ICOT Technical Memorandum: TM-0086

TM-0LEE

THE BOYER-MOORE THEOREM PROVER
IN PROLOG USER'S MANUAL
(V3.6 Nov. 1984)

December, 1984

Co84, 1COT

Mira Kokusai Bldg, 21F 3] 456-3141~5
ID DT 4-28 Mita 1-Chome Telex ICOT 132964
Minato=lu Tolkyo 108 Japan

Institute for New Generation Computer Technology

THE BOYER-MOORE THEOREM PROVER IN PROLOG
USER'S MANUAL

(V3.6 Nov. 1984)

TABLE OF CONTENTS BMTP USER’S MANUAL

TABLE OF CONTENTS

INTRODUCTION . . o o o ot e e e e e e e e e e 1
1. How to Run BMTP o oo e 2
1.1. Getting Started e 2
1.2. Top-level Commands e 3
1.2.1. Defining Shells - e 3
1.2.2. Defining Funetions - . . e 4
1.2.3. Adding Axioms and Lemmaso 4
1.2.4. Proving Theorems - . . oo 5
1.2.5. Defining Abbreviationso e 6
1.3. Prover Commandso a e 7
1.4. Proof-step Options oo e 9
9. Using Files o oo 11
2.1. Problem Files« c o o oo e 11
2.1.1. Reading-in Problem Fileso 11
2 1.2. Additional Prover Commandso 12
239 Proof Environment o 13
2.2.1. Saving Environmentso e e 14
2.2.2. Restoring Environments oo 14
3. Meta-logical Construetso 15
3.1. Embedding Prolog Codes oo 15
1.2, Extended Abbreviations 16
3.2.1. Abbreviations for numberp objectso 17
9 99 Abbreviations for listp objectso 18
3.9.3. Further Abbreviationso 19
REFERENCES o o ottt e e e e e e e 20

BMTP USER’S MANUAL

APPENDIX

I. Summary of The Formal System
[.1. Syntax

I.2. The Theory of if and equal . .

[.3. The Logical Functions
[.4. The Shell Principle
[.5. The Definition Principle . . .

[.6. The Basic Environment
1.6.1. The Basic File

[.6.2. The Basic Environment File

TABLE OF CONTENTS

II. Example: The Theorem reverse-reverse

ITII. Commands Summary
[II.1. Top-level Commands

II1.2. Environmental Commands

I11.3. Prover Commands
Iil.4. Proof-step Options

21
21
22
22
23
26
27
27
28

32

45
45
45
45
45

INTRODUCTION BEMTF USER'S MANUAL

INTRODUCTION

The Boyer Moore Theorem Prover (abbreviated as BMTP in the following) is one
of the most powerful theorem prover developed by Boyer and Moore, for proving
theorems about LISP programs.

For an introduction to BMTP, readers are recommended to consult [Boyer & Moore
79]. However, for the benefit of those who do not have access to a copy of this
book, and for those who have some prior knowledge of BMTP, a summary of the
formal system is included in Appendix I. of this manual.

This manual describes the BMTP reproduced in The Institute for New Generation
Computer Technology for the DECsystem-20. The system is written in DECsystem-
10 Prolog.

In this manual we shall assume the DECsystem-10 Prolog convention which is
adopted in the manual [Bowen et. al. 83].

This work is based on the result of a subproject, Intelligent Programming System,
for the Fifth Generation Computer Systems project.

BMTP USER'S MANUAL 1. How to Run BMTP

1. How to Run BMTP

The BMTP offers the user an interactive theorem proving environment with tools
for incrementally proving theorems, tracing proofs, and modifying parts of proof
environments without having to start again from seratch.

(In the current version (v3.6 Nov. 1984), the system is equipped with no special
editing facilities for proof environments yet.)

1.1. Getting Started

To run the BMTP, perform the monitor command:

Grun botp

The system responds with a message of identification and the prompt | 7- " as

soon as it is ready to accept input, thus:

BMTP in Prolog (V3.6 Nov. 1984)

yes
| *-

At this point the system is expecting input of a directive, i.e. a question or
command. This state is in fact the Prolog interpreter top level.

1.2, Top-level Commands BMTP USER'S MANUAL

1.2. Top-level Commands

The top-level commands of the system are listed as follows.

shell(S:R/BTM). define shell
definition(F=B). define function
lemma(H=H). add lemma
axiom(H=B). add axiom
theorem(H=B) . prove theorem
abbrev(X=Y). define abbreviation

1.2.1. Defining Shells
| = ghell C(Ay :TR/DVy,, A, TR,/DV,) ‘R /BTM.

The shell command introduces the system a new shell with constructor €, accessors
Ay, ..., An, type restrictions TH;, ..., TR, (optional), default values DVy, ..., DV,
(optional), recognizer R, and bottom object BTM (optional), according to the shell
principle (see APPENDIX 1.4).

Example.

| ?- addi(subl:numberp/zero):numberp/zero.
| ?- pack(unpack/zeroc):litatom/nil.
| 7= shell cons({ car/nil, edr/nil):listp.

BMTP USER'S MANUAL 1.2. Top-level Commands

1.2.2. Defining Functions
| 7= definition F(Vi, Vo) = Body.

The definition command introduces the system a new function F, with formal

parameters Vi, ..., Va, and the definition body Bedy, according to the definition
principle (see APFENDIX L5).

Example.

| ?- definition reverse(x) =

| if(listp(x),

| append (reverse(edr (x}) ,cons(car (x) ,nil)),
| nil).

1.2.3. Adding Axioms and Lemmas

| 7- axiom Name(L1, ... , Ln) Body .

| 7= lemma Name{ L1,, Ln)

Boady .

The axiom and lemma commands introduce the system a new axiom/lemma named
Name, with labels L1, ..., Ln, and the body Bedy.

Example.

| ?- axiom numberp_apply(rewrite) =

| numberp (apply(fn,x.¥)) .

| ?- lemma remainder_quotient _elim(elimination) =

| implies (and (not.(zerop(y)) ,numberp(x)),

| equal (plus(remainder(x,y), times (y,quotient(x,¥))),
I x)).

1.2 Top-level Commands BMTP USER'S MANUAL
1.2 4 Proving Theorems
| 7= theorem Nome{ L1, ... , Ln } = Body.

The theorem command instructs the system to prove a theorem named Name, with
labels L1, ..., Ln, and the body Body.

The proof proceeds interactively between the system and the user through the
prover commands described in section 1.3, and the proof-step options described in
section 1.4.

Example.

| 7= theorem reverse_reverse(rewrite) =
| implies(plistp(x), equal (reverse(reverse(x)).x}).

BMTF USER'S MANUAL 1.2. Top-level Commands

1.2.5. Defining Abbreviations

| 7= abbrev LHS = RHHS.

The abbreviation command instruets the system that any occurrence of the term
LHS in the succeeding input terms (definition bodies, axiom/lemma and theorem
bodies, and RH§’s in other abbreviations) should be interpreted as the term RHS.

