ICOT Technical Report: TM-0075

TM-07 5

ESP— An Object Oriented Logic
Programming Language
by
Takashi Chikayama,
Shigeyuki Takagi, Kinji Takei

September, 1984

TICOT, 1984
Mita Kokusar Bidg. ZIF (03] 456=-3191~5
“ :D I 4-28 Mita 1-Chome Telex ICOT J32964
Minato=ku Tokyo 108 Japan

Institute for New Generation Computer Technology

ESP — An Object Oriented Logic Programming Language

Takashi Chikayama, Shigeyuki Takagi, Kinji Takei
Besearch Center

Institute for New Generation Computer Technology

ABSTRACT

The Japanese Fifth Generation Computer Project, begun in 1981, will

span ten years. Its first three-year effort has been allocated to the
development of basie conceprts and technologies, as well as to the
implemenctaction of Project development tools. The major such tool is

g superpersonal computer system, which constitutes the first-step toward
an overzll logic programming environmenc. This computer system is called
S5IM (Sequential Inference Machine), and consists of the minicomputer—
scale PSI (Persomal Sequential Inference Machine) and advanced software,
called SIMPOS (SIM Programming and Operating System). SIMPOS is described
in a logic programming language, ESP (Extended Self-contained Prolog).
ESP is designed f[or ease of writing systems software and is based on

the thesis that 2 hybrid of object-oriented programming and logic pro-
gramming ig a scrong alternative to & language based upon either concept
alone [Kahn 82]. This paper introduces the background and motivarion
for the design of ESP, and describes its main language features.

1. BACHGROUND

The aim of the Japanese Fifth Generation Computer Project is to
create prototypes for the computers of the 1990s., To be sure, today's
computers will perform better and have more functions in the future.
However, the social needs for computing power in the next decade
cannot be satisfied by such computers, hampered as they are by the
processing bottlenecks and complexity-producing programming languages
resulting from dependence on conventlonal von Neumann architecture.
The Japanese plan is to remedy this shortcoming by the introduction
of a highly-parallel architecture and 2 language ariented toward knowl-
edge processing. The key concept ig logic programming. We believe
that this programming stvle holds the most promise for meeting the
requirements of both parallelism and knowledge processing. One of
the foundamental decisions of the project was to first design a basic
programming language, then to invent an architecture that [its the
language. We believe this to be the best approach to liberating
computer languages and architectures from the constraints of wvon
Neumann concept. ‘1t is very risky te change drastiecally the archi=
tecture and lanpuage at the same time. This means that machines yet
to be built will run programs written in languages not yet tested'
[Mosaic 84]. Therefore, it is desirable to proceed using step-wise
refinement, that is, to repeat Lhe trial-and-error eveles as many
times as possible during the course of development.

The Japanese project, begun in 1981, will span ten years, divided
into three stages: the initial stage (three years), the intermediate
stage (four years), and the final stage (three years). Each stage will
constitute a trial-and-error cycle in which a basic language and its
accompanying architecture will be developed. The initial-stage has
concentrated on the development of basic concepts and technelogies as
well as the implementation of development tools that will be used in
the subsequent stages. The major tool developed so far is a super-—
personal computer system, which constitutes the first-step toward the
creation of an overall logic programming environment for the project.
The computer system Ls called SIM (Sequential Tnference Machine), and
consists of & minicomputer-scale, von Neumann architecture-based machine
called PSI (Personal Sequential Inference Machine), and advanced soft-
ware called SIMPOS (SIM Programming and Operating System). SIMPOS is
described in a logic programming language called ESP (Extended Self-
contained Prolog), which is the subject of this paper.

The intermediate stage will be mainly devoted to improving and
extending the results of the initial stage, and integrating them into
inference and knowledge base subsystems. The research and development
of this stage will focus on establishing computation models well suited
to highly parallel processing and that will promote knowledpe-based
propramming. The hardware subsystems to be built will consist of
about 2 hundred processing elements.

The final stage will emphasize the optimization of both software
and hardware system functions and the final determination of the archi-
tecture for a full-scale fifth peneration system., This full-scale
system will consist of about one thousand processing elements.

