

p Is empty, the i-th disjunct of the lower

uence is constructed as follows:

= [- i i . .
G Hi Si2 , when the i-th clause is H1 : !, 512'*

G=H"', S & -» true, when it is H, :=- S _,!,. or
i il i il

G = Hi‘ -» true, when it is Hj HE I

Example 6,

transform(T).

transform{'end of_file') - 1.
rransform(T) :- fold(T), write(R), Write{'."}), ni, ', fail.

-_...___..__..___..____._________...___.._____..____..,-_____.._-.......-----——--—

transform{T) = transform{'end_of_file') =-> true ;

transform{T} transform(_T), fold{_T), write(R},

write{'."), nl == fail,
transform('end_of_fife') - !,
cransform(T) :- fold{T}, write{R}), Write('."}, nol, 1, fail.

{2) Cut schema (case 2)
Next, we consider such a case that the determinacy enables

to expand programs in-line even if defining clauses contain cuts.

[Optimization schema 5]

H, :- §

1 1°
H] - S‘jl, pl:-h}; SLEL
Hn I- Sn.
pla;) - T., where cuts appear in some clause of the
. defining clauses of the predicate name p.

___._.-______..-_-.-.-——.----.--—.-——---.--p——--——-———--———-—---—————_-..---.

Hy oo S
(p(A) = plA)", T 5 oo 5 plA) = plA)"Y, T,
S, o

H, :-S_.

plA) - T,.

p(A_) - T .
where either of the following conditions is satisfied:

(1) If there exists no cut symbol in S”, then the i-th clause
is the last clause of the clauses with the heads Hj*s (l<j<i) and
every predicate in 511 is a-deterministic or r-determiniscic,

{(2) if there exist cut symbols in S“. then every predicate

call in Sil which appears on the right hand side of the rightmost

cut symbol in Sil is a-deterministic or r-deterministic,

Note that even [If cuts appear in the bodies T|'= (1<i=m),
the above expansion can hold without the expansion conditions (1)
and (2) if the unifiability of the predicate call p(A) with any
head p({Ai) including cuts is known to fail. However, currently we

are not concerned with these situations for simplicity.

Example 7.

rla,Y,Z) :- ', ql¥Y), appendi{a,Y,Z).

rib,Y,7Z) - plbl, append(b,Y,Z).

append([],L,L) - L.

append([X|L1],L2, [X|L3]) =~ append(L1,L2,L3},!.

rla,Y,Z) = !, qlY),appendla,Y,Z}.

rib,Y,Z) - pibl, (append(b,Y,Z) = append({],_L, L), ' 3
append(b,Y,7) = append([_X|_Lt],_L2, [X[_L31),
append(_L1, L2, L3),!).

append{[],L,L) - !.

append([X|L1],L2, [X|L3]) :- append(L1,L2,L3),!.

where the predicate calls ql([a,b]) and p(b) call the defining

clauses given in Example 1 and 2 respectively.

Iin the subsections below, the methods of inline expansion
described up to now are incorporated into the methods of
expanding a program in which various types of predicates are
defined, Although predicate definitions are expanded in-line
according to their types, oOur stepwise expansion method
essentially amounts to expanding the goals which call straight-
line predicate definitions, except that the tail-recursive
predicate calls can be expanded once only. This is due to the
current research situation that the objective expansion criterion
for recursive Prolog programs have not been found yet.
Therefore, it must be noted that the overall expansion method
desceribed below is not our final solution to the inline

expansion. Instead, in this paper, as a first step towards an

ldeal inline expansion method we employ an intermediate step in
which the original types of predicate definitions are preserved
by the inline expansions, This is because the type-preserving
expansions are convenient to assure program reliability and also
to debug. In fact, preserving the overall structure of a program
does not so much destroy the intention of a programrmer,

In what follows, the emphasis is placed on the conditions
for the Inline expansions rather than the algorithms of them, The
application of Optimization schema 4 is not currently considered

in the deseription below,

J. 3. 3 Inline expansion of straight-line predicate definitions
Suppose we have a program which consists of various
predicate definitions, Each goal of each clause in a straight-
line predicate definition of a predicate name is expanded in-
line, using the corresponding predicate definitions in the
program. This is done in a top-down, leftmost and depth-first
execution fashion of Proleog, as follows.
Choose a predicate definition of a predicate name p.
(i) Assume that the predicate p is a-deterministic. Let its

predicate definition be

Hj - S .01, Tj., where the cut symbol "'" (if any) is

. rightmost.

