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ABSTRACT

The “kachinuki® odering method, which well-orders strings, is defined. An applicaticn of the
Knuth-Bendix algorithm based on “kachinuki” ordering is presented for Thue systems. Finite
complete rewriting systems for the Jantzen monoid and the Greendlinger group are mechanically
generated by the algorithm.

1. Introduction

The word problem of an equational theory involves determining whether the equality of two
arbitrary terms can be deduced from a given set of equations. Even for Thue systems, which are
regarded a3 specific equational theories, such problems are not, in general, decidable. However,
there are many concrete Thue systems whose word problem 1z known to be decidable.

A standard approach to solve the word problem of a given equational theory is to construct a
complete rewriting system and use it as a decision procedure. The Knuth-Bendix algorithm (5]
is well known as a mechanical method to obtain finite complete term-rewriting systems.

Otto presented two finite complete (string-)rewriting systems [6]. one for the Janizen monoid
(mere precisely, a monoid isomorphic with the Jantzen monoid) and the other for the
Greendlinger group. However, since there is no Knuth-Bendix ordering that orients the rewriting
rules properly, the Knouth-Bendix algerithm based on such an ordering cannot generate Otto’s
rewriting systems.

In this paper it will be shown that the Knuth-Bendix algorithm based on a “kachinuki” ordering
(defined below) can generate Otto's rewriting systems mechanically. Consequently, Theorem 3
and Theorem 9 in [6], which show the systems to be complete, are obtained as corollaries of
Theorem 3.5 in this paper.

2. Rewriting system

Definition 2.1

Let T be an alphabet, ie., a set of letters. A (string-)rewriting system R over L 13 a subset
of % % E* Let = be the relation on E* defined as follows:

u=v if and only if there exist z and y in E* and (L,r) in F such that u—zly and v=zry



The derivation 2 is the reflexive and transitive closure of = and the Thue congruence & is
the reflexive, transitive, and commutative closure.

A pair (I,r) in a rewriting system is called a rewriting rulz and iz denoted by I—r.

1o the literature, a rewriting system is often called a Thue system, especially when the issue
is Thue congruence (two-way rewriting) rather than derivation (one-way rewriting). In what
follows, a Thue system formally means a rewriting system. Using this term indicates, following
tradition, that we are principally concerned with Thue congruence. The above notation r—l will
not be used for what is referred to as a Thue system.

A string-rewriting system {or a Thue system) can also be viewed as a term-rewriting system (or
an equational theory) where letters are considered to be unary function symbols.

The word problem of a Thue system R involves the determination of whether t; &tz for two
arbitrary strings t; and £a.
Definition 2.2
Let R be a rewriting system. R is said to be confluent if, for any two derivations t2¢; and
taaty, there exists a string u such that ¢; %u and f;5u.
Definition 2.3

A rewriting system is said to terminate if there exists no infinite derivation ty=tz=---.

Deflnitlon 2.4

A string t is said to be irreducible if there exists no string u such that t=u.

Definition 2.5
A terminating and confluent rewriting system is called complete.

Let R be a terminating rewriting eystem. For every string #, there exists an irreducible string
u such that t&u. Moreover, R is confluent if and only if the irreducible string u is unique. In
this case, the string u is called the normal form of t and t, At2 if and only if ¢; and {3 have the
same normal. Therefore the word problem is decidable for a finite complete rewriting system.

Kputh and Bendix devised a mechanical method to generate finite complete term-rewriting
systems for finite equational theories [5]. If the Knuth-Bendix algorithm is applied to a Thue
system E viewed as an equational theory, it generates a finite complete string-rewriting system
R with the same Thue congruence (and therefore the same word problem) as .

Definition 2.6
Let < be a partial ordering on E*. < is said to have the replacement property if I<r implies
zly<zry for any I, r, z, and y.

Defipition 2.7
Let Iy -+ry and lg—ry be rewriting rules. A critical pair is defined, if {; and I3 overlap:

(1) If I, is a substring of I; (i) i.e. l;=ul;v for some u and v, then (ri, ur;v) is a critical
pair.