Example.

| ?- abbrev cddr(x) = cdr(edr(x)).
| ?- abbrev ecdddr(x) = cdr{cddr(x)).
| ?- abbrev cdr3(x) = cddr(cdr(x)).

Note that both edddr(x) and cdr3(x) are expanded into cdr (cdr (edr(x))).

Such abbreviations seem to be unnecessary if we had corresponding nonrecursive
function definitions. In fact, they are logically equivalent in the system except that
the former are completely expanded at any time a term mentioning the abbreviation
is read-in to the system, although the latter at a proof time in the simplifier. Thus
they are to be understood just as read-in macros.

The way to define more sophisticated abbreviations is described in chapter 3.

1.3. Prover Commands BMTP USER'S MANUAL

1.3. Prover Commands

In a process of a proof, the system can be instructed to switch several modes, to
control the proof process and steps, and to display the proof environment.

These are called Prover Commsnds and listed as follows.

b. break

c. toggle continue mode

e. toggle tracing (rewrite,expand)

E. give up the proof (but store as a lemma)
h. help

P display remaining conjectures

q. process necxt conjecture

T. repeat q.

L. trace

V. toggle VT100 mode

Command Deseription

b. This invokes “break” of the Prolog interpreter.

o. See section 1.4.

e See section 1.4.

g. The command instructs the prover to give up the current proof; that
is, all of the remaining conjectures (the descendant conjuncts of the
initial body of a theorem) are cleared away from the system pools.
But add as a lemma if so specified in the command that invoked the
proof.

h. The help message for prover commands is displayed.

p. All of the remaining conjectures are displayed.

BMTF USER'S MANUAL 1.3. Prover Commands

q. The next conjecture is taken from the appropriate pool depending on
the proof stage, and processed.

r. This repeats the above “q” command until either there remains no
conjecture in any of the pools, or the proof eventually ends to success
(with a signal “Q.E.D.") or failure.

L. This invokes “trace” of the Prolog interpreter.

V. This enables/disables using the VT100 video options for pretty dis-
playing various informations that the system produces.

1.4. Proof-step Optizns BEMTF USER'S MANUAL
1.4, Proof-step Options

In a step of a proof, the system may stop with the following prompt:

Option (h for help):

At this point the system is expecting input of an option which changes one of proof
mode switches, controlls proof steps, or displays the prool environment.

These are called Proof-step Options and listed as follows.

a abort

b break

c Loggle continue mode

3 toggle tracing (rewrite,expand)

g give up the proof (but store as a lemma)
h help

P display remaining comjectures

t trace

v Loggle VT100 mode

@ accept command

Option Deseription

a This invokes “abort” of the Prolog interpreter.

b This invokes “break” of the Prolog interpreter.

c This disables the “Option™ prompts in the succeeding proof steps.

e This enables/disables tracing in the simplifier. If this switch is on, all
tentative rewriting (applying rewrite lemmas and expanding function
definitions) are indicated to the display, nothing otherwise.

£ See section 1.3.

BMTF USER'S MANUAL 1.4, Proof-step Options

h The help message for proof step options is displayed.

p See section 1.3.

t This invokes “trace” of the Prolog interpreter.

v See section 1.3.

e The command accepts a goal (any Prolog directive) and execute it.

In no option (followed by carriage-return) is specified, the interrupted proof step
restarts without changing any of the current proof modes.

— 10 —

2. Using Files BEMTP USER'S MANUAL

2. Using Files

The text of a problem is normally created in a file or a number of files using one of
the standard text editors. The BMTP can then be instructed to read-in problems
from these files; this is called consulting the file (as in the DECsystem-10 Prolog).

2.1. Problem Files

A problem file is made up of a sequence of top-level commands that is shell
definitions, function definitions, axioms, lemmas, theorems to be proved, abbrevia-
tion definitions, single letter prover commands, and commands for saving/restoring
environments that are descrived further in the followings.

Each command in a problem file is preceded by a # sign, and called a #-command.

Example.

#in -basic.

#definition append(x,y) =
if (listp(x),cons (car (x) ,append (cdr (x) ,¥)).¥y) .

#definition reverse(x) =
if (listp(x),

append (reverse (cdr(xz)),cons(car{x) .nil)?).nil).

#definition plistp(x) =
if(listp(x) ,plistp(edr(x)), equal(x,nil)).

#theorem reverse reverse(rewrite) =
implies(plistp(x),equal (reverse(reverse(x)) . x)).

#out. revrev,

Remember that their order is very impotant.

— 11 —

BMTP USER'S MANUAL 2. Using Files

2.1.1. Reading-in Problem Files

To input a problem from a file File, just type the file name inside list brackets
(followed by full stop and carriage-return}, thus:

| 7= [Filel.

This instructs the Prolog interpreter to read-in (consult) the problem. This is just
the same way to consult a Prolog program file.

2.1.2. Additional Prover Commands

To process problems read-in from files, following three additional prover commands
are available.

x. display remaining #-commands
¥, process next #-command
Z. Tepeat ¥.
Command Deseription
X. This displays remaining #-commands.
¥. The next #-command is taken and processed.
Z. This repeats the above “y” command until either there remains no

#-commands, or a theorem command is invoked.

— 12 —

29 Proof Environment BMTP USER'S MANUAL

2.2 Proof Environment

The system remembers various assertions while processing top-level commmands,
prover commands, and proof-step options. They make up Proof Environment.

Example.

bit_place(listp,16).

constructor {[addl,A]) .

constructor bottem([addl,A],zero).
constructor _TRs([add1,A], [numberp]) .
bottom_object{zero).

accessor ([subl ,A]) .

type_of _A([numberp, [subl,Al]).
recognizer ([numberp,Al) .
recognizer_constructor ([numberp, [add1,A]]) .
recognizer_bottom([numberp,zero]) .
rewrite_lecmma([count, [cons,A,B]],

{addi, [plus, [count,A], [count, B]]],

t,no,axiom, count (cons)) .
induction_lemma{[lessp, [count, [edr,Al], [count Al],

[[[1istp,A}]],axiom, lessp(cdr)).
elimination_lemma{axiom,elim([car,cdr]),

[implies, [1istp,A], [equal, [cons, [car,A], [cdr.Al],A]]).
definition([fix,A], [if, [numberp,A] A, zerol).
type_prescription([ecount Al tp(4, 1)) .
nonrecursive ([zerop.Al) .
recursive([plus,A.B]).
measured_subset([plus,A,B], [A]l).
induction_template([plus,A,B], template ([A,B]/[A],

[([[[numberp,Al]l, [[not, [equal,A,zerolll]->

[[[subi,A],B]/[[subl,Al]1]}])).

EMTP USER'S MANUAL 2.2. Proof Environment

2.2.1. Saving Environments
| 7= out File.

The “out” ecommand writes out a proof environment to the “File.env”. The file
can be read with an “in” command.