Then,
for each goal in Si

{1) if the goal satisfies the following conditions, expand
it by means of Optimization schema 3;

{a) no cut appears in the predicate definition of the
goal,

(b) the defining clauses of the goal to be expanded
is straight-1line,

{e) in the disjunctive term which is generated by
expanding each goal, no predicate name appears which
have been already expanded, including the predicate
name p,

and then for each goal of the resulting disjunctive term (if
any), repeat this,

{2) if cuts are included in the defining clauses of the
goal, then expand it by means of Optimization schema 5, and then
expand each goal in the disjunctive term generated, in the same
manner as (1) abave,

for sach goal in Ti and each goal in the last clause

{3) if 1t satisfies the conditions (b) and (e}, then expand
it by means of Optimization schema 3, and then expand each goal
in the disjunctive term generated, in the same manner as (1)

above.

(ii1) Otherwise, expand each goal in the defining clauses of the

predicate p, in the same manner as (1) or (2} above.

Mote that:

(1} The condition (c) above is a termination condition for the
inline expansion cf a straight-line predicate definition, which
prohibits a circular expansion.

(2) The result of the inline expansion of a straight-1ine
predicate definition is straight-line again with the help of the

condition (h),

Example 8. Consider the following program:

P:_pirqipz'
q:'qltrrqE*
I':—TI,P,I'Z.

Each clause is straight=line., The goal g in the first clause is
expanded by the second clause, resulting p:-p].fq=q,q1,r,q2],p2.
This is not expanded any more. The second clause is expanded by
the third clause, resulting q:-q],tr=r,r1,p,r2},q2., which is in
turn expanded to q:—ql,r-r,rl,[p:p,pl.q],r,qz,pg},qz., by using
the new clause for p. Finally, the third clause is left

unexpanded.

3.3.4 Inline expansion of tail-recursive predicate definictions

It is often done to convert tail-recursive programs to
iterative programs as in Prolog compiler. The characteristics of
FProlog programs, however, suggests that this transformatiaon is
not meaningful in optimizing Prolog programs at the source-level.

In what follows, is presented such a method that iteratively
accomplished goals in a recursive clause are expanded in-1line.
This is the same idea as the subroutine expansion in a loop of
iterative programming languages and the effect of the inline

éxpansion is most expected. Furthermore, since it is observed

that Prolog programs are almost of recursive form, especially of
tafl-recurvive form, the effect of such an inline expansion
method is considered extremely large.

After having expanded straight-line predicate definitions ,
tail-recursive predicate definitions are gxpanded in-line.

(i) All the straight-line clauses occurring in a tail-
recursive predicate definition are expanded In-line in the same
manner as the subsection 3.3.3.

(ii) Let one of the defining clauses of a predicate name p be

plA):-S5,plB).
where there is no call of a predicate p in S. Then, each goal G
in 5 is expanded imn-line In the same manner as the subsection
3.3.3.

{iii) The tail-recursive goal p{B) is expanded once only by
using itself, that is, the currently constructed definition of
the predicate p, as follows.

(1} 1f the predicate p is a-deterministic, then expand the
rail-recursive goal once only by means of Optimization schema 3.

(2) If the predicate definition of the predicate p iIncludes
cuts, then expand the tail-recursive goal once only by means of
Optimization schema 5.

Mote that:

(1) The termination condition of the inline expansion of
straight-line predicate definitions gives that of tail-recursive
predicate definitions as well.

{2) The tail-recursiveness of a predicate definition is
preserved by the inline expansion, in the sense stated in Section

2.