(2) If a postfix of I;is 2 prefix of Ij, ($:£7) i.e., there exists ue (¢ denotes the empty string)
such that {;—vu and l;=uw for some v and w, then (ryw, vry) is a critical pair.
Now we will define below the Knuth-Bendix algorithm modified for Thue systems. Assume that
s well-founded ordering < with the replacement property is defined on I*.

Knuth-Bendix Algerithm

Step 0: Set E to the initally given finite Thue system. Set R to empty. Go to Step 1.

Step 1: If E is empty, the current value of R is the desired rewriting system. Otherwise, go
to Step 2.

Step 2: Hemove a pair (¢, u) from E, and find irreducible strings ¢; and uy such that &y,
ussuy, with respect to R. If ty=uy, go to Step 1. IF ty=uy or &<y, EO to Step 3.
Otherwise, stop; the procedure is unsueeessful.

Step 3. We can assume I; <uy without loss of generality. Remove all the rewriting rules {—r
from R such that either { or r is reducible by the rewriting rule t; —t,, and append (i, r)
to E instead. Append the new rule £y —u; to R. Construct all the critical pairs generated
between ¢, —u, and each rule in @ =nd append them to E. Go to Step 1.

3. Ordering of sirings

Knutk and Bendix [5] presented a well-founded ordering method for terms with the property
cortesponding to the replacement property in the case of string. (For the string version of
the Knuth-Bendix ordering, see [8].) We will define apother well-founded ordering method for
strimgs.

Definition 3.1

Let « be an arbitrary partial ordering on ¢, and o be a new letter which is not contained
in ¥ We will define a partial ordering =<5 oL (EJ{c})*. Let |t| denote the number of
occurences of o in t. If [t|<|ul, then t<qu. If |t|=|u|=mn, let

t=tpolyo ... Oly, U=UpfF... OUg,
where each t; and u; are in I*. In this case, t<,u if there exist an ¢ (0<i<n) such that

tpmting oo tig =141, fi<th.

It is easy to verify the following lemma.

Lemms 3.2

(1) =g 18 a partial ordering.

(2) If < is well-founded, then <o is well-founded,

(3) If < is total, then <o is total,

(4) If < has the replacement property, then <, has the replacement property.

(5) (E*, <) is the initial segment of ((EU{})* <o) given by o, i.e. the identity map from
£+ into {w € (EJ{e})* | w<,0} s an order-isomorphisro.

g —



Deflnition 3.3

Let < be a well-ordering of E. 7or each o in I, the ordering <7 on {r | r<o}* is defined
by transfinite induction:

<7 = (<" r<e})e
The kachinuki ordering on £* is

< —U{<"|oex}

Example 3.4
Let £={a, b} and a<b. Thken the kachinuki ordering <orders L* thus:
f<B<BA< -+ <b<ba<bam< -.- <ab=<aba<abaa< - - <bb<bba<bbaa- ---

Theorem 3.5

Let < be a well-ordering of &. Then, for each o € E, <° well-orders ({r € E | r<c})*, and
the kachinuki ordering < well-orders £*. Moreover, they have the replacement property. If
p<a, then (({r | r<p})*, <*) is an initial segment of (({r | r<o})*, <®)

Proof :

The proof is by transfinite induction. Assume that the above conditions hold for any 7
such that r<o. It almost immediately follows from the assumption and (5) of Lemma 2.2
that <'= |J{<" | r<c}l is a total ordering with the replacement property. Assume that
<! is not well-founded, i.e., there exists an infinite descending sequence wy>"ws>' -+ in
{r | r<o}*. Let p be such that wy, € {r | r<p}* and p<o. Clearly, ({r | r<pl, <f)is
{{r | r<c}, <') itself or its intial segm: . Therefore, the sequence is also in ({r | r=p}, <*),
which iz well-ordered by the assumption, and the contradiction follows. Now, the claims of
the theorem are immediate consequences of Lemma 3.2.

Theorem (Kachinuld algorithm)
Let < be the kachipuki erdering on L* defined from a well-ordering < of E. Then t<u if
and enly if one of the following hold:
(1) t=¢ and uste,
(2) t=cot, u=cu' for some 0 € E and t'<v',
(3) t=ot', u=ru' for some 0,7 € E such that o>r and 1</,
(4) t—ot, u=ru' for some 0,7 € L such that o<r and t'<u.
Proof :

By induction on (the length of t) X (the length of u).