2. MOTIVAIION

hccording to the project plan, three logic programming languages
will be developed at the machine-languapge level, and two or three at the
system-description-language level through the initial and intermediate
stages, as shown in the following:

system=description ESP MANDALA N ?
languapge el
+ t
machine-language ELQ ¥L1 KL2
1 + +
Concurrent
(based on) Prolog Prolog KL1
l_"-r"_; . s j
for for
sequential parallel
processing processing

¥LO (Kernel Language version 0) is the machine-language of the
seguential inference machine, PSI. It is based on Prolog with various
extensions and scme deletions. The main extensions are:

Extended control structure

= Process switching

- Operations with side-effects, and
- Hardware—oriented oporations,

The following features are included in the deletions:

= Database management , and
= MName-table managemant.

The features omitted im KLO are supported in the system-description
language, ESP. All the software for PSI is to be described in ESP.

While KLO and ESP, as direct descendants of Prolog, are sequential
languages, Concurrent Prolog's descendants, KL1, Mandala and KLZ, are
highly parallel languages, KL1 and Mandala are currently under develop-
ment, the results of which will be applied to the KL? design in the
intermediate stage. Mandala is to KL1 what ESP is to KLO, and further-
more Mandala and ESP have many points in common. We expect the Fifch

Generation Project to have a substantial impact on the reduction of
software development problems. The primary aim here is to facilitate
the construetion of large, complex, reliable programs that are exacut=
able inparallel, systematically managible, and practically verifiable.
4 rentative solution invelves the amalgamation of hierarchical modular
programming and logic programming.

ESP is designed for ease of writing systems software and is based
an the thesis that 'a hybrid of object-oriented programming and logic
programning is a strong alternative to a language based upon either
concept alone' [Kahn 82]. The ESP Program iz compiled into ELO and
executed on a PSI machine.

ESP plays a dual role, in that it is of both practical use for
implementing the STMPOS programming and operating system, and of
experimental use for assessing the potential of logic programming in
systems description. The dirvect motivation for introducing object-
oriented programming features into ESP is that pure logic programming
provides little support for program modularization, which is essential
to systems programming. Though the desirability of supporting objects
{or actors) in Proiog is well-recognized, much more experience with
nen—trivial programs is needed before questions regarding the most
efficient implementation of such a hybrid can [inally be settled. One
such question, for example, is the debate over 'top-level implementa-
tion' ve. 'low-level implementation'. The SIMPOS implementation in
ESP is a full-scale experiment in this context.

3. LANGUAGE FEATURES

ESP is a hybrid of a logic programming language and an abject-
oriented language. The logic programwning features of ESP are almost
directly derived from its base language, KLO, and are common to
existing Prolog-like languages, with the exception of several ex-—
tended features, particularly im built=-in KLO predicates. The main
features of ESP, aside from those provided by KLU, include:

- QObjects with states,
- Object classes and inheritance mechanisms,
- Macro expansion.

The assertion and atom name database features (i.e., assert, name, ete.)
are not provided directly; instead, some lower-level provisions (e.g.,
array access and string manipulation functions) are taken into considera=
tion for flexibility.

3.1 Objects and Classes

An object in ESP represents an axiom set, which is basically the
came concept as that of "worlds (or mondes)" in some Prolog systems

[Caneghem 82]. The same predicate-call way have different interpreta-
tions when applied in different axiocm sets. The axiom set to be used

in a certain call can be specified by piving its {(object) name as the

first element in the argument list of the call. For example,

iereat (#process, Process)

The ceolen preceding the call specifies that the interpretation of the
call will depend on the axiom set specified in the first argument.

An object may have time-dependent state variables called 'object
slots'. Slot wvalues can be examined by certain predicates using their
names. In other wards, the slot values define part of the axiom set.
The slot wvalues can also be chanped by certain pradicates. This
corresponds to altecing the axiom set represented by the object. This
is similar to "assert' and 'retract' in DEC-10 Prolog. However, only
slot values can be changed in ESP, while any axiom can be gltered in
DEC=10 Prolog. As many currently available concepts and techniques
for building operating systems are based on the notion of '"state' and
‘state transition', much more investigation time would have heen
required if we had heen forced te write it entirely in logic pro-—
gramming without the use of state-transition semantics (this approach
has been investigated by E. Shapiro [Shapiro 84]. For this reason,
the side-effect feature was introduced into ESP.

A class is a common description of the characteristics of similar
objects, i.e., ohjects that differ only in their slot values. Every
object within ESP is defined by a particular class and is called an
instance of that class. A class itself is treated as an object re-
presenting a specific axiom set.