2.2.2. Restoring Environments
| 7= in File.

The “in” command reads in a proof environment {rom the “File.env”. The file is
possibly created by some “out” command.

Il a filename is preceded by a minus sign, as in:
| 7- -iile.
then that file is reconsulted (in the same way as for Prolog programs).

If a saving opecration is performed during a proof process, i.e. when there remains
some conjectures in the system pools, the process status is also saved into the output
file, and can be restored later or in another session of the prover by performing an
“in” command to the file,

— 14 —

3. Meta-logical Construets BMTF USER'S MANUAL
3. Meta-logical Constructs
The system offers a special feature as to axiom, lemma and theorem commands.

The body supplicd to the above three commands is allowed to include Prolog native
codes that is to be interpreted during a proof step.

Some more sophisticated way of abbreviations than those introduced in section
1.2.2 arc implemented by using this feature.

3.1. Embedding Prolog Codes

As an extention of a term specification for a body of an axiom, lemma, or theorem,
an embedded Prolog code is introduced.

An cmbedded Prolog code is a Prolog predicate (a conjunction or disjunction
of predicates) delimited by brackets “{” and “}", and is allowed to occur as an
argument of the term that is supplied as a body of an axiom, lemma, and theorem
command.

(In the current version (v3.6 Nov. 1984), embedded Prolog codes are allowed to
occur only in the hypothesis part of “implies” terms for lemmas and axioms labeled

“rewrite”.)

Example.

implies(and(listp(x),
{write("foo(’) ,write(x) ,write(’)*)}})

| 7- lemma foo(rewrite) =
|
|
I equal (foo(x) ,zero)) .

The rewrite lemma “foo” is applied in a proof of the theorem that mentions the
term “foo(X)” under the assumption that X is “1istp”, rewriting it to “zero” with
the side cffect of writing “foo (X)” while establishing the lemma hypothesis.

15—

BMTF USER'S MANUAL 3.2. Extended Abbreviations
3.2. Extended Abbreviations

The formal definition of numbers, “cons”ed pairs (or lists), and packed strings by
the shell principle forces the system and its users to handle the strict representations
such as:

zero, addi(zereo). addi(addl(zero), ...
cons (X .nil), cons(X,cons(Y ,nil)), ...
pack(cons (65,ni11)), pack(cons(65,cons(B6,nil))), ...
{with appologies for using abbreviations 65 and 66
for sixfty five and sixty six times application of
“*addl” on “zero” respectively, which would
consume too much space were they written down!)

instead of:
0, 1, 2, ...
[x1, X.v1. ..
naw IIAIEII'

which are far more convenient to users.

The latter representations abbreviating the former above are incorporated into the
system effectively without losing soundness of proof procedures by using the em-
bedded Prolog codes in rewrite lemmas (axioms) described in the previous section.

Moreover, this method keeps the system from full expansion of large explicit values
such as “999999", “[a.b,....z]", and "“ab...z"”, that would happen were it
equipped with a simple minded abbreviation expanding procedure, which can be
delayed until the time it is really needed.

In the following subsections, some standard methods of the extended abbreviations
for the three basic shell objects are introduced.

— 16 —

3.2, Extended Abbreviations BMTP USER’'S MANUAL

3.2.1. Abbreviations for numberp objects

For the “numberp” abbreviations 0, 1, 2, ... to work appropriately, the following
axioms are added to the system.

axiom zero_O{rewrite)
equal (0, zero) .

1

axiom subl_Of(rewrite)
equal (subl(0) , zera) .

axiom subl_addl_integer(rewrita) =
implies{{integer(x) ,x>0,x1 is x-1},
equal (subl (x) ,x1)).

axiom addl_subl_integer(rewrite) =
implies({integer (x),x>0},
equal (add1 (subl (x)),x)).

axiom numberp_integer (rewrite) =
implies ({integer (x)},
numberp(x}) .

Note that the variable “x” (“x1”) is shared between the embedded Prolog codes
and the logical terms of the theorey of the system; which is instantiated to the
samc thing and at the same time in the prover’s context.

—17 —

BMTP USER'S MANUAL 3.2, Extended Abbreviatlons

3.2.2. Abbreviations for listp objects

For the “listp” abbreviations list(A), list.(4,B), list(A,B.C), ... to work
appropriately, the following axioms are added to the system.

axiom car_list(rewrite) =
implies({x=[list,yl_1}.
equal (car(x) ,y)) .

ayxiom cdr_list(rewrite) =
implies({x=[list,_,L1IL],y=[1list,L1|L]},
equal (edr(x),y)) .

axiom list_ccus(rewrihe} -
implies({x=[1ist,X],y=[cons.X.[",nill]},
equal(x,y)).

axiom listp_list(rewrite) =
implies({x=[list|i_1},
listp(x)).

Note that the variable “x” {“y") behaves in the way described in the “numberp”
abbreviations; the variable “L” (“L1" or “_") is, however, the usual Prolog variable
(shared only among the predicates between “{” and “}").

Note also that a term in the prover’s world is represented by the Prolog list structure
inside the brackets “{” and “}”. Thus the last axiom above actually says that:

implies(equal(x,1ist(al)),
listp(x))

implies (equal(x,list(at,a2)),
listp(x)

implies(equal (x,list(al,a2,..., an)),
listp(x))

for all integer n.

— 18 —-

1.2, Extended Abbreviations BMTF USER’S MANUAL

323 Further Abbreviations

For the abbreviations such as:

*[] for *nil",

“[X .01 for “cons(X ,cons(zero,nil))",

*[x,1] for *cons (pack(cons(120,ni1)),cons{addl (zero) ,nil))", etc.
(120 is the ascii code for the lower-case letter “x”)

to work appropriately, the following axioms are added to the system.

axiom backqg nil(rewrite) =
equal (" [],nil).

axiom car_backqg list(rewrite) =
implies({x=[A]_],y=A},
equal (car("x) ,"y)).

axiom cdr_backg list(rewrite) =
implies({x=[_|A],y=A},
equal (edr ("x},"y)).

axiom listp_backq_list(rewrite) =
implies({x=[_1_]1},
listp("x)).

axiom backq integer(rewrite) =
implies({integer (x)},
equal ("x,x)).

axiom numberp_backq integer (rewrite) =
implies({integer(x)},
numberp(~x)) .

axiom backq_pack (rewrite) =

implies({atom(x) ,name (x,N) ,y=[1ist|N]},
equal (unpack ("x) ,¥)) .

BMTP USER'S MANUAL REFERENCES

REFERENCES

[Boyer & Moore 79] Robert 8. Boyer and J Strother Moore
A Computational Logic. Academic Press, New York, 1979.

[Boyer & Moore 81] Robert 8. Boyer and J Strother Moore
Metafunctions: proving them correct and using them efficiently as new proofl
procedures. In The Correctness Problem in Computer Science, R.5. Boyer
and J 5. Moore, Eds. Academic Press, l.ondon, 1981, pp.103-1584.