3.3.5 Inline expansion of general recursive predicate definitions

Each non-recursive goal of each clause in a general
recursive predicate definition is expanded in-line in the same
manner as the goal expansion of straght-line predicate
definitions described in the subsection 3.3.3., Note that the
general recursiveness of a predicate definition is preserved as

well,

J.4 Simplification of a sequence of goals

In this subsection, various techniques for simplifying a
sequence of goals at the propositional level are presented. Most
of them are local simlification rules or deletion strategies and
are often applied to the resulting clauses after inline expansion

as well as used individually within & clause,

3.4.1 Deletion of multiple occurrences of goals
(i) Delction of multiple conjuncts
Any identical goal occurring in a sequence of conjunctive
goals 1s deleted except for the leftmost goal, by the repearced

applications of the following schema.

[Optimization schema 6]

511 IJI 529 Pj S'

e

5 P, § 5

I 2° K]
where the goal P in the lower sequence is the leftmost occurrence
of it and the following conditions must be satisfied:

(1) P is a-deterministic,

(2) P is not a predicate call with side effect such as built-

in input/output predicate or a meta predicate, and furthermore it
is not extra control predicate such as cut symbol mym o "repeat".
{3) "not" predicate does not occur in the upper seguence.
Here we list some counterexamples of the optimization schema
in which the conditions above are violated.

(a) Py 9 P

is not correct. For, consider non-terminating q in the upper
sequence but terminating q in the lower seguence.
(b) S, var(X), p(X), var{X}, S,

5 var{X), pl{X], 52

I'I
is not correct since "var"is a meta predicate.

(e} S, write(X), p(X), write(X), 52

11

s, write(X), p(X), S

1 2
is not correct since "write" is an output predicate.
{d] Suppose we have the following assertions:
gla).
q{b).
giel.
Then,
repeat, qi{X), repeat, not(X = a)
repeat, gq(X}), not(X = a)
iz not correct since in the upper sequence the first success of

g(X) with X = a forces to repeat "not{X = a)" indefinitely, but

in the lower sequence the second success of q(X) with X = b

= 2B =

completes the execution.
(e} Suppose we have the assertions:
pl{f(Y,V)),
plfl{b,e)).
p(fib,d)).
q(f{b,U)).
glfle,V)).
Then,
p(X), alX), p{X}), not{X = f(b,c))
p(X), q(X), not(X = f(b,c))
is not correct since the upper sequUence termihatea with X =

f(b,d), but the lower one terminates with X = fle,v),

{ii) Deletion of multiple disjuncts
Any identical goal occurring in a sequence of disjuncrive

goals is deleted except for the leftmost goal,

[Optimization schema 7]

where the goal P in the lower sequence is its leftmost occurrence
and the folowing conditions must be satiafied:
(1) P is not a predicate call with side effect,
(2) Backtracking control never enters to the part "P; 52; P
in the upper sequence,
The following exemplifies the significance of the condition

{(2):

- 27 -

(p; q; p), write(a), fail

s .

{p; q), write{a), fail

1.4.2 Deletion of redundant "true"” and "fail" predicates
Redundant "true" (inecluding a goal of the form X = X) and
"fail" (sometimes expressing a failure of unification) predicates

can be deleted without any condition.

[Optimization schema 8-1]

[Optimization schema 8-2]

Sl; fail; S

3.4.3 Delecion of unexecutable parts
The sequence of goals to which control never reaches Is

remaoved from the program text.

[Optimization schema 9]

51, fail, S

s fail

l!‘
Note, however, that the following dual schema is not valid:

Sl; true; S2

- 28 -

- e e B e R o

3.4.4 Factoring of common goals
A sequence of goals i1s factorized for both the efficiency
and clarity of programs. The factoring of common goals is similar

to the inverse of distribution rule over formulas,

[Optimization schema 10]

5. 8 T; S, 52' T

] i

S, (8;:8,), T

2

where any predicate in 8§ and T is side effect free.

Example 8§,
P: Q@ py, Q, T

e T T i —

P, 4, (true; r}

3.5 Deletion of redundant variables

In this subsection, a method of deleting redundant Prolog
variables is presented, This is suggested by equality
substitution rule in first-order logic and is often applied to
the resulting clauses after the inline expansion as well as used
individually within a clause. This optimization technique is also

useful in reducing the number of goals to be accomplished,

[Optimization schema 11-1] (equality substitution)

D{--.,x,..-] H s,x-tl T'

pleee, t 4eee) o= S{t), Tit).
where any of predicates with side effect, a cut symbol and meta
predicates does not appear in S.

