ICOT Technical Memorandum: TM-0084

Th-(54

GDLO @ A Grammar Description Language
Based on DCG

Tarou Morishita (Sharp Corp.)
and
Hideki Hirakawa

November, 1984

C9E4 1COT

Mita Kokusai Bldg. 21F (031 456-319] ~5
I :D | 1-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokya 108 Japan

Institute for New Generation Computer Technolog;

GDLO: A Grammar Description Language Based on DCG

Tarou MORISHITA
SHARP Corp. Computers and Systems Laboratory

Hideki HIRAKAWA
Institute for MNew Ceneration Computer Technelogy (ICOT)

Abatract

This report proposes an grapmar description language for BUP system,
Tt 1is called "Grammar Description Languapge 0" which is an extension of
DCG formalism., In this langusge, the data structures for grampar
category definitions and grammar rule definitions are described
separately. This reinforpes the readability and the modifiability of
the grammar description. Consequently, it improves the efficiency of
grammar development, '

1. Introduction

Bottom-up parsing system based on logic programming languzge (BUP
[11) is becoming practical with the addition of a high-speed processing
mechaniam [2] and various functional expansions [3],[4]. The BUP
system is also being enhanced to become a total system by adding
morphological processing and a variety of other program components.
BUP system is the basic component of our syntactie analyzer. The EUP
system adopts the Definite Clause Grammar(DCG) [5] as its grammar
description framework. We consider the DOG formalism is the
object-level language of the higher-level grammar description language
for the parsing system.

Thus far, much effort has been made to achieve a DCG-based f[ramework
for higher-level grammar deseription. Typical examples are the
implementation of XG [6] and that of LFG [T] on the BUFP system [E].
More pecent ones include an effort to deseribe a prammar by ESP [111, a
logie programming language with object-oriented functions [9], and that
to implement the generalized phrase structure grammar (GPSG) [10].
Grammar Description Language € (0DLO)}) to be described as a
grammar-describing framework in this report is also one of these
approaches.

In this report, DCG has been reviewed from the standpoint of an
end-user-oriented Erammar deseription form suitable for grammar
developers, and GDLO which is an extension of DCG formalism is proposed
to make some improvements to the DCOG description form.

Fage 2

Section 2 describes the problems of the DOG format which were an
incentive to develop GDLD. Section 3 shows the analysis of the DCG
formalism. In Section 4, the framework of GDLO is introduced.
Finally, Section 4 overviews GDLO-to-DCG translation and provides some
translation examples.

2 Problems of DCG Formaliam

In implementing a grammar based on context free grammar {CFG) with a
logic programming language, DCG formalism is a very powerful tool for
deseribing a grammar. The grammar written in DCG format directly
corresponds to the Prolog program. This guarantees the effieiency of
the parsing (program execution). MAlse the augmentations of CFG by the
arpument attachment and the extra-condition inm DCG provides the
generality and deseriptive power,

On the other hand, there are some requirements of grammar-describing
fromeworks from the view point of grammar development. They are high
descriptive power, efficiency, readability and mwodifiability. In DOG,
a general framework for predicate-call and argument attachment
guarantee the high desecriptive power, while no constraint on the ways
of calling predicates and writing arguments cause its readability and
modifiability to degrade. Problems of the DCC format are summarized
below.

(1) A11 grammar data is passed as arguments of a grammar category.

In the development of large-seale grammar, difficulties in
debupging are expected to increase as the volume and complexity of
the grammar increase. In the present DOG framework, however, since
all grammar data necessary for 2 grammar category is described in
the argument portion of the category, all data must be expreased as
arguments in writing rules. As a result, the correction er
modification of a grammar in DCG formalism is not so easy task.

{(2) Mo constraint on the way of describing arguments,

Ian DCG, the constraints on the CFG rules and the
structure-building procedure are described in the argument part of
a prammar category and in the extra-condition part. Generally,
arguments with various functions exist according to various Lypes
of constraints. PFurthermore, due to the argument passing problem
menticned in (1), an argument will often perform different roles
depending on rules. In contrast, in the DOG framework, i1t 1i=s
difficult to identify and clarify data usage due to the concept of
data types.

Page 3

3 Analysis of DCG Arguments

The problems of DCG formalism are mainly caused from the treatment of
arguments. It might be helpful to examine and analyze how DCG
argpuments are chosen for a particular purpose before explaining GDLO
fremework, This section analyzes DCG arguments, while considering
whether there is any effective reatrictive description means for DCG
arguzents. The ChatB0 grammar [6] is used as the main reference.

3.1 Argument rolls

A3 described in the previous section, arguments Pprovides powerful
desceriptive power. However this featuwre degrades the readability of
DCE because the role of the argument is not specified explicitly.
Basically the argument is used for representing the fellowing roles.

(1) Some gremmatical inforeation such as attributes of
grammar categories

{2} Some control information

{3) The output of the parsing part

The examples of these roles are described in the next section with
the analysis of the grammar.