[Boyer & Moore 84] Robert S. Boyer and J Strother Moore
A Mechanical Proof of the Unsolvability of the Halting Problem. Journal of
the ACM, Vol.31, No.3, July 1984, pp.441-458.

[Bowen et. al. 83| D.1.. Bowen, L. Byrd, F.C.N. Pereira, L.M. Percira, and D.H.D. Warren

DECsystem-10 PROLOG USER'S MANUAL.
Department of Artificial Intelligence, University of Edinburgh, 1981,

— 20 —

I. Summary of The Formal System

APPENDIX

BMTP USER'S MANUAL

I. Summary of The Formal System

[.1. Syntax

< fdenti fier >

< integer >
< variahle >
< function symbol>

< term >

< constructor >
<accesgor >

< recognizer >

< type restriction™>
<default value>
< bottom object >

< function>

< formal parameter>

< de finition body >
< namne >

< label >

< embedded Prolog code>

< lowercase-letter > [< lowercase-letter > | <digit> | un]*
“'» [<any character > ¥«

<digit> | <digit> |*

< fdentifier >

< tdenti fier >

< variable > | < function symbol> 1 <integer >

< function symbol> “(* <term> [<term> |*)"

< function symbol>>

= < function symbol>

< function symbol>
< function aymbol>
< idents fier >

= < function symbol> | <integer =»

= < function symbol>

< partable >

= < ferm_>

1
I
1

< identifier>
“rewrite”
*ipduction”
*glimination”

"generalize”

“{* <any Prolog predicate(s)> “}"

9] —

BEMTF USER'S MANUAL I. Summary of The Formal System

1.2. The Theory of if and equal

axiom t#f
axiom X=Y — equal(X.Y) =t
axiom XFY — equal(X.Y) = £

axiom X—f — 1if(X.Y.Z) = Z
aziom X#f -+ 1f{(X.Y.Z2) =

1.3. The Logical Functions

defipition not(P) = if(P.f.t)

definitlon and(P.Q) = if(P.,if(Q.t.f). 1)
definition or(P.Q) = if(P,t,if(@.t.f))
deflnition implies(P.Q) = if(P,if(@.t.f).t)

As for “and” and "or”, arity is extended to more than two as follows.

deflpition and(P, . P, F.) = apd(P, ,and(F:,..., Fp))
definition or(P . F;,..., B.) = or(Py,and(P;,....P.))

The axioms and function definitions above are all “wired-in” to the system.

— 22

1.4, The Shell Principle BMTP USER'S MANUAL
1.4. The Shell Principle

To add the shell constructor ¢ of n arguments (X;,..., X,)
with (optionally, bottom object BT M),

recognizer R,

accessors Ay, .., A,

type restrictions TR,, .., TR, and

default values DVy,.., DV,

where

(a) € is a new function symbol of n arguments, (BTM is a new function symbol of
no arguments, if a bottom object is supplied), R, A;,. .., A, are new function
symbols of one argument, and all of the above function symbols are distinct;

(b) each TR, is a function symbol that is either a previously introduced shell
recognizer, or R; and

(¢) if no bottom object is supplied, the DV; are bottom objects of previously
introduced shells, and for each i,

implies(equal (X;, DV;) . TR: (X))

is a theorem; if a bottom object is supplied, each DV; is either BTM or a bottom
object of some previously introduced shell, and for each 1,

implies (and(equal (X, DV;) .R(BTM)).
TR:(X;))

is a theorem,

means to extend the theory by adding the following axioms (using t for R(BTM)
and f for all terms of the form equal(X,BTM} if no bottom object is supplied, and
using t for each TR,(X) if the TR; is not specified):
(1) axioms “wired-in” to the prover:

BRC(X,,.... Xa)),

R(BTM),

23—

BMTP USER’'S MANUAL L4. The Shell Principle

or (equal (R(X),t),equal (R(X),1)),
not (equal (C(X,y,...,X,) .BTM)),
not (R(t)),
not(R(f));
(2) axioms “wired-in" to the prover (for each i from 1 to n):
TR (A (X));

(3) axioms “wired-in” to the prover {for each recognizer R’ of a shell class previously
added to the theory):

implies(R(X) ,not(R',X));
(4) axioms used as rewrite lemmas (for each ¢ from 1 to n):

equal (AC, (C (X,,..., X0,
if (TR, (X)) . X;.DV))),

implies (not(R(X)),
equal (4;(X),DV})),

implies(not(TR;(X;)).
equal(C(X,,... . X;,.... Xa).
C(Xy,....DV;,.... X)),

equal (4, (BT M), DV,),

equal (C (4, (X),... A, (X)),
if (and(R(X),
not.(equal (X ,BTM))),

— 24 —

L.4. The Shell Principle BMTF USER'S MANUAL

equal {equal (C(X;,...,X,),
C(Yy,....¥.)),
and(if (TR, (X,).
if (TR, (Yy).
equal (X,.Y,).
equal (X,.DV{)),
if(TR,(Y,).
equal (DV,.Yy).
t)).

if{TR.{X,).
if (TR, (Y,).
equal (X, .Y,).
equal (X,.DV,)),
if(TR,(Y.),
equal (DV,.Y.).
t))));

(6) axioms used as rewrite lemmas (assuming that “count” is the basic measure
function, and “zero” is the bottom object of the basic “add1” shell):

equal {count (C(X,,..., Xnll),
addi (plus{if (TR, (X}, count(X,) ,zero),
1f (TR, (X) ,count(X,) ,zerc)))),
equal (count (BT M) ,zero);
(7) axioms used as induction lemmas (for each i from 1 to n):

implies(and (R(X),
not(equal (X ,BTM)1}),
lessp (count (A; (X)), count(X)));

(8) an axiom used as an elimination lemma:

implies(and (R(X),
not(equal (X ,BTM))).
equal (C(A; (X)) ..., A (X)),

X)),

BMTP USER'S MANUAL I.5. The Definition Principle

1.5. The Definition Principle

To define F of-X,,..., X. to be Bady,
where

(a) F is a new function symbol of n arguments;

(b) Xi,..., X, are distinct variables;

(¢) Body is a term and mentions no symbol as a variable other than X;, ..., X.; and

(d) there is a well-founded relation denoted by a function symbol R and a funection
symbol M of n arguments, such that for each occurence of a subterm of the form
F(Yy,..., ¥u) in Body and the F-free terms T.,..., Tk governing it, it is a theorem
that:

implies(and(Ty,... . Tx),
R(M(Y,,....Ya) . M(X,...., X.)))

means to add as an axiom the defining equation:

FI{X;.,....X.) = Body.

Terminclogy
A term is F-free if the symbol F does not occur in the term as a function symbol.

A term T governs an occurrence of a term § in a term B either if B contains a
subterm of the form if(T,P.Q) and the occurrence of S isin P, or if B contains a
subterm of the form if (T*,P,Q) where T is not(7"), and the occurrence of 5 is in

Q.
Example.

if(P,
if(if(Q.1.8).
g,
R),
T)

P and not.(Q) govern the first occurrence of §, P and if(Q.f.S) govern the second
occurrence of §.