NMote that this optimization schema includes such a special

case with no effect that

plY) - gl¥Y), X = t, r(Y}.

plY) - qlY), rl{Y}.
and implies the following optimization schema as well

P:—S,X: f[tl,. - s ,anTK=f[rI| T] y» T }I T-

o o e e e e e e W T T R e S A R B R S W M R e e e S ==

With vicolating the conditions above,

(a) alX) 1= 1, X = t, piX),

is not correct if there exist successfull alternatives w.r.t, the
predicate name q.
{b) plX) - write{(X), X = a.
pla) :- write(a).
iz not correct since both the upper and lower sequences fail when
called by p(b) for example, but the upper sequence produces b as

the side effect,

[Optimization schema 11-2]
Plocey X 4aca) 3= SI; S5, ¥ =1t, T; 52.

e e e e e e o RS OSSR RN M N S S N N W B T om m e = = E = e

Plove, X o0} 1= Sl: S{t), T(t); 52.

with the same proviso as the above optimization schema.

3.6 Integration of goals

In the inline expansion, a calling goal in a clause is
replaced by its defining clauses to be needed to accomplish it,
Then, the calling mechanism was exprezsed In terms of a sequence
of equational goals which was obtained by the partial evaluation
of unification, These equational goals turn out to be partially
used in the subsequent local optimization technique such as the
equal ity sybstituction,

In this subsection, the integration of equational goals is
presented, where equational goals which was found not to be used
any more are integrated into one egquational goal. This
optimization technique is useful in reducing the number of goals

to be acomplished as well as the equality substitution,

[Optimization schema 12]

FlxX1, ... ,Xn) = f{tl, ... ,tn)

where f is an appropriate function symbol.

3.7 Decomposition of a clause

A clause expanded by the inline expansion In the subsection
3.3 is of the form

P :- 5, {SI; ‘e ;Snj, T.
The decomposition of such a clause often proceeds to further

Improve the resultant clauses, although it seems to be an inverse

transformation of the inline expansion in its form.

[Optimization schema 13)

P:-8, (S; ...:8), T.

P :- 5, Sn, T.

NMote that this optimization schema is valid without any
condition , contrary to the inline expansion and is
unconditionally useful if S is empty or any two heads of the
clauses in the lower are made ununifiable by the succeeding
optimization techniques,

From another point of view, this optimization schema amounts

to enemerate every nondeterministic computation paths as defining

clauses,

4. Some theorerical considerations

[n this section, some theoretical considerations on the
Prolog optimization techniques are summarized, which have been
useful for implememting the reliable Prolog optimizer. And the

unsolvability of determinacy of goals are described.

{1} Invariant oproperties
The following two propositions are easily checked from the

methods of the inline expansions described in Section 3. That is,

Proposirtion 1 is an immediate consequence of our inline expansion
methods and such an invariance has given an criterion of

expanding predicate definitions in-iline,.

Proposition 1. The types of predicate definitions are
invariant through the inline expansions. That {s, the straight-
lineness, tail-recursiveness and general recursiveness are
preserved by the inline expansions,

Proposition 2, a-determinacy is preserved by the inline

expansions.

{2) Termination of the inline expansions
The inline expansions have been done In such a way that each
goals of a predicare definition is symbolically expanded
{partially evaluated} in accordance with Prolog execution order
as far as the expansion conditions are satisfied, These are

guaranteed to terminate by the following proposition.

Proposition 3. The inline expansions terminare,

Ovutline of the proof: It is sufficient to show the
termination of the inline expansion of a straight=-line predicate
definition. It is established by the expansion condition (c)
given in the subsection 3,3.3, which says that a goal which once

have been expanded should not be expanded any more.

{3) Application order of local optimization techniques
Application order of several optimization techniques turns
out to be significant when some of them are applicable to the

programs expanded by the inline expansions [7]. The fully

optimized programs could not be generated if the application
order were not adequate for the source or intermediate programs,
In our cptimizer, it is d:E (Optimization schema 8-1), dt2
(Optimization schema B-2) and du (Optimization schema 8) below
which are applied at the intermediate stages of the inline
gexpansions. The others are often applied to the resulting
programs after each inline expansion, and their application order
can he conveniently determined from their nature, except for
Optimization Scheme 13, In this paper, we deal with an analysis

of the application order of ﬁtl, dt2 and du.

true,S2 Sl;faii;S2

where 52 iz not empty.

dt denotes either of the rules dtl and dt2, and the relation
dr-» defined below denotes the relation dtl # dry, where #
denotes the union of relations.