3.2 Usage of DCG Arguments

Arguments are used for various purposes. The following part shows
the usages of arguments.

1.2.1 Arguments for describing constraints

Arguments used in describing constraints are defined as "An argument
is used for describing a constraint, if the grammar without the
arpument accepts the grater number of sentences than the original
grzmmar®, These arguments can be further classified as follows:

(1) Arguments which are used for checking the wvalue of an attribute
between calegories,

{2) Arguments which are used to pass an attribute from a child node
to its parent node. Theae arguments can be considered an
auxiliary means to describe those in group <1>. When the
featuresz of the head category of an argument are inherited in a
complex category at a higher bar level, the argument belongs to
this group.

{3) Arpuments which works as a rule selector., When the value of an
argument determines the rule to be subsequently selected, the
argument can function &s a rule selecteor. The following example
shows rule selecter case.

Fage b

np_compls(proper,_,_,[],_,Nil) ==> {empty(Nil)},
np_compls{common, Agmt, Case, Mods, Setl Mask}
=3
fnp_all(NPALL)},
np_mods{Agmt, Case, Rel, Mods, Set0,Set, NPALL ,Mask0),
relative(Agmt, Rel, Set,Mask0,Mask).

(From Chat80)

ChatB0 has a constraint te prohibit proper nouns from having a post
modifier; the deseription of this constraint is shown above. The
first argument of 'np compls' is passed from ‘'np head' in the 'np!
reduction rule. its walue depends upon the type of 'np_head'. That
is, it has 'proper' when it is a common noun. Such an argument can be
called a rele selector, since the rule it subseguently selects depends
upon the passed value.

3.2.2 Arguments for heuristic control

Structure analysis based on a logie programming lanpuage uses &
number of Frammar descriptions aimed &t increasing processing
efficiency., Heuristic control is a way to control the application of
rules for increased processing efficiency and other purposes. The
arguments wused 1in describing heuristic control are defined a3
Parguments whose existence dose not affect a set of sentences to be
accepted, and whose aim iz mainly to control the application of rules,"

{1) Pruning

To prevent the branch which eventually fails from being searched, a
rule 1is chozen according to the wvalue of a previously determined
argument. Pruning differs from rule selection because the result
(success or fail) of the rule application is previocusly known in
pruning.

Exampl e

verb(....}) =--» verb_form(Root0, Time+fin, Agmt, Role),
rest_verb(Role, Root0,Root, Voice, Aspect),
rest_verb{aux, have, Root, Voice,[perf:Aspect]) =-=->
verb_form(RootD, past+part,_,_J,
have(Rootd, Root, Voice, Aspect).
rest_verb(aux, be, Root, Voice, Aspect) -=>
verb_form(Rootl, Tensel,_,_J,
be (Tensel , Root(, Root, Voice, Aspect).
rest_verb{aux,do, Root, active,[]) ==>
verb_form{Root,inf,_,_).
rest_verb(main, Root, Root,active,[]) ==> [].

{From Chat80)

Page &

The first argument 'Role' of 'rest_verb' shows whether the first verbh
is an auxiliary verb or a main verb. The existence of 'Role', however,
does not affect a set of verb portions to be accepted, because the
value of the second argument 'Root0' controls rule selection and 'Role'
is pever passed to an upper node verb. Therefore, if" 'Role = aux® 1is
defined in 'verb_form', the fourth rule of 'rest_verb' iz pruned, while
if 'Role = main' is defined, the first to third rules of 'rest_verb'
are pruned, While examples of pruning are quite limited, arguments for
deseribing constraints sometimes show a pruning-like operation. Some
examples are shown below.

guestion(QCase,subi,S) --> [subj_case(QCase)},s(S).
question(QCase,NPCase,S) --» fronted_verb(QCase,NPCase),s(3).
subj_case{subj).

subj_case(undef),

{From ChatB80)

'Qease' is an argument to which the value {'subj'/'compl'/'undef') is
set during the analysis of interrogative phrases, Take the senlLence
"whow do you like?" is an example. In this case, analysis of ‘'when'
causes ‘compl' to be assigned to 'QCase’'. Then 'subj_case(QCase]!'
performs pruning on the first rule of ‘'guestion'. Since analysis
assuping ™do you like"™ as "s" always fails, a correct rule can be
selected for & correct sentence without 'QCase'. This shows Lhat
'QCase! can provide a pruning-like operation, although it is=s
doubtlessly an operation to describe constraints. Az this example
shows, =ome DCG arguments may have various roles according to a
particular case,

{2) Control to restrict the tree shape

In frequently used techniques, instead of generating a multivoeal
parse tree a single fixed-form tree is output as the analysis result
for improved efficiency, and "attachment' is determined in & subsequent
stage. Tne ChatB0 gremmar elso has a built-in attachment control which
outputs the shape of & parse tree in the Right Most Normal Form {RMNF).

