ICOT Technical Report: TM-0073

TH™W-0073

Syntactic Parsing with POPS
—Its parsing time order and the
comparison with other systems—
by
Hideki Hirakawa, Koichi Furukawa

September, 1984

©ICOT, 1984

Mita Kokusai Bidg. 21F (03) 456-3191-5

IGOT 4-28 Mita 1-Chome Telex ICOT 32964

Minato-ku Tokyvoe 108 Japan

Institute for New Generation Computer Technology

Syntaetie Parsing with POPS
= Its parsing time order and the comparison with other systems -

Hideki Hirakawa, Koichi Furukawa

ICOT Research Center

Inztitute for New Ceneration Computer Technology,
Mita Kokusai Bldg. 21F, 4 - 28 Mita 1-chome,
Minato=ku, Tokyo 10B

Abstract

There have been developed pany parsing systems based on logic programming
languages sueh as DOG, BUP, X0 and so on. Author=s have developed
OR~Parallel Optimizing Prolog System (POPS) and showed that POPS is very
effective for the nztural languzge syntzctie parsing beczuse it sclved some
qualitative problems in the above systens. In this paper the parsing
efficiency of POP3-based parsing is discussed and compared with other
context-Cree parsing algerithms such as Earley's algorithm .and Chart
parsing. - .

1. Introduction

We have implemented an OR-Parallel Optimizing Preoleg System, POPS, based
on an Oi=-parallel copputational model for Pure Prolog [Hir B3]. POPS i=
especially effective for application fields where many sub-computations are
duplicated to perform a total computation. It also effective for the
fields where 2 main computation is some kind of searching, that is, the