Definition 1. S, dt-> S, (S, du-» S,) iff 8, is an upper

1
sequence and 52 is an lower sequence of the optimization schema
de (du).

Definition 2. A relation * is defined to be
(dt-»> # du->)*, the transitive closure of the union of the

relations dt-» and du-»>.

Definitionm 3. A sequence S is said to be in normal form with

respect to dt and du iff meither dt nor du is applicable to S, A
sequence S is in normal form w,r.t dt (du) iff dr (du) is
applicable to S no more.

Definition 4, [t is demoted by writing de(S) (dul(S)) that dt
{du) is applied to a segquence 5,

Theorem 4, Ler 5, bhe a segquence, and 52 a sequence in normal

1

form, Then, SI ¥ 52 iff S] ** SE' where *%* js a relation,

#m:l:],n;-ﬂ{du-}}m{dt-?]n'
where tdu—r}m and (dt->}" denote m-fold and n-fold product of the
relations du-» and dt-» respectively,

Proof,

{only if part} Let Sl and S2 be sequences such that 5] * 52.
It is not the case that du becomes applicable only after the
applications of dt., Therefore, without losing generality, we can
apply du to the sequence 51 at most N times, where N is a total
number of fail's occurring in the conjunctive goals of S], and
next we can apply dr to the resultant sequence at most M times,
where M is a total number of true and fail predicates occurring
in its sequence, finally obtaining a normal form 52' From these
observations it is claimed that rthere exist the numbers N and M

M !
{ 1

such that (du-s=}) {dt-=]"".

(if part) obvious.

Theorem 4 says that in order to reduce a sequence, it is
sufficient to apply du several times and then dt several times.

Proposition 5. The normal form w.r.t, du is uniquely
determined.

Proposition 6. The normal form w.r.t. dt is uniquely

determined.

Theorem 7. The normal form w.r.t. du and dt 1s uniquely
determined,

Proaf. By Theorem 4, Proposition 5 and Proposition 6.

Theorem 8. For any sequence, the relarion * sartisfies
Church-Rosser property.

Proof. By Theorem 4 and Theorem 7.

Based on these results, the program deleting redundant true

and fail predicates, and the program deleting unexecutable goals
) m

from a sequence of goals are implemented as (dt)" (n>0) and (du)

(m>0) respectively, and for any sequence, {du]m is first applied

to it and then Edt]n iz applied.

(4} Recursive unsolvability of determinacy
The concept of determinacy of a predicate has played
important roles in our optimization schemas and in Sectionm 2 it
is claimed, however, that the determinacy of a predicate is
undecidable. Here, the proof of the recursive unsolvability of
determinacy [s given. And its Implications are then examined,.

Let us recall the definition of a deterministic predicate.

Definition 5. A goal (or a predicate call) is deterministic
if when it is called at most one clause of its defining clauses
succeeds, and when it is backtracked it never succeeds again.

Note that with this definition, a predicate call which does
not terminate at the first execution is deterministic, and a
predicate call which succeeds at the first execution but does not
terminate on backtracking is deterministic as well.

Before going into a proof of the recursive unsolvability of

the determinacy, it must be noted that computable functions are

computable in Prolog.

Theorem 9. Mo alpgorithm exists for deciding whether for any
predicace call it is deterministic or not.
Proof. Suppose there exists an algorithm which realizes a
predicate det: for any predicate call F
det{P) = success, if P is deterministie,
failure, otherwise,
Here, consider the following program:
q :- det(q).
Qs
Faor this program,

(i) Suppose det(q) = success, Then on backtracking, a call g
succeeds again, or else it succeeds in its second clause,
Therfore it 1s not derterministic.

(11} Suppose det{g) = failure. Then a call q succeeds only in
its second clause. Therfore it is det&rministic._

Both cases lead to contradictions. Consequently such an algorithm

det does not exist.