Vhen attachment ambiguity exists, this RMNF control restricts the
shape of a parse tree by controlling the application of rules so that
modif'ying phrases will always attach to lower nodes. If, for example,
a preposition phrase can qualify both the entire verb phrase and a
particular noun phrase in that verb phrase, the RMNF econtrol always
attaches it to the lower nounphrase node. At this time, however, it
leaves for the subseguent stages the information to show that the
preposition phrase can also gqualify the entire verb phrase. The
following is the EMNF control deseription for the "np' post modifier.

np_mods{ Agmt, Case,Mods0,[Mod:Mods], Setd, 3et,_,Mask)} -->
np_mod(Agnt, Case,Mod, Setl ,MaskD) ,
{trace(Trace),plus(Trace,Mask0, Mask1),
minus(Setd,Maskl,Set1),plu=s{Maskl,Set0,Mask2)},

Page 6

np_mods{ Agmt, Case, Mods0 ,Mods, Set1,Set, Masks ,Mask).
ng_modﬂ{_d_,Hads,Hmda,Set,Set.Hask.Hask} -=>[1.

{From ChatBO)
The detail of the RMNF control of ChatB0 is described in [6].
3,2.3 Arguments for forming a grammar structure

Arguments are used for bullding structures which is an output of
parsing Pprocess. The output structure varies according to the purpose
of the system. In CHAT8O the output of the syntactic parsing part
contains both grammatical and semantic information.

3.3 Arguments in Hules

In addition to the classification of the roles of the arguments, wWe
pan classify the arguments from the view point of the relation between
the arguments and the rule in which the arguments appear. Generally
speaking the arguments are claszified into two types. One is the
arguments which are related to the rule and the others are not related.
We consider that the mixed use of these arguments degrades the
readability of DCG formal ism.

3.3.1 Argument significant to the rule

The first type includes arguments which have some meaning to the
rule. These includes the arguments which unified with other variables
for attribute checking, those which are instantiated, and those which
are the target of general predicate call.

The following part shows some examples of argument use mainly taken
from the ChatB0 grammar.

np{Num) =-> det{Kum), noun(Num).

This example shows the attribute matching between categories. The
matched "Hum" between 'det' and 'moun', however, can be interpreted as
checking for attribute matching between them, while the matched "Hum"
between 'noun' and 'np' can be interpreted as attribute passing to
upper nodes.

s(...) ==> subj{Subj,Ammt, Type),
verb{ Verb, Agnt, Type, Voice),
subj(there, Agnt,_+be) =--> [there].
subj(Subj, Agmt,_) —-> {s_all(SALL}},
np{Subj,Agmt,aubj,_,aubj,SALL,_}.

The argument 'Type' indicates the type of a verb ('be', "have',
‘tpans', ete.) and its value is determined in the reduction rule of the
verb., The first rule in the above example shows a constraint which
represents, if 'aubj' is a word tthere', the verb following it must ba

Page T

of type 'be', In this case, 'Type' is not an attribute inherent in
tsupj', but has been passed from the verb, to help describe a
constraint spanning more than cne rule, It oceurs sometimes that an
attribute of a category is passed to ancther category as an argument
and its value is restricted by another rule whieh is apparently
unrelated to the original category.

3.3.2 Arguments not significant to the rule

The DG rules contain arguments wWwhich have no significant meaning to
the rules. One of this type of arguments is the argument whieh has
been passed from other rules and i= used only in passing data to
another category within its rules. The following rules show thisz type
of arguments.

np_mod(_,Case, PP, 3et,Mask) --» pp(PP, Case, Set,Mask).
(From ChatB0)

‘np_mod' is the category showing tpost_modifier' of 'np'. The
argument 'Case' opassed in this rule represents the rule for 'np' and
its value ('compl' or 'subj') was determined when ‘'np' was anpalyzed.
'np_mod' receives the argument 'Case’ passed from the parent node "np',
and 'pp' passes the argument to "np' of a child node. This represents
the following constraint "If the role of the top node 'np' has been
previously determined as 'subj', the role of 'np! whieh oeccurs in 'pp'
(which 1is in the post modifier of top 'np') doesn't have 'compl' role
but 'subj' role®™. As lar as the above rule is concerned, however, such
information cannct be obtained frem the argument 'Case' and the
argument is used only for data passing in the rule.

The =zecond type of the arguments not significant to the rule is the
arguments which are used to describe some multiple reduction rules of
the same category and is not used for the remaining rules. In this
case, independent or anonymous variables which are not influenced by
any action are generated in a rule, It may be considered thal they are
generated inevitably, because generally the reduction rule for a
category is defined by more than one rule.

np(np(Agat, Pronoun,[]), Agnt, NPCase, defl,_, Set, Nil)} ==>
{is_pp(Set)},
pers_pron(Pronoun, Agnt, NPCase),
{empty(MNil)}.
np({np{Agot, Kernel ,Mods) , Agmt, NPCase, Def, Role, Set, Mask) -->
{is_pp(Set)},
np_head(Kernel, Agnt, Def+Type, PostMods, Mods),
{np_all({KPALL)},
nn_enmpls{Type,Agmt,Rule,Pnstmuds,HPﬂLL,HaakJ.
np{part{Det, NF),3+Number,_, indef, Role, Set, Mask) =->
[is pp(Set)},
determiner{Det, Number, indef) ,
[of],

Page B

{s_all(SALL)},
np{HP,3+p¢,compltprep},def,ﬁulﬂ,SALL,Phﬁk}.