1.6, The Basic Environment BEMTF USER'S MANUAL

1.6. The Basic Environment

The basic environment comprises various informations created from three shells
“add1”, “pack”, and “cons”, two nonrecursive functions “zerop” and “fix”, and
three recursive functions “plus”, “lessp”, and “count”.

These are defincd in the file “basic..” that would produce the basic environment
file “basic.env” when processed by the system.

[.6.1 The Basic File

#shell addl(subl:numberp/zero):numberp/zero.
#shell pack(unpack/zero):litatem/nil.
#ishell cons{ car/nil, cdr/nil):listp.

#definition zerop(x) =
or (equal (x,zero) , not(numberp(x})).

#tdefinition fix(x} =
if (numberp(x).x,zero).

#idefinition plus(x.y) =
if (zerop(x),
fix(y),
add1 (plus(subl (x) ,¥))) .

#definition lessp(x.y) =
if (zerop(y).
f.
if (zerop(x).
t,
lessp(subl (x) ,subl(y)))).

— 97T —

BMTF USER'S MANUAL

#definition count(x) =
if (numberp(x),
if (equal (x,zero),
Zero,
add1 {count (subl {x)})),
if(litatom(x),
if (equal (x,nil),
zZero,
add! (count.{unpack{(x)))),
if (1istp(x),
add1 (plus{count(car(x)),
count(cdr(x)))).
zero))) .

#out basic.

[.6.2. The Basic Environment File

bit_place(listp,16) .
bit_place(litatom, 8).
bit_place (numberp,4) .
bit_place({t],2).
bit_place([f], 1).

constructor ([addl,Al) .
constructor ([pack,Al) .
constructor { [cons A, ,B]) .

constructor_bottom{[addl.Al,zero).
constructor_bottom([pack.Al.nil) .

constructor_TRs([addl,A), [numberp]) .
constructor _TRs{[pack,Al, [t]).
constructor _TRs([cons,A,B]. [t.t]).

bottom_object(zero) .
bottom_cbject(nil).

accessor ([subl,Al) .
accessor ([unpack,Al) .

1.8. The Basic Environment

I.6. The Basic Environment BMTPF USER'S MANUAL

accessor ([car,A)) .
accessor ([cdr,Al) .

type_of _A([numberp, [sub1,A]]).

recognizer ([numberp,Al) .
tecognizer([litatom,Al) .
recognizer ([1istp.Al).

recognizer_constructor { [numberp, [add1,A]]) .
recognizer_constructor ([litatom, [pack,A]]) .
recognizer_constructor ([listp, [cons,A,B]11) .

recognizer_bottom([numberp,zero]).
recognizer_bottom([litatom,nil)).

rewrite_lemma([count, [cons,A,Bl],

{add1, [plus, [count,A], [count,B]]],t,no,axiom, count {cons)) .
rewrite_lemma([cons, [ear,A], [edr, Al]l,

[if, [listp,Al.A, [cons,nil,nill),t,no,axiom, [cons, [car,cdr]]).
rewrite_lemma([equal, [cons.A.B]. [cons,C,D1].

{and, [equal ,A,C], [equal.B,D]],t.no,axiom, equal (cons)) .
rewrite_lemma([cdr,Al,nil, [{[not, [listp,Al]1]] no,axiom, [edr,not,listpl).
rewrite_lemma([ear, Al nil, [{[rot, [l1istp,Al]]] . no,axiom, [car, not, listpl).
rewrite lemma([edr, [cons,A,B]].B,t,no,axiom, [cdr,cons]) .
rewrite_lemma([car, [cons,A,Bl],A,t, no,axiom, [car,cons]) .
rewrite_lemma{[count,nill], zero,t, no,axiom, count(nil)).
rewrite_lemma([count, [pack,A]], [addl, [count Al],t, no,axiom,count (pack)).
rewrite_lemma([pack, [unpack, Al]l,

[if, [and, [litatom, A], [not, [equal ,A,nil]]], A, [pack,zero]l],

t.no,axionm, [pack, [unpack]]) .
rewrite_lemma([equal, [pack,A], [pack,B]], [equal ,A,B],

t.no.axiom, equal (pack)) .
rewrite_lemma([unpack,nill] ,zero,t,no,axiom, [unpack,nil]).
rewrite_lemma ([unpack, Al zero, [[[not, [litatem,A]1]],

nn,axinm,Iunpack,nnt,litatnm}}.
rewrite_lemma ([unpack, [pack,Al]l ,A,t,no,axiom, [unpack, pack]).
rewrite lemma([count,zero] ,zero,t,no,axiom, count(zero)).
rewrite_lemma([count, [addl, Al],

[add1, [if, [oumberp,A], [count,A),zerol], t,no,axiom, count (add1)) .

rewrite_lemma ([addl, [subl,Al],

BMTP USER'S MANUAL 1.6. The Basic Environment

[if, [and, [numberp,A], [not, [equal A, zero]]] . A, [addl, zero]],

t.no,axiom, [addl, [subl]l]).
rewrite_lemma([equal, [addl,6A]l, [add1,R]],

[if, [numberp,A], [if, [numberp,B], [equal.A.B], [equal A, zero]],

[if . [numberp,B], [equal,zero,B] .t]).t.no.axiom, equal (add1)} .
rewrite_lemma{[subl, zerol ,zero,t, no,axiom, [subl,zero]l).
rewrite_lemma([addi,A], [addl,zero], [[[not, (numberp,Al]l],

no,axiom, type_restriction(subi)).
rewrite_lemma([subl,A], zero, [[[not, [numberp.A}]11].

no,axiom, [subl,not,numberpl) .
rewrite_lemma([subl, [add1 A]J],[if, [numberp,A] A, zero],

t.ne,axiom, [subl,add1]).

induction_lemma([lessp, [count, [cdr,Al]. [count, Al],
[[[1istp,Al]l],axiom,lessp(cdr)).
induction_lemma([lessp, [count, [car,Al], [count,A]],
[[llistp,Al]],axiom,lessp(car)).
induction_lemma([lessp, [count, [unpack,Al]l, [count,Al],
[[[litatom,Al], [[not, [equal,A,nill)]],axiom, lessp(unpack)) .
induction_lemma([lessp, [count, [subl,Al], [count, Al],
[[{numberp.Al]. [[not, [equal,A,zero]]]],axiom, lessp(subl)) .

elimination_lemma{axiom,elim({[car,cdr]),.
[implies, [1istp,Al, [equal, [cons, [car,A), [cdr,Al]l,Al]).
elimination_lemma{axiom,elim([unpack]),
[implies, [and, [1itatom,A], [not, [equal ,A,nill]),
[equal, [pack, [unpack,Al],Al]).
elimination_lemma(axiom,elim{[subil).
[implies, [and, [numberp,Al. [not. [equal ,A,zerol]],
[equal, [addl. [subl,All . All).

definition([zerop,Al. [or, [equal A, zero], [not, [numberp,Al1]).
definition([fix,Al, [1f, [numberp, Al ,A,zercl).
definition([plus,A.B], [if, [zerop.Al. [fix.B]. [addl, [plus, [subl,A] ,B]111).
definition([lessp.A,B].