It should be remarked that
(1) In the program of the predicate g, If the first clause is
changed into a clause "q :- det{q), !'.", the above case (i) does
not lead to a contradiction, however in the proof it has been
shown that the existence hypothesis allows us to make such a
curious program q that raises contradictions,

(2) Our argument in the proof can be also applied to the case

that the predicate det is written explicitly as a two-place

predicate such as det (P, Deis), where Defs is a set of defining
clauses to be needed for deciding the determinacy of a predicate
call P, In the proof we let the predicate det bhe & unary

predicate, for clarity.

Corollary 10, No algorithm exists to decide whether for any
predicate call It 1s nondeterministic or not.

Proof. Obviously, the existence of such an algorithm implies
that of an algorithm deciding determinacy, which contradices
Theorem 10,

Corollary 11, No algorithm exists which answers the number
of the solutions of any predicate call.

Proof. Such an algorithm turns out to answer the number of
the solutions of a deterministic predicate as a special case. but
it is impossible by Theorem 10.

Corollary 12. No algorithm exists for deciding whether for
any proposition (without any variable) it Is deterministic or
not.

Proof. The proof of Theorem 10 can be restated by using "any
proposition p" instead of "any predicate call P".

This corollary says that even at the propositional level,
deciding the determinacy of a predicate call is impossible in
principle.

~Corollary 13. Suppose that an algorithm of the following
predicate det# exists: for any terminating predicate call P,
det#(P) = success, if P is deterministic,
failure, otherwise.
Then, there exists a nonterminating predicate call r such that

det#{r) does notr terminate,

Proof. Consider the following program:
ro:- det#(r).
g
A predicate call terminates or does not terminate. Suppose the
predicate call r terminates., Then, the same contradictions as
those in the proof for Theorem 10 arise, Theorefore the predicate
call r does not terminate. This implies that det#(r) does not

terminate, according to the definition of the predicate r.

5. Outline of an implementation and illustrative examples

3. 1 Outline of an implementation
An experimental system for Prolog program improvement, a
Prolog-optimizer, has been implemented on the computer Dec2060
and VAX/UNIX, written in Decl0d PROLOG and C-PROLOG respectively.
Various optimization schemas described in the former sections
were integrated into a Prolog-optimizer, takimg into account some
theoretical considerations described in Section 4, In the present
implementation, the users must indicate an application order of
various local optimization schemas, at the place where the order
can not be determined uniquely and adequtely. In the future, a
better application order would be settled through a number of
practical example programs. Fig I. iliustrates the global control
flow of the system.
The system basicallly consists of three components;:-
(1) Input-output routines,
(2) Information extracting routines,

{3) Optimizing routines.

Input-output routines read in a source program from an input file
and write out the resultant improvd program to an output file,
Information extracting routines realize the clasification of

predicate types and the detection of determinism. Oprimizing

routines realize various optimization techniques described in

Section 3.

| read in source programs |

IR T T T R ey ————

| extract informations |

apply local optimization
techniques

expand straight-1line
programs in-|ine

apply local optimization
techniques

e e e e T T T p—

expand tail-recursive
programs in-|ine

apply local optimization
techniques

e e W M MR B e S e o e e o w m am Em

R S B = = m M e e e e e e e o W mm oEm

expand general recursive
programs in-line

apply local optimizatiaon
techniques

write out resultant
' improved programs

Fig. 1 Control flow of the Proloz aptimizer

5, 2 Illustrative examples

In this section, some practical examples are described,

illustrating the overall control flow of processing source

programs by the Prolog cptimizer.

Example 10,

As a first example, we take an well-known "reverse"” program
of a list, which serves as an illustration of the overall
integrated procedure of various optimization schemas. In its
definition, r{X, Y, Z) reads as Y is a list which is resulted in
appending the reverse of X to Z.