(From CHATBO)

The argument 'NPCase' of the parent node is pused only in the first
rule, it has no dependency relation in the other rules, This indicates
that 'epasze' ('ecompl' or 'subj') of NP is checked only in the grammar
rule 'perspron'.

In reading DCG, it is difficult to grasp the relation of passed
argpument through predicate call whether the argument is inherent in the
category or not. This is particularly true for the description of the
so-called "long distance dependency", in which data validity is checked
at a node positioned away from the node to which the argument is first
passed. This is a problem concerning the grammatical framework of CFG
in which the entire grammar cannot be viewed from a single grammar rule
since individual rules can work on a loeal basis. This places a limit
on the DOG description. If the DCG framework is affirmed, however,
arguments can be regarded as a simple, powerful means to achieve long
distance dependancy.

4. Framework for GDLO

4.1 Basic Explanation

T0 avoid a decrease in the grammar development efficiency due to the
DOG-related problems and to achieve 2 user-friendly grammar
desceription, GDLO provides a framework tLhat allows the portion for
defining and managing grammar categories and that for defining grammar
rules to be separately described. This means that the data structure
for the grammar category is explicitly described and the access to this
data structure is explicitly expressed in the grammar rules. By
introducing this feature the role of an argument is easzily identified
and only the arguments which is not significant to the rule are written
as the explicit arguments of the rule. The other feature of GDLO is
the usze of the macro notation. This makes the users to writa compact
rules which are easy to read.

GDLO does not provide an approach for forming special structures,
such as LPG's F=structure, or z method to access them, This is because
the DOC based system provides an efficient on-line parsing. In
contrast to LFG, GDLO can be a generalized description language for
forming the C-structure which represents a surface structure.

{1) Grammar-category-defining portion
GDLO provides a description field o define the attributes inherent

in each grammar category., Also, to introduce the GP3G concept of "head
feature convention", it is equipped with a description field to specify

Page 9

a ocategory as the "head" of another category. This portion for
defining grammar categories allows DCG arguments to be abstracted.

{2) Grammar-rule defining portion

This is the main portion of grammar description. The framework for
describing rules is basically the same as that for the conventional
DCGs, except for the following points which are required to add
generzlity to a description:

1) Only one extre-condition is allowed.

?) Some macro notations are introduced for grammar attribute
computation,

This two-part framework has achieved two features. One i3 that the
arguments are separated from grammar categories. The other is that the
CFG rule portion is clearly separated from the constraint-describing
portion.

4.2 GDLD Description

The gramnar description part of GILO consistes of two elements:
category definitions and grammar rules.

4.2.1 Category definition pert
Al] grammar categories are defined in the fellowing format:

category(category_name,
head_of : category_namel,
attribute: attributel,attributez,...,attributen).

tpatepory', a unit clavse of Prolog, is a reserved word to show the
deseription of 2 category delinition. Fach desecription element is
explained as follows:

'catepory_name': the name of & grammar categoery to be defiped,

tattributel ... attributen': A sequence of grammar infermatien
names contained in 'eategory_name'.

'category_namel': The name of a grammar category which has
'category' name as itz head category.

The attributes written in the "attribute:' field must be the names of
data items which can be considered information inherent at least in a3
given category. There is no restriction on describing attributes, the
user ocan define what is needed as attributes. If the user can find no
attribute for that category, this field can be left blank.

The user can specify in the 'head of' field the name of any category
other than a given category. Multiple names cannot be specified. This
deseription has been introduced tc specify a cetegory positioned among

Page 10

categories of similar type at different bar levels as the head of
ancther categery to prevent the same attribute name from being
repeatedly specified. The above definition shows that !'category_name'
is the head category of 'ecategory_nameQ'. Note that all the attributes
defined in the ‘'attribute:' field in the ecategory definition for
‘category_namel' are alsc defined as attributes of 'category_name'.
The attributes of a oecategory consist of those defined in the
lattpibute:! field in the category definition for that category and
those defined in the 'attribute:' field of the category definition for
‘category_name('., On the other hand, the zttributes of a category
specified by ‘'category_namel' also consist of those for that category
and those defined in the 'attribute:' field in the categery definition
for 'category_name',

While 'head of' can be defined only with a binomial relation, a
‘head of' hiersrchy can be estzblished among more than two categories.
Tn a multi-level ‘head of' hierarchy, however, duplication of an
attribute name is prohibited.

Fxample of 'attribute' use

categoryi{np,

attribute: nue,per,word}.
category{noun,

head_of : npl.