[if, [zerop,B]l.f, [if, [zerop.Al,t, [lessp, [subl,Al, [sub1,B]111).
definition([count,Al,

[if, [numberp,A],

[if, [equal,A, zero],zero, [addl, [count, [subl,A]]]],

[if, [litatom, A],

30 —

1.8. The Basic Environment BMTPF USER'S MANUAL

[if, [equal,A,nil) , zero, [addl, [count, [unpack,A]]]],
[if, [listp.Al.
{addl, [plus, [count, [car,Al}, [count, [cdr,Al]]] ,zeroll]).

type_prescription(fcount, A),tp(4, 1)) .
type_prescription([lessp,A,B],tp(3,[1)).
type_prescription([plus,A,B],tp(4,[1)).
type_prescription{[fix,Al,tp(4,[1)).
type_prescription([zerop.Al,tp(3,[1)).
type_prescription([not,A],tp(3, [1)).
type_prescription([and|A].tp(3,[1)).
type_prescription(lorlA),tp(3,0])).
type_prescription((implies,A,B],tp(3, [1)).

nonrecursive ([zerop,Al) .
nonrecursive {[fix, Al).

recursive ([plus, A, Bl).
recursive([lessp.A,B]).
recursive ([count,Al).

measured_subset.([plus,A,B], [Al).
measured_subset([lessp,A,B], [A]).
measured_subset([lessp,A,B), [B]).
measured_subset([count, A), [A]).

induct.ion_template([plus,A, B], template ([A,B]/[A],
[([[[numberp,Al], [[not, [equal,A,zercl]]]->
[([[subt, Al ,B]/[[subl,A]]11)])).
induction_template([lesep, A B], template([A Bl /[A],
(¢{[[[numberp,Al]l, [[not, [equal A, zero]]1]->
[[[subl,A], [subl,B]]/[[subl,A]1]11)1)).
induction_template({lessp,A,B], template([A,B}1/[B],
[([[[numberp,B]], [[not, [equal ,B,zero]]]]->
[[[sub1,A], [subl,B]1/[[subl,B}]1121)).
induction_template ([count,A], template ([A]/[A],
[([[[litatom,Al]l, [[not, [equal,A,nil}]l]=>
[[[unpack,Al]/[[unpack,Al]]).
([[[1istp,A]))->[[[car,Al]/[[car ,Al], [[cdr ,A]1/[[cdr,Al]]),
([{[numberp,Al], [[not, [equal,A,zerolll]l->
[[[subl,Al]/[[subl,Al]]}1)).

BMTF USER'S MANUAL Il. Example: The Theorem reverse-reverse

il. Example: The Theorem reverse-reverse

Gprove

BMTP in Prolog V3.6 (Nov. 1884)

yes

| #= [revrev].

revrev consulted 198 words 0.26 sec.

yes

| 7= 2.

basic.env reconsulted 4006 words 1.62 sec.
defun reconsulted A5TT7 words 3.70 sec.

Definition append{x,y)

= if(listp(x).cons{car(x),append(cdr(x),y)),y)
is accepted.
Its type is OR(1listp,type_of(y)).
Definition reverse(x)

= if(listp(x) .append(reverse(cdr(x)),cons(car(x),.nil)),nil)
is accepted.
Its type is OR(listp,litatom).
Definition plistp(x)

= if(listp(x),plistp(cdr(x)),equal(x,nil))
is accepted.
Its type is OR(t,f).
revrev.env told.
defun.dmy reconsulted -1644 words 0.46 sec.
Theorem reverse_reverse (rewrite)

implies(plistp(x) ,equal(reverse(reverse(x)),x))

Option (h for help):
Proving. ..

Poured a conjecture into the simplification-pool.

yes
| - p.

32

1. Example: The Theorem reverse-reverse BMTF USER'S MANUAL

Conjecture waiting simplification
theorem reverse _reverse

implies(plistp{x).equal(reverse(reverse(x)),x))

yes
| #- q.

Conjecture theorem reverse_reverse
implies(plistp(x),equal(reverse(reverse(x)).x))

Simplifying. ..

Poured a conjecture into the heuristics-pool.

yes
| 7= q.

Conjecture theorem reverse_Teverse
implies(plistp(x),equal (reverse(reverse(x}),x))
Trying heuristic rewrite...

Poured a conjecture into the induction-pool.

yes

| - q.

Conjecture theorem reverse_reverse
implies(plistp(x),equal (reverse(reverse(x)), x))

Trying induction...

The scheme:

and (implies (not(listp(x)) .P(x)),
implies (and (listp(x) ,P(cdr(x))) .P(x)))

which accounts for
reverse(x)
is subsumed by the scheme:

and (implies (not(1istp(x)) .P(x}).
implies (and (1istp(x) ,P{ecdr(x))) ,P(x)))

which accounts for
plistp(x)
getting a new scheme:

and (implies (not (1istp(x)) ,P{(x)),

— 33 —

BMTP USER'S MANUAL 1. Example: The Theorem reverse-reverse

implies(and(listp(x) ,P(cdr(x))),.P(x)))
which accounls for
(plistp(x).reverse(x))
Option (h for help):
We will induct according to the following scheme

and (implies(not(listp(x)) .P(x)).
implies(and(1istp(x) ,P(edr(x))),P(x)))

which accounts for
(plistp(x),reverse(x)}
Base Case

Poured a conjecture into the simplification-pool.
Induction Step
Poured 2 conjectures into the simplification-pool.

yes
| 7= p.

Conjecture waiting simplification
base case
theorem reverse_reverse

implies(and (not(listp(x)),plistp(x)),
equal (reverse(reverse(x)), 1))

Conjecture waiting simplification
induction step-1
theorem reverse_reverso

implies(and(listp(x) ,not(plistp(edr(x))).plistp(x)),
equal (reverse (reverse(x)),x))

Conjecture waiting simplification
induction step-2
theorem reverse _reveree

implies(
and(listp(x),
equal (reverse (reverse (edr(x))) ,cdr(x)),
plistp(x)),
equal (reverse(reverse(x)) ,x))

yes
I 7= 1.

Conjecture basc case

II. Example: The Theorem reverse-reverse BMTFP USER'S MANUAL

theorem reverse_reverse

implies(and (not (listp(x)),plistp(x)),
equal (reverse(reverse(x)),x))

Simplifying. ..
Option (h for help): ¢
Under the assumption
and (not.(1istp(x)) ,not(equal (reverse(reverse(x)).x)))
expanding plistp(x)
we rewrite the literal

not (plistp(x))
to
not (equal (x,nil))

Under the assumption
equal (x,nil)

expanding reverse(x)
expanding reverse(nil)

the literal

equal (reverse (reverse(x)),x)
15 true.
The conjecture is true.