It is successively transformed as follows:

reverse(X, Y) :- r(X, Y, []),!.
r([], 2, Z).
r[[H]Ti, W, Z} - T, W, [H]Zl}.

reverse(X, Y) - r(X, Y, [1),!.

r(ll, Z, Z).

r{[H|T], W, Z) = (T, W, [H|Z]) = (][], 21, Z1) ;
r{T, W, [H|Z]}) = r{[HI|T1], WI, Z1}, r{T1, W1, [HL|ZL]).
{by inline expansion)

reverse{X, Y) :- ri(X, Y, []),!.

r{ll., 2, Z).

r([H|T], W, 2) :- T =[], W= 21, ZI = [H|Z] ;
T = [H1|Tt], W =W, Z1 = [H|Z], r{T1, Wi, [HI|ZL]).

{by partvial unification)

reverse(X, Y) :- (X, Y, []),!.

r{l[l]l, Z, Z).

r([HIT], W, 2} :- T = (], W= 21, Z1 = [H|Z].

r{[H|T], W, 2) := T [HL|Ti], W = Wi, Z1 = [H|Z],

r{T1, W1, [HL|Z1]).
{by decompesition of a clause)
reverse(X, Y) :- r(X, Y, []),!.
r{ll, Z, Z).
ri{H], [H[Z], 2).
rO[H[THE|TUIE, WL, Z) - o(T1, Wi, [H1|[H|Z]]).

(by equality substitution)

Note that the straight-line predicate "reverse” is not

expanded in-line because it calls the recursive predicate r.

Exampie 11,

THe following program aptimize 1 is to delete redundant
variables occurring in two consecutive equations of a clause. It
reads in a clause from an input file and writes out the resulting
clause to an output file, In a form of optimization schema, it

realizes

where the variable "X" does not appear in plA), S and T.

optimize I(IF, OF) :- see(lF), tell(OF), repeat, read(T),

- 43 -

transform(T), seen, told.

transform{'end of _file'} = 1.

transform{T) :- fold{T, R}, write(R], write{'."'), nl, t, fail.

fold{ (H:-G), {(H:-R)) :- red(H, G, R].

red(H, {X=T1, Y=T2), (T1=T2})) :- var(X], X==Y,notoccur (X, [H]).
red(H, ((X=T1), ((Y=T2}, T)}, R} :- var(X), X==Y,

notoceur (X, [H, Ti}), red(H, ((T1=T2}, TJ, R).
red{H, (A, T), (A, Z)) :- red{[H, A], T, Z}.

red(H, A, A).

notoccur{X, T} := var(T), !, not(X==T},

notoccur (X, T) :- T=..[F|As], mapnc(X, As).

mapnc(X, [1).

mapnc(X, [H|T]) :- notoccur(X, H), mapnc{X, T).

MNote that:

(1) optimize_1, transform, fold and notoccur are straight-line
predicates and red and mapnc are tail-recursive predicates.

{2} transform is a-deterministic predicate.

(3) The predicate "transform(T)" occurring in "optimize 1" can
not be expanded in-line since it contains a nondeterministic
built-in predicate "repeat”.

(4) THe predicate calls "notoccur{X, [H})" and "notoccur (X,
{H, T])" occurring in the predicate definition of the predicate

"red" can not be expand in-line since they does not satisfy the

conditions in Cut schema (case 2).

(5) The predicate call "noteoceur(X, H]" ocecurrng in the
predicate definition of the predicate "mapnc” can not be expanded
in-inline since its defining clauses call "mapnc"™ again.

As the result, only the predicate call "fold(T, R}"
poccurring in the predicate deinition of the predicate transform

iz expanded in-line through the following process:

transform{T) :- T=(H':-G'), R=(H':-R"), red(H', G', R'},
write(R}), write{('.'), nl, ', fail,
transform{{H':-G"')) :- red{H', G', R'"), write{(H':=R"')),

writel',"'), nl, ', fail.

6. Discussions and concluding remarks

Various optimization techniques at the source level have
been presented without restricting them to pure Prolog. Some of
them are logically complicated, compared with those of the
optimization metheds [9, 10, 1] for conventional programming
languages. This seems to originate from the two-facedness of
Prolog, that is, procedural and nonprocedural nature. In fact,
the purely logical nature of Prolog allows te improve Prolog
programs simply as logical formulas by means of obvious
gquivalence preserving transformation., On the other hand, the

procedural interpretation of Prolog together with the specialized

exccution mechanism such as left to right, top to down and
backtracking contral, and several non-logical language conscructs
such as meta or side-effect make it difficult to improve programs
as logical formulas.