The above theorem provides an algorithm for comparing two strings with respect to kachinuki
ordering without look-ahead. The name “kachinuki® comes from the order of the bouts in team
matches in Japanese judo, because of resemblance to this algorithm. It is easily shown as a
corollary of the above theorem that kachinuki ordering is actually a string version of recursive
path ordering [2] (or its generalization [3, 8]). Thus, we can obtain another proof of Theorem
3.5 because recursive path ordering defines a well-founded ordering on terms.

—



Theorem 3.8
Let @ be the order type [9] of a well-ordering < of L and a* denote the order type of the
kachinuki ordering on L* defined from <. Then 0%=l, {n -+ l]l*—w"'ﬂ for all n<w and
atmw®" for all azw.

Froof :

If the order type of ¥ is 0, then E=0. Hence, £*—{e}, and therefore, 0*=1. By the definition
of kachinuki ordering,

P lim (14124 1M w=w®,

(@ + 1)*= lim (a* + (a*)* + - 4 (a*)")= lim (a*)"=(a*)* il ezl,
a*e lim @* i al0)is a limit ordinal.

oo

The proof is completed by transfinite induction, hecause il a* can be expressed by u"‘ﬂ,

then
wh+1

(a + 1)* (0= (@) =0 X

4. Applieations

In this section we report on the aulomated generation of rewriting systems for the Jantzen
monnid and the Greendlinger group.
Deflnition 4.1

The Jantzen monoid is the monoid presented by the Thue system

J={(sbbaab, ¢)}

over {a, b}

Otto showed the Jantzen monoid is 1somorphic to the monoid presented by
Jy={(ak,¢), (8a,¢), (x%, o), (x, ¢), (Bxa, X%)}

over {a &, x,1}, and gave a rewriting system for Ji with a proof that it iz complete [8]. We will
show that the same rewriting system can be obtained by the Knuth-Bendix algorithm based oo
kachinuki ordering. The following is the process by which the rewriting system is generated,
where the total ordering on the alphabet is specified as x<2<a<¥.

afi—¢
Bt f
b 4 =43
4 £
Rxa—I%




1: &t 0

2: Aa—e =0

3 x1ter =0

4: Tx et =0

B Axa—ER 0
6. aff-xs +5/1
T: af.xax ~4/6
delete 9

delete 6

8 Ex—IIN «1/5
delete 5

9 1TIAI—A «~3/8
10: TAZ .xE =9/3
delete 9

11; 52-x3% «10/3
delete 10

12: axxfi-¥ =11/1
13: axx—%a =2/12
delete 12

Ak
Ea—¢
b 4 QEN
Ex-.s
AX+IAX
ix-XI5&
11: B2 xx&
13 axx—Xa

0 S LB e

The equations above the first Lhorizootal line show the given Thue system. The generated rules
&re between the horizontal lines. The symbol «0 means that the rule was obtained from one
of the initially given pairs. The symbol +n/m means that the equation was obtained from a
critical pair generated by the previous rules n and m. The line “delete n" shows that rule n
was removed at Step 3 of the Knuth-Bendix algorithm because the left or right side of the rule
was reducible by the pewly-obtained rule. The set of rules under the second horizontal line is
the resulting complete rewriting system. This agrees with the presentation by Otto [6].

Definition 4.2

The Greendlinger group is the group with three generators a, b, ¢ satisfying the equation
sbe—cha. It is defined by the Thue system

G={(ak, ¢), (Ka, ¢}, (bb, ¢), (bb, €}, (¢Z, €), (Ee, €), (abe, eba)}.

—6 —



It has been demonstrated that there is no Knuth-Bendix ordering for G such that the Kouth-
Bendix algorithm terminates [4]. However, using kachinuki ordering, the Knuth-Bendix alge-
rithm does terminate.