Conjecture induction step-1
thegrem reverse _reverse

implies(and (1istp(x) ,not.(plistp(edr(x))) plistp(x)),
equal (reverse (reverse(x)) .x))

Simplifying. ..
Under the assumption

and (not (plistp (cdr (x))),
listp(x),
not (equal (reverse (reverse(x)) ,x)))

expanding plistp(x)
the literal
not(plistp(x))

is true.

— 35 —

BMTP USER'S MANUAL I1. Example: The Theorem reverse-reverse

The conjecture is true.

Conjecture induction step-2
theorem reverse_reverse

implies(
and (Qistp(x),
equal (reverse (reverse (cdr (x))) .cdr(x)),
plistp(x)),
equal (reverse(reverse (x)).x))

Simplifying. ..
Under Lhe assumption

and (equal (reverse (reverse (cdr (x))),edr(x)),

listp(x),
not (equal (reverse (reverse(x)).x))})

expanding plistp(x)
we Tewrite the literal

not.(plistp(x))
to
not (plistp(cdr (x}))

Under the assumption

and (plistp (edr(x)),
equal (reverse(reverse(edr(x))),cdr(x)),

listp(x})
expanding reverse(x)
we rewrilte the literal

equal (reverse(reverse(x)) .1}

Lo
equal (reverse (append(reverse (cdr (x)), cons (car (x) ,nil))),x)

Foured a conjecture into the simplification-pool.

Conjecture simplified
induction step-2
theorem reverse_reverse

implies(
and(listp(x),
equal (reverse (reverse (cdr (x))) ., edr(x)).
plistp(edr(x))),
equal (reverse (append (reverse (edr (x)), cong(car (x) ,nil))),x))

Simplifying. ..

— 35 —

Il. Example: The Theorem reverse-reverse BMTP USER'S MANUAL

Poured a conjecture into the heuristics-pool.

Conjecture simplified
induction step-2
theorem reverse_Treverse

implies(
and (listp(x),
equal (reverse (reverse (cdr (x))) ,edr(x)),
plistp(edr(x))),
equal (reverse (append (reverse (cdr (x)) , cons (car (x) ,nil))}).x))

Trying heuristic rewrite...
We now replace x by cons(a,hb)
to eliminate (ear(x),edr(x))
Poured a conjecture into the simplification-pool.
Conjecture destructor(s) replaced by [a,b]
simplified
induction step-2

theorem reverse_reverse

implies(
and (equal (reverse(reverse(b)),b) ,plistp(b)),
equal (reverse (append (reverse(b) ,cons{a,nil))),cons(a,b)))

Simplifying. ..
Poured a conjecture into the heuristics-pool.
Conjecture destructor(s) replaced by [a.b]

simplified

induction step-2

theorem reverse_reverse

implies(

and (equal (reverse (reverse (b))} ,b) ,plistp(b)),

equal (reverse (append (reverse(b) ,cons(a.nil))) .cons(a,b)))
Trying heuristie rewrite. . .
We now use the above equality hypothesis by cross-fertilizing

reverse(reverse(b))
for
b

and throwing away the eguality.

Poured a conjecture into the simplification-pool.

Conjecture used an egquality

BMTP USER'S MANUAL I1. Example: The Theorem reverse-reverse

destructor (s) replaced by [a,b]
simplified

induction step-2

Lhecrem reverse_reverse

implies(
plistp(b),
equal (reverse (append (reverse(b) ,cons{a,nil))},
cons (a,reverse (reverse(b)))))

Simpliflying. ..
Poured a conjecbure into Lhe heuristics—pool.

Conjecture used an equality
destructor(s) replaced by [a,b]
simplified
induction step-2
theorem reverse_reverse

implies(
plistp(b),
equal {reverse (a.pp&lld(reuarsa(b] ,consfa,nil)}),
cons (a,reverse(reverse(b)))))

Trying heuristic rewrite...
We generalize the conjecture by replacing

reverse(b)
by
C

Poured a conjecture into the simplification-pool.

Conjecture geperalized with [c]
used an equality
destructor (s) replaced by [a,b]
simplified
induction step-2
theorem reverse_reverse

implies(
plistp(b).
equal (reverse(append(c,cons(a,nil))), cons(a,reverse(c))))
Simplifying. ..
Poured a conjecture into the heuristics-pool.
Conjecture generalized with [c]
used an equalily

destructor(s) replaced by [a,bl
simplified

Il. Example: The Theorem reverse-reverse BMTP USER'S MANUAL

induction step-2
theorem reverse_reverse

implies(
plistp(b),
equal (reverse (append (c,cons(a,nil))) ,cons(a,reverse(c))))

Tryiog heuristic rewrite. ..
We climinate the irrelevant term(s)
plistp(b)
Foured a conjecture into the simplification-pool.

Conjecture irrelevance(s) eliminated
generalized with [c]
used an equality
destructor (s) replaced by [a,b]
simplified
induction step-2
theorem reverse_reverse

equal (reverse (append(c,cons(a,nil))),cons(a,reverse(c)))
Simplifying. ..
Poured a conjecture into the heuristics-pool.

Conjecture irrelevance(s) eliminated
generalized with ([c]
used an equality
destructor (g) replaced by [a.b]
simplified
induction slep-2
theoTrem reverse_Teverse

equal (reverse (append (c,cons(a,nil))),cons(a,reverse(c)))
Trying heuristic rewrite...

Foured & conjecture inteo the induction-pool.

Conjecture irrelevance(s) eliminated
generalized with [c]
used an equality
destructor (s) replaced by [a,b]
simplified
induction step-2
theorem reverse_reverse

equal (reverse (append(c,cons(a,nil))), cons(a,reverse(c)))

Trying induction. ..

BMTP USER'S MANUAL II. Example: The Theorem raverse-reverse

The scheme:

and (implies (not(listp(c)) P(c)).
implies (and (listp (e) ,P(edr(e))) P(e)))

which accounts for
append (¢, cons(a,nil))
is subsumed by the scheme:

and (implies(not(listp(c)) .F{c)),
implies (and (1istp(c) ,P{ecdr(c))) P{c)})

which accounts for
reverse(c)
getting a pnew scheme.

and (implies(not (Qistp(el}) .P(c)).
implies(and (listp(c) ,P{cdr(c))).P(c)))

which accounts for
(reverse(c) ,append(c,cons(a,nil)))
We will induct according to the following scheme

and (implies (not (1istp{c)) ,P(c)),
implies(and (listp(c) ,P(cdr(c))) .P(c)))

which accounts for
(reverse (c) ,append{c,cons(a,nil)))
Base Case
Poured a conjecture into the simplification-pool.

Induction Step
Poured a conjecture into the simplification-pool.