The attributes 'num’, 'per', and 'word' need not be specified in the
category definition of 'nmoun'.

Example of 'head_of!

categoryinp,

attribute: num, per,word).
category(noun,

head_of : np,

attribute: type).
category(pronoun,

head_of: np,

attribute: anaphor)

In this pasze, each category has the following attributes:

pronoun ==- num, per,word, anaphor
noun -—= num, per,word, type
np --- pum, per,word, anaphor, type

The framework of category definitions looks like defining the
'category elass'. In object-oriented languages, class has the
functions to handle 'elass method! or "inheritance'. We discussed the
use of these functions to improve the deseriptive power of GDLO.
Bowever, we have not introduced them, because of' these reasons:

Fage 11

1) Assume that the class method iz an inkerent procedure to
determine the attributes of a category. Then, the part for
deseribing grammar rules overlaps the part for describing a class,
because attribute caleulation cannot be separated from rules. For
example, deseribing methods only for complicated constraints
requires a large nurber of reles and thus may result in a
compl icated description. In contrast, the ESP-bazed
object-oriented parser [2] defines the rule itself as a method in a
'rule class'.

2) There were few examples of procedure-related inheritance,
partly because the method definition was not introduced.

%) Hierarchical relations in knowledge representation, such as
'is a' and ‘'part_of', do not adequately match a set of grammar
categories, For example, although the relation 'noun is a np' is
valid, if desired information is a feature inherent in noun passed
to '"np', an "instance' node must be accessed from an upper level
node,

4.2.2 Grammar rule part
A grammar rule is written in the following format:
clArgs) —=» ci(Args1),...,co(Argsi),

{extra-condition{=Frolog programs with macros)}.

The argument field is optionzl, and ci (i>1) represents a terminal or
non=-terminal sywbol.

(1) Handling arguments
The attributes defined in the category definition for & Egiven
category cannot be written in an argument of a grammar category. This
restriction has been set to distinguish the data used in data passing
from the inherent data.
(2) Handling extra-conditions
In principle, a single extre-condition is written at the end of a rule
te perform the entire caleulation of attributes., The following macro
notations are available for attribute calculation:
1) category x ! attribute y
'pategory x' is a category name and 'attribute y' is an attribute
name defined in the category definition for 'ecategory x'. It ean
be handled as a Prolog variable,
2} category x <= category y : [attribute 1,..., attribute n]
This is equivalent to the following:

category x ! attribute 1 s category y ! attribute 1

Page 12

category x | attribute n = category y | attribute n

This notation is used to pass an attribute of a child node to iis
parent node. The following notation can be used to pass all
attributes of a child node to its parent node:

category x <= category ¥
3) category x <=> category y : [attribute 1,..., attribute n}

This macro notation can be expanded in the same way as notation
b, It is used toc check the dupliecation of attribute names among

child nodes.

Notations 2) and 3) shows attribute passing and duplication checking
and can be described with ordinary equality. Prolog's cut ! cannot be
used in the extra-condition.

Examples of GILO de=eription

Category definition: ecategery(np,
attribute: num,per,word, structure).
category(noun,
head_of': np,
attribute: type),
category(det,
attribute: num,word,satructure).
Grammar rule: np =-->» det, noun,
[{nplstructure=np(detistructure, noun!structure),
np<=nour ! [nue, per,word, type],
det !num=nouninumj.

Appendix A shows the simple grammar written in GDLO.

5. Translation of GDLO to DCG

A grammar file written in GDLO is converted into a grammar file in
the DOG format by a GDLO translator. This section deacribes some
points of translation.

5.1 Basic translation

All attributes of each prammar category are calculated using their
category definition,and ,for one attribute one Prolog variable symbol
is assigned to an argument of a DCG category. Fach categery definition
defines the argument pnumber of the corresponding category. The
gttribute names in the category definition specifies the position of
the argument attached toc the category. Since the category definitions
must be processed before the translation of the grammar rule part, the
category definitions should locate the top of the grammar file,

Page 13

A term in the extra-condition which becomes an argument of DCG after
translation 1is assigned a wvariable which shows that argument., When
these terms are connected with equzlity, however,unifisation is first
performed,and the result 1is then assigned to category arguments.
Attributes which have not been referenced within a rule remain
variahles after conver=z=ion and are used as DCG arpuments.

These are the two basic operaticns for translation., Seome translation
examples are shown below,

Grammar in GDLO:

category{np,attribute :num, per,st).
category{noun, head-of ;np,attribute:type).
category{det,attribute :num,st).
np-->det,noun,{ np{sznoun:[num,per],
nplst=np{detlst,nounlat),
det lnum=noun Inum,
member({nounltype, [common, number, proper])}.

Translation Result:

npl lum, Per,np(Det, Noun) , Typel) -->
det(Num,Det),
nour{ Num, Per, Nour, Type2},
{member{Type2, [common, number, proper])}.