Al =¢
Aa =t
bb —¢
bb —¢
ef =¢
ge —«¢
abe —chs

ak ¢ <0

Ea—¢ 0

bb—¢ =0

bb—e w0

ef—¢ 0

Ee—i 0
gbe—eba =0
chat—~ab =5/7
9: baZ-Eab <8/6
delete B

10: af—beab =9/4
delete 9

11; ficba—be <T/2
12: Scb—bed =1/11
delete 11

13; beSb_.f%e ~3/12
11: ¢Ab—h8e +~13/4

fo =1 @ e LD RS

delete 13

15. &b-.thBe <14/6
delete 14

1: alk—¢

2 BA-€

3 bb—e

4: bb—e

5 ef—r

B: Te—r

T: abe—-cha
10: aé—bEab
12; achb-+bek

—7 —



15: Bb—&h&e

The resulting complete rewriting system is the same as Otto’s, because we adjusted the ordering
of the alphabet thus:
bce<h<fca<a

40 as to get the same result. However, we could have derived another complete rewriting system
if we had imposed a different ordering.

I.et us consider again the Jantzen monoid. It is easy, bul not trivial, to verify that J and Jy
are isomorphic. Moreover, since the above rewriting system for the Jantzen monoid does not
include the letter b, we have to know how to represent the letter b in J; if we want to solve the
original word problem for J. Without knowing that x represents ab, it may take considerable
time to solve these problems.

In this sense, the infinite rewriting system obtained by Potts [7] for the Jantzen monoid is more
straightforward, because the modification made by him invelves no more than adding two new
letters to represent special strings.

Even based on kachinuki ordering, the Knuth-Bendix algorithm does not terminate for the
original presentation J of the Jantzen moneid.

Theorem 4.3

There is no finite complete rewriting system for J such that the rewriting rules are oriented
according to kachinuki ordering.

FProof .

We will omit the details, since the p.oof is analogous to Otto’s Theorem 1 [6], which claims
the same conclusion for the Knuth-Bendix ordering. The key point of the proof is that u<v
for every u and v such that |u|, <|v|, and |u|y<|v|s, where |u|, and |u], denote the number
of occurences of the letter m and b in u, respectively.

Nevertheless, if we add new letters x and y to represent ab and ba respectively, the Knuth-Bendix
algorithm can generate a finite rewriting system. The ordering of the alphabet is specified as
x<y<ach

abbaab=—¢
x—ab
y=ba

abx =0
ba-y 0
ay—xa «=2/1
bx—yb «1/2
vI—¢ 0

© yx-xy =5/5
delete 5

T: XXy—+£ &5

L



8 ary—xax =6/3
9: xaxxz—a <B/8
10: yyby b <7/4
11: yby—xxb «10/7
delete 10

12: axxb—r «11/3
13: saxx—xaza «9/9
14: yaxzxyya +=13/2
15: axx—xya =14/7
delete 14

delete 13

delete 12

delete 9

18: by —xxxxb «11/7
delete 11

ab—x
ba—y
By X
bx—-¥b
YX Xy
TXY £
© ATY +XAX
15 axx—xY¥A
16: by—x333b

Thus, we can mechanically obtain a complete rewriting system for another monocid whose
isomorphism to the Jantzen monoid is as straightforward as Potts’ Moreover, the resulting
rewriting system is finite.

5. Coneluding Remarks

In this paper, we reported on an application of the Knuth-Hendix algorithm based on kachipuki
ordering; a very powerful tool for constructing finite complete rewriting systema.

Besides Knuth-Bendix ordering, multiset ordering [1] and lexicographic erdering are used as
ordering methods for strings consisting of elements of a given partially ordered set.

As suggested by its name, however, multiset ordering is ordering for multiple sets, i.e., collections
of elements that may have multiple occurences of identical elements without regard to the order
of occurences. Therefore, in multiset ordering, we canaot compare two strings consisting of an
identical number of the same letters arranged in different orders.

—0 —



On the other hand, lexicographic ordering does not produce, in general, a well-founded ordering
even if the alphabet is well-founded. If we want the ardering to be well-founded, we have to use
length as a criterion, which introduces too strong a constraint on ordering.

Since kachinuki ordering is free of these disadvantages, we believe that it has a very wide range
of application. For example, a new ordering method for terms is obtained by using kachinuki
ordering instead of multiset ordering in the definition of recursive path ordering [2].
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