Conjecture base case
irrelevance(s) eliminated
generalized with [e]
used an equality
destructor (s) replaced by [a.b]
simplified
induction step-2
theorem reverse_reverse

implies(

not(listp(c)),
equal (reverse (append(c,cons(a,nil))),cons(a,reverse(c))))

1. Example: The Theorem reverse-reverse BMTP USER'S MANUAL

Simplifying. ..
Under the assumption
not. (listp(c))

expanding append{c,cons(a,nil))
expanding reverse(cons{a,nil))
applying the axiom: [cdr,cons]
expanding reverse(nil)
applying the axiom: [car,cons]
expanding append(nil,cons(a,nil))
expanding reverse(c)

the literal

equal (reverse (append(c,cons(a,nil))),cons(a,reverse(c)))
15 true.
The conjecture is true.

Conjecture induction step
irrelevance(s) eliminated
generalized with [c]
used an equality
destructor (s) replaced by [a,bl
simplified
induction step-2
theorem Teverse_reverse

implies(
and
listp(c),
equal (reverse (append (edr (¢) ,cons{a,nil))),
cons (a,reverse(cdr(c))))).
equal (reverse (append(c,cons(a,nil)}),cons(a,reverse(c))))

Simplifying. ..
Under the assumption

and (
equal (reverse (append(cdr(c) ,cons(a,nil))),
cons (a,reverse(cdr(cl)))).

listp(e))

expanding append{c,cons(a,nil))

expanding reverse (cons (car {(¢) ,append (edr (c) ,cons{a,nil))))
applying the axiom: [edr,cons]
applying the axiom: [car,cons]

expanding reverse(c)

we rewrite the literal

— 41 —

BMTP USER'S MANUAL Il. Example: The Theorem reverse-reverse

equal (reverse (append(c,cons(a,nil))),cons(a,reverse(c)))
to
equal(
append (reverse (append (edr (¢) , cons(a,nil))),
cons (ear (¢) .nil)),
cons (a,append(reverse (edr (¢)), cons (ear(e) ,nil))))

Poured a conjecture into the simplification-pool.

Conjecture simplified
induction step
irrelevance(s) eliminated
generalized with [c]
used an equality
destructor(s) replaced by [a,b]
simplified
induction step-2
theorem reverse_reverse

implies(
and(
listp(c),
equal (reverse (append(cdr(c) .cons(a,nil))),
cons(a,reverse(cdr(c))))),
equal (
append(reverse (append (cdr(c) ,cons(a,nil))).
cong{ecar(e) ,nil)),
cons(a, append(reverse (cdr (¢)), cons(ear(c) ,nil1)})))

Simplifying. ..
Poured a conjecture into the heuristics-pool.

Conjecture simplified
induction step
irrelevance(s) eliminated
generalized with [¢]
used an equality
destructor (s) replaced by [a,bl
simplified
induction step-2
theorem reverse_reverse

implies(
and (
listp(c).
equal (reverse (append(cdr (c) ,cons(a,nil))),
cons (a,reverse(cdr(c))))),
equal (
append (reverse (append (cdr(c) ,cons(a,nil))),
cons (ear () ,nil)),

— 4P —

II. Example: The Theorem reverse-reverse BMTP USER'S MANUAL

cons (a,append(reverse (cdr{c)) ,cons(car (¢} ,nil)))))
Trying heuristic rewrite...
We now replace c by cons{d,e)
to eliminate (car(e),cdr(c))
Poured a conjecture into the simplification-pool.

Conjecture destructor(s) replaced by [d, el
simplified
induction step
irrelevance(s) eliminated
generalized with [c]
used an equality
destructor (s) replaced by [a,b]
simplified
induction step-2
theorem reverge_Treverse

implies(
equal (reverse (append (e, cons(a,nil)}) ,cons(a,reverse(e))),
equal (append (reverse (append(e,cons(a,nil))),cons(d,nil)),
cons (a,append (reverse(e) ,cons(d,nil)})))

Simplifying. ..
Poured a conjecture into the heuristies-pool.

Conjecture destructor(s) replaced by [d,e]
gimplified
induction step
irrelevance (s) eliminated
generalized with [c]
used an equality
destructor (s) replaced by [a.b]
simplified
induction step-2
theorem reverse_reverese

implies(
equal (reverse (append (e, cons (a,nil))) ,cons(a,reverse(e))).
equal(append{revarse{nppend(e,cons(a,nil]]),cnns(d,nil}},
cons (a, append (reverse (e) ,cons{d,nil})33)

Trying heuristie rewrite...
We now use the above equality hypothesis by cross-fertilizing

cons (a,reverse(e))
for
reverse(append(e,cons(a,nil)))

— 43 —

BEMTP USER'S MANUAL Il. Example: The Theorem reverse-reverse

and throwing away the eqguality.
Poured a conjecture into the simplification-pool.

Conjecture used an eguality
destructor (s) replaced by [d.el
sgimplified
induction step
irrelevance (s) eliminated
generalized with [c]
used an equality
destructor (s) replaced by [a,b]
simplified
induction step-2
theoTem reverse_reverse

equal (append (cons(a,reverse(e)),cons(d,nil)),
cons (a,append(reverse(e) ,cons{d,nil))))

Simplifying. ..

expanding append(cons(a,reverse(e}),cons(d,nil))
applying the axiom: [car,cons]
applying the axiom: [cdr,cons]

the literal

equal (append (cons(a,reverse(e)),cons(d,nil)),
cons (a,append (reverse (e) ,cons(d.nil))))

is true.

The conjecture is true.

Q.F.D.

Theorem reverse_reverse (rewrite)
implies(plistp(x),equal (reverse(reverse(x}) ., x))

is added.

yes
| ?- halt.

[Prolog execution halted]

EXIT
o

— 44 —

IIl. Commands Summary BMTP USER'S MANUAL

111. Commands Summary

I1I.1. Top-level Commands

shell(S5:R/BTM?). .. . define shell
definition{(F=RB). define function
lemma{H=B) addlemma
axiom(H=B). e e add axiom
theorem(H=B) provetheorem
abbrev(X=Y). define abbreviation

111.2. Environmental Commands

(F1. consult problem file
in{(F. i;nputenvironment file
eut(FY. output environment file

111.3. Prover Commands

............ break
........... . toggle continue mode
.. toggletracing (rewriteexpand)
..... give up the proof (but store as a lemma)
...... help
display remaining conjectures
......... process next conjecture
......... repeat q.
e e e e e e+ . o« . ftrace
........ toggle VT100 mode
........... . dizplay remaining #commands
process next #-command

o repeat y.

I R = B+ B = = i = BT T =

I11.4. Proof-step Options

........ . . . abort
.......... . . . break
e e e e e e e e e e toggle continue mode
............. toggle tracing (rewrite expand)
........ give up the proof (but store as a lemmal)
............. help

............ display remaining conjectures
e e e trace
.......... toggle VT100 mode
...... accept command

Q< o= MM o a0 oTP