5.2 DMstributing term in extra-condition

Since the translation operation described in the previoua section
treats the argument part of grammar rules, the extre-condition part
remains after the rule part in the same order, This causes the
problems of effieciency. For example, an éxtra-condition for pruning or
rule selection loses its meandng if it is not located in the correct
position, Generally the position of the extra-condition has no logical
meaning but it affects the parsing efficiency. GILO translator should
gensrate the most efficient codes (DCG program) by arranging the
position of extra-conditions. Currently GDLO translator adopts very
simple term distribution algorithm instead of the general one. The
following shows the term distribution procedure.

1) Search categories which appear in a given terc apnd have an argument
{(or an attribute), and find the category positioned at the extreme
right in reference to the rule head.

2) Distribute the term by bracing and placing it immediately after the
category found in 1). If the searched category is the rule head,
place the braced term immediately alfter the right arrow.

The following example is an GDLO version of Chat80 description which
was used as the example in 2.2 (2).

Page 14

gquestion(QCase,subjl=-> s,
{subj_case(QCase),
questionlstruc=s!strucl.

As already mentioned in Section 2,the processing efficiency will
decrease unless 'subj_case(QCase)' is performed before 's' is analyzed,
Translation according to the term distribution procedure allows the
example above Lo be converted intc the forwat the same as the DCG ruleas
of the original Chat80.

guestion{QCase,subj,St)==> [subj_case(QCase)},
s{5t),

This procedure, however, cannot handle & case in which a deseription
such as pruning exists in the body of a rule. Disteibuting an
appropriate term in the expansion part of a rule reguires a
sophisticated algorithm, because this involves the evaluation of
execution order in Prolog.

When operations such as pruning and rule selection must be described
using general predicates, an extra-condition ecan be inserted at
positions other than the end of a rule, although this violates the
description specification described in the previous section. Arguments
which can be used within the inserted extre=condition, are those which
are defined in the categories before the inserted position. During
translation term distribution is performed before the category
immediately before the inserted position.

f. Conoclusion

GDLO expands the deseription format of DO and separates the part for
defining and managing arguments from the part for defining grammar
rules to improve readability and modifiability.

While the GDLO=based grammar desceription is ourrently being
experimented for evaluation, the descriptlve power seems to have been
enhanced for the following points:

{1) Headability: It is now easier to find what deseription has been
made to what data of what grammar category. Also, it iz now
poasible to make a deseription by taking intc consideration the
application purpose of grammar data, when attribute calculation
i=s described.

(2) Modifiability: It is now possible to perform correction,
modification and addition with & small amount of rewriting.

The research on grammar deseription language covers both engineering
and linguistic area., We consider GDLO is one step toward our goal. We
consider that the following targets should be achieved to enforce GILO.

Page 15

L framework which permits constraints to be written at a desired
place without describing an argument used in data passing.

Suppert funections for a technique for constructing a structure
and an access method te a structure.

tddition of useful macro notations in the senze of linguistics and
engineering.

We investigate more flexible, sonvenient framework for an integrated
grammar description by checking and developing various grammars.

[1]

(2]

(3l

(4]

(sl

(61

(71

(8l

(9]

[10]

Ref erences

Matsumoto, Y., et. al.; BUP: A Bottom-Up Parser Embedded in
Prolog, New Generation Computing, vel.2, CHM-Springer, 19E3.

Matsumoto, Y. and Tanaka,H. and Kiyono,M ; The Refinement of the
Efficiency of the BUP system, Society for the Study of Natural
Language Processing (in Information Processing Soclety of Japan
} 39-7, 1983/09.

Kiyono,M, and Matsumoto,¥. ; The Augmentation of the BUP system
and its application to Japanese Processing, 28th Mational
Conference, Information Processing Society of Japan, 1984/3 (in
Japanese).

Tanaka,H. and Koyama,H. and Okumura,M. ; The Extension of the BUP
system and the Development of Japanese Grampar, Proceedings
of The Logic Programming Conference, 12.3, 1984/3 (in Japanese)

Pereira, F. and Warren, D. ;Definite Clause Gremmar for Language
Analysis - & Survey of the Formalism and 2 Comparison with
Argumented Transition Networks, Artificial Intelligence, 13, 1980,
pp 231 = 238.

Pereira,F. ;Logic for Natural Language Anzalysis, Technical HNote
275, SRI International, January, 1983.

Kaplan, R. and Bresnan, J. ; Lexical-Funotional Grammar: A Formal
System for Grammatical Representaticn, in "Mental Fepresentation
of Grammatical Relations, Bresnan eds., MIT Press, 1982.

Yasukawa, H. and Furukawa,K. ; LFG in Prolog - Toword a formal
system for representing grammatical relations -, ICOT TR-019,
1983,

Miyoshi, H.and Furukawa, K. 10bject-Oriented Parser in the Logic
Programing Language ESP, ICOT 1984,

Gazdar, G. and Pullum, G. K. ;Generalized Phrase Structure
Grammar: A Theoretical Synopsis, Indiana University Linguisties

Papge 16

Club, 1985/8

[11] Chikayama,T. ;ESP Reference Manual, ICOT Technical Report, MNoll,
1984/2.