3.2 Inheritance Mechanism

The multiple inheritance mechanism provided in ESP is similar to
that of the Flavors system [Weinreb B1], rather than to the single
inheritance mechanism of Smalltalk-B0 [Goldberg 83]. An ESP propgram
consists of one or more class definitions. We can define a class as
follows:

class <class names
cmacrto bank definitions)

has
[<nature definition>;]
{<class slot definitions;)

{<class clause definitio;ﬁi}

[instances
{<instance slot definition>;}
{<instance clause definitionz;1]

|local
{<local clause definition>;)}]

The 'macro bank definition' is discussed in the next section. The
'‘nature definition' defines one or more super classes as fallows:

nature <super class name> {j<super class name> |

When one class is a super class of another,
axiom set are inherited by the latter's.

all the axioms in the former's
By this inheritance mechanism,

classes organize a hierarchical network of is-a relationsz, The currently
defined class and some of its super classes may have axioms with the

same predicate name.

merged, and consequently ORed, in a descendent class.
order of ORed axioms can be speci
tion and to control cuts and side-effects.

The axiom sets of the super classes are simply

The seguential

fied in ESF to optimize program execu-

Demon clauses define demon predicates, which are not ORed but ANDed,

cither Defore or after the disjunction of normal axioms.
are used to add axioms non-monotonically.

Demon clauses
For example, a door with a

lock has a demon for the predicate open that checks whether it has
already been unlocked before the open-action takes place,

% Simple Door
class door has
instance
componant
state := closed;
:closed(Door) -
Doorlistate =
topen{boot) -
Moorlstate = open;
:close(Door) =
Doorlstate
:make way (Door) :-
Doorlstate = open,
make way(Door) :-
rapen(Door);
end.

Z Lock
class lock has
instanco
Ccomponent
state := unlocked:
:locked (Lock) -

closed;

Lock!state = locked;

:lock(Lock) -
Lock!state :
sunlock{Lock) =
Lock!state
end.

]

t= closed;

#5424

= locked;

i= unlachked;

Open or closed
Is closed?

Opening
Closing

If already apen,

do nothing.

Tf not,

then open itb.

Locked or unlocked
Is locked?

Locking

Unlacking

With Loek == MIXIN
class with a lock has
instance
attribute
lock is lock;
before:openi(bi) :- Must be unlocked
sunlocked (Obj!lock); before opened.
:lock(0b]) := Locking object is

#9 ¥4

:lock(0Obj!lock); - locking the lock.
tunlock(0bj) :- % Unlocking object is
sunlock(Objllock); £ unlocking the lock.
:locked (OBi) :- % Object is locked when
:locked(0bj!locked); % the lock iz locked.
cnd.
% Door with Lock(s)
class door with a lock has
nature o
door, i A door
with a lock; % with a lock

and.

In this way, the class with_a_lock can be defined separately from the
class dear, as such a class contains koowledge with non=monotonicity.

A part-of hierarchy can also be implemented using the is—a hierarchy
and object slots. Assume that we want to make instances of class A part-
of an instance of class B. TFirst, A must be defined. Then, a class
with A must be defined so that instances of the class with_A have a
number of slots, one of which holds an instance of claEEn?:-.Finally,
class B is defined to be a subclass of the class with_A; in other words,
the class B is-a class with A.

Returning to the definition of a class, there are two kinds of slots
and clauses: those for the class itself (class slots and class clauses),
and those for each instances of the elass (instances zlots and instance
clauses),

Finally, clause definitions are used for defining Prolog-like
vlauses. From a declarative point of view, a clause expresses an axiom
in the form of a Horn clauses. From a procedural point of view, a
clause specities procedural steps to be takem when a predicate is called.
In addition to the class and instance elauses described ahove, there are
also local clauses, which define non-object-oriented local predicates.

Prediecates, with the exception of local predicates, are cvalled using
methods, rather than directly. A method is a certain AND-OR combination
of predicates defined in a class or its super classes.

3.3 Macros

Macros are implemented for writing meta programs to specify how
a program embedded with macro forms is to be translated into an execut—
able program. A macro can be defined in the form of an ESP program,
taking full advantage of the pattern matching and logical inference
capabilities of logic programming.

In various languages having macro expansion capabilities, a macre
invocstion is simply replaced by its cxpanded form. Though this simple
expansion mechanism may be powerful enough for LISP=-like functional
languages, it is inadequate for a Prolog-like logic language. For
example, a macru which expands pla, E(X # ¥)) to a sequence add (X, ¥, ZJ,
pla, £(Z)) cannot be defined using a simple mechanism. ESP macres arc
not only expanded at the peint of macro inveocation, but additional goal
can also be spliced in before or afrer the goal in which the macro is
invoked. Tf the macro is invoked in the head, these goals will be
prefixed or postfixed to the body clause. The macro definition;

W+ ¥ = 7 when add (X, ¥, Z)', can be used in two ways. The clause
‘addi (M, M ¥ 1)' is expanded to the clause "addl (M, N):- add (M, 1, W',
while the body goal 'p (M + 1)' is expanded to the goal sequence

Yadd (M, 1, M), p ().

4. IMPLEMENTATION

The implementation of the object-oriented features is straighe-
forward. An object is represented by a vector. Irs first entry is
the pointer to the table corresponding to the axiom set associared with
the object; other entries are object slot walues. The table represented
as a KLO predicate is called a method table. This vector is allocated
in the heap area, rather than in the stack area, so that slet values
van be set as side-effects,

Objcct-oricnted method invocations are translated into calls by
a runtime subroutine with two arguments: the method name atom and a
vector of the origiunal argument. The runtime subroutine cxamines the
first argument, which is the vector representing the object, then its
first item, which is the method table. This method table is called with
the given arguments. The ¢lause of the method table whose first argument
is the given mechod name is selected, and the corresponding method
nredicate is called from its body.

Though this table look-up works fairly efficiently by virtue of the
built-in KLO clause indexing mechanism, additional firmware supports
are planned to further increase execution speed. Some of the predicate
calls appearing in this object-oriented invocation mechanism are redundant.

For example, when a method eonsists of only one principal predicate,
the method table may call the principal predicate directly. Compilation-
time optimization is also planned to reduce this redundancy.

Tn the current implementation, object slots are accessed by their
name atoms using the same table. In certain cases, by a simple optimiza-
tion, slots can be accessed by their displacements rather than by their
names. This optimization is also planned.

5. CONCLUDING REMAREKS

As shown in the figure below, the SIMPOS system has a hierarchical
structure consisting of four layers. The layers, in order of their
proximity to the hardware, are the rescurce management program (Kernel),
the execurion management program (superviser), the I/Q system, and the
programming system.

Transducer

Editoe

Merwack

Librarian

Siream

Window

Diewice

Memory Inter-
preter!

d E hﬂl’EEr

Process

IrL

Frovessor Hardwars

Ps Input/outpuet Superaser Kernel i
. v ' K1LIVESP
0%

SIMPOS system configuration

Each layer consists of several subsystems or modules. The functional
contents of the subsystems or modules are similar to those of an advanced
programming and operating system such as the LISP Machine Software Environ-
ment.

The first version of the SIMPOS system is now being debugged. Almost
the entire system is described in EST. ixcoptions are a few number of
short runtime-subroutines. It is too early to assess performance.
However, it may be said, based on our experience in writing a full-scale
system, that FSP has sufficient expressive power for systems programming.

REFERENCE

[Caneghem 821 Var Caneghem, M.: PROLOG II Manual D'utilisation,

froupe Intelligence Artificielle, Faculte des Sciences de Luminy,
Marseille (1981).

[Goldberg 83) Goldberg, A., Robson, D.: SMALLTALK-B80-The Language and
its Implementation. Xerox Pale Alto Research Center (1983).

[Kahn 82] Kahn K.M.: Intermission-Actors in Prolog, K.L. Clark &
5.-A. Tarnlund{ed.) Logic Programming, pp.213 - 228 (1982).
[Mosaic 84] Metzger, N.: To Find the Way Forward, Mosalc, Vol. 15,
No. 1, pp. 2 — 7 (1984).

[Weinreb 811 Weinreb, D., Moon, D.: Lisp Machine Manual, &th ed.,
Symholies, Inc. (1981).

[Chikayama 84a] Chikayama, T.: ESP Reference Manual, ICOT Technical
Report, TR=0&4 (1984),

[Chikayama 84b] Chikayama, T.:; KLO Reference Manual, ICOT Technical
Report, (to appear).

[Takagi 84] Takagi, 5. et al.: Overall Design of SIMPOS (Sequential
Inference Machine Programming and Operating System), TR-057 (1984).

- 10 =