Qur approach in improving Prolog programs is syntactical
one, and 18 not heuristic in contrast with the program
transformational approach in [3, 4]. Consequently, the methaod
described in this paper may not lead to a qualitative and drastic
improvement of a program and this seems to reveal a limitation of
the syntactical approach at the scurce level. And yet, in the
program transformation, the basic factors for qualitatively
changing programs are the rules such as the introduction of
definition, abstraction as introduced in [4, 3], and their
applications require very heuristic knowledge or eureka.

In expanding programs in-line, we have devored a
considerable of space to show how controversial cuts should be
treated. This is because a cut or its substitute would be
considered to be an important language construct in improvimg the
efficiency of problem solving programs as far as nondeterministic
programming languages are concerned. Our way of treating cuts,
using the determinacy, allows to extend the class of predicate
definitions to which the inline expansion can be safely done.

Finally, we mention some research topics in the future which
lead to the reinforcement and reliability of our present
pptimization method;

(1) type checking,
{2) intelligent backtracking,
{(3) data/control flow analysis,

{4) formal verification of equivalence etc.

{1}, (2) and {3) are mutually related and especially the type
checking in untyped languages [12] may he a promising capability
to extend the concepts of r-determinacy and a-determinacy
introduced in Section 2. As a result, it could further promote
simplifications to be done at the symbolic level of programs. The
formal verification of equivalence between a program and its
improved one 1s a very important but challenging theme. Some
works on it in pure Prolog are known [3], but no works on full

set of Prolog.

Acknowledgements

The authors would like to acknowledge the continuing
guidance and encouragement of Dr. Tosio Kitagawa, the president
of their institute,

The authors alse would like to express their appreciation to
their colleagues of the institute, T. Yokomori and J. Tanaka for
their critical remarks and useful suggestions on earliar versions
of the paper, and T. Chikayama of [COT for discussions and
helpful comments on program optimization of Frolog.

This work is part of a major R & D project of the Fifth

Generation Computer, conducted under program set up by the MITI.

References

[1] D. L. Bowen : Decsystem-10 PROLOG USER'S MANUAL, version
3,43, Dept. of Artificial Intelligence, Univ. of Edinburgh
1983.

[2] Chikayama, T. : Source level optimization in logic
programming languages, draft, 1283,

[3] Tamaki, H., and Sato, T. : A transformation system for logic
programs which preserves equivalence, ICOT TR : TR-018, 1983.

[4] Burstall, R. M. and Darlington, J. : A transformation system
for developing recursive programs, JACM, Vol. 24, No. I,
pp. 44-87, 1977.

[5] Scheifler, R. M. : An analysis of inline substitution feor a
structured programming language, CACQM, Veol. 20, No. 9,
pp. 647-654, 1977,

(6] Martelli, A. and Montanari, U. : An efficient unification
algorithm, ACJd TOPLAS, Vol. 4, No. 2, pp. 258-282, 1982,

[7] Aho, A. V., Sethi, R. and Uilman, J. D. : Code optimization
and finite Church-Rosser systems, in Rustin, R. ed. : Design
and optimization of compilers, Prentice-Hall Ine., pp. 88-
105, 14972,

[8] Komorowski, H, J. : Partial evaluation as a means for
inferencing data structures in an applicative language : A
theory and implementation in case of PROLOG, Conf. recard of
the 9th ACM Symp. on Principles of programming languages,
ACM, pp. 255-267, 19812,

[9] Allen, F. E. and Cocke, J : A catalogue of optimizing
transformations, in R. Rustin ed. : Desigh and optimization
of compilers, Prentice-Hall, pp. 1-30, 1972,

[10] Arsac, J. J. : Syntactic source to source transforms and
program manipulation, CACQM, Vol. 22, No. 1, pp. 43-54, 1370

[11] Loveman, D. B. : Program improvement by source-to-source
transformation, JAOM, Vol. 24, No. 1, pp.121-145, 1977.

[12) Ramsay, A : Type-checking in an untyped language, Int.,].
Man-Machine Studies, Vol. 20, pp. L57-167, 1884,