Appendix A: Example of Simple grammar and Translation

ERinmRabe

Bk

FREARERRIES

529 SIIPLE GRAMHAR 55%

RARRRERRRESAARIINR

PR s A A 4

42 CATEGORY DEFINTTION

catepory(sentence,
attribute : st1, st2)

category(

categoryl

catesary(

catesory(

sategoryl

29 DICTIONARY

vero

vart

verd

verb

—->

-

-—2

ops

attribute : num, per,

noun,
heedof @ np,

attribute : word, type, kind

det,

-

attribute : spee, num, word

verb,
headof @ vp,
attribute : word,

Vi
attribute @ tense,

[walks],
{ verbtword

verbltype = 1iv,
verblper = 3
verb!nun =
verbltense = pres

[aun],
[verblvord = be,

verblouz = sg,
verbltype = be,
verblper = 1,
verbltense = pras

{is],
{ verblword = be,

verblnuw = &2,
wverbltype = be,
verblper = 3,

verbltense pres

lare],

type,

at

.

MU ,

1.

zpee, st

}'

).

per

Y.

).

Pape 17

verb

varb

verb

noun

noun

noun

noun

_—

—

-3

-1

---}

-

{ verblword = be,
{ verblnum = plL, verblper
verbloun = sg,; verblper
verbltype = be,
verbltense = pres).

P Lad
e
-

{was],
{ verblword = be,

verblnurm = 50,

verblLlype = be,

{ verblper = 3 ; verblper = 1),
verbltense = past }.

[werel,
[verblword = be,
{ verblnum = =g, verblper
verblnumn = pl, verblper
verbltype = be,
verbltense = past }.

mwon
Lad 2
e
=

[liked],

{ verblword = like,
verbltype = tv,
verbltense = past }.

[joha],
[nounlword = john,
noun !lnum = Sg,
nounlper = 3,
noun!type = proper,
nounlspec = def{nountkind),
nounlkind = personname }.
[doctorl,
{ nounlword = doctor,
nounlnw: = SgE,
nounliper = 3,
nounltype = coupon,
nounlkind = none }.
[doctors],

{ nouniword = docter,
nounlnum = pl,
nourn lper =
noun ltype = common,
nounlkind = nene }.

2
B

[girl],

[noun'word = girl,
noun inum = 38,
nounlper = 3,
pounltype = commor,

Page

18

Page 19

nourlkind = none }.

noun --» [wonan],
{ nounlword = woman,
nounlnuz = Sg,
nounlper = 3,
noun!ltype = coomon,
noun!kind = none 1.

noun --» [women],
{ noun!word = woman,

nounlnum = pl,
nounlper = 3,
nounltype = common,
nounlkind = none 1.

det ==» [the],
{ detlspee = def{the) }.

det ==> {tl’liﬁ],
{ detlnuz = sg,
detlspec = def(this) }.

det ==> [these],
{ detlnur = pl,
detl!spec = def(these) }.

det ==> [a],
{ det!lnuz = sg,
detlspec = indeff{a) }.

dot ==2> [some],
f detlnum = pl,
dettspec = indef(some) }.

S8 GRAMMAR

sentence -=3> np,vpl¥),
[sentencelst! = pred{vplword,[subj,nplword},[obj,X]),
sentencelst? = sentence(np!st,vplst),
ng <=> vp : [num,per] }.

np ==> det,noun,
{ nplspec = detlspee,
np <= noun : [nuz,per,wordl,
detlnum = nounlnum,
nplst = npl{nplspec, nplword, [nus, nptous], [per,nplper]) }.

Ap ==2 RNOUn,
{ nounltype = proper,
np <= noun : [num,per,word,speec],

Page 20

nplst = np{nplspec.nplward,[num.nplnum].IFEP.nﬂ!DErl} I

np ==2 noun,
{ nounl!nuz = pl,
np <= noun : [noum,per,word],
nplspee = indef(pl)},
nplst = np[np!spec,np!uord,[num.np!num].[per,np!psrli 1.

vplX) --» verb,np,
[verbliype = be,
verbltense = pres,
verb!num = nplnum,
vp <= verb : [nuxm,per,word],
¥ = nplword,
vplst = vp(verb{verblword,[tense,verbltense]),np(npist)) I

¥pl¥) ==> verb,np,
[werbltype = tv,
verbltensze = pres,
vp <= verb :[num,per,word],
X = nplword,
vplast = vp(verbtverblunrd,[tensu,verb!tense]}1ﬂp[nP!555} 1.

vplnil} --> verb,
{ verbltype = iv,
verbltense = pres,
vp <= verb : [nuz,per,word],
vplst = vp(verb{verblword,[tense,verbltensel)) }.

vp(¥X} ==>» verb,np,
{ verbltype = tv,
verbltenze = past,
vp <= verb :[word],
¥ = nplword,
vplst = vp{verb{verh!wcrd,[tense,verb!tensa]?,np{np!st]]

PSS MR S T F
% TRANSLATED DCG FILE 2%
L
Aae

G35 LR BB ERSRORASS

B WL wl

verb(walk, iv, sg, 3, pres,_23452) -->
[walks]l.

verb(be, be,sg,1,pres,_24678) -->
fam].

verb(be, be, sg, 3, pres,_25904) -->
[is].

Pape 21

verb(be, be, pl,3,pres, _27130) ==2
lare].

verb{be, be,ss,2,pres,_28356) --»
fare].

verblbe, be,sg,3,past,_ 29582} --2
[was].

verb{be, be, 3,1, past, 30008) -->
[was].

verb(be, be, sg,2,past,_32034) -->
[were].

varbibe, be,pl,3,past, _33260) ==>
[werel.

verb(like, tv,_ 34208, 34306 ,past,_3U322} =<3
[liked].

nour(jorn, proper, person_name, 55, 3,def (person_name),_35516) -->
[jokn].

nour (dooter, common, none, 8g, 1, _36890,_36898) aw>
[doctor].

noun{doctor, connon, none, pl,3,_38145,_38153) -->
[dectors].

noun(girl, comnon, none, 85,3,_39400,_39408) -->
[girl].

nounl woman, connon, none, 5g, 5, _U064E,_40656) ==>
[woman].

noun(woman, comuorn, nene, pl,3,_41903,_41911) -->
[wWonen].

det(def(the), 42830, 42830) -->
[the].

det{def{this),s;, _U3440) -->
fthis].

det{def{these},pl,_ U112} -==
(theze].

detiindef{a),ss, _U4784) -->
[2].

det(indef{some),pl,_U5456) -->

Page 22

[somel.

sentence(pred(_U46893,[subj ,_p622],lobl, 457 9317,
sentence{ U6614, B6BB5)) ==>
np{_U6590, 46596, B6606 G614, 6622, 46630 ,_46638),
vp(46077, 46685, 46893, 46901 . 46590, 46595, _H5TI3).

np(_4 8724, 46732, 48740,np(_ 4 8740 ,_W8756, [num,_48724) ,[per, _UET32]),
_BETe6,_HBTOL, N ET72) -2
det{ 4BTHO, 4BT24,_49012),
noun (_48756,_49165, 49176, 40724, AET32 ,_h6200,_49208).

an:_S'm!bT,_smﬁE,_51053,npc_sméa,_am?g,Lnum._{-;mn'r],[per._ﬁwss]}.
_51679,_51067,_51005) -2
noun(_51079,proper,_51325, 51047 ._51055,_51063,_51357).

nn{pl,_53161,indef(pl},np{indef{pl},_53155,[num.p1],Lper,_53151]1,
._53135._53193._532011 -1
nouﬂi_53135._53ﬂ25._53533;D1,_531ﬁ1._5345T,H53H55}.

vp(_55502,vp{verb(_5551 8,[tense,pres]) ,np(_56019)),
_55515..55526,.5553ﬂ._555u2._5ﬂ5HB} -
werb(_ﬁsmB.b-a._5553“._55542,pre5,_55305],
np{_55534, 56003, 5601 ,_56019,_5 5546, 56035, _56043).

vp(_58275,vpl(verb(_58391,[tense, preal),np(_58889)),
_58391,_5B399,_58407,_58415 ,_BT536) ==>
verb{_58391,tv,_5B40T ,_56415,pres, _58678),
np(_58865,_56873,_58681, 58889,.57535, 58905 ,_58913) .

vp(,bn915.vp{verh{_ﬁ0931,[tenac.pren]]},
_H0e31, 60939 ,_B0OOUT, 60955, nil) -2
vcrb[_§0931,iv._ﬁﬂ?ﬂ?,_ﬁﬂgﬁﬁ,pres._ﬁ1215].

vp(_ﬁSﬂTh,vaverh{_ﬁ3ﬂ90,[tcnse.past]}_npf_ﬁEEEﬂ}J,
_§3ﬂ90,_ﬁ3095._ﬁ3135._ﬁ311ﬂ,_ﬁ?2"9} _—

verb(_63090,tv, 63353, 63361 ,past,_63377),
np(_63564,_63572,.6 3560, _63586,_62249, 63604, 6 3612).

Page 23

fppendix B: Execution Procedure of Translator

1) Hun the file "eudl,exe" in the execution form to enter Prolog

2)

mode .,

Initiate a top-level predicate 'eat' (:7-cat.). The following
progpts appear in turn:

» fssign Input File = "Input file name".
{Mame of a file im GDLC format)
» Assign Output File = "Output file name",
{hame of a translated file in DCG format)

Specily the IL/0 file to start the execution. Durlng
execution, names of actual attributes assigned to individual
ratepories are listed on the screen. When the executicn is
completed, 'runtime' is displeyed and the screen returns to
step 23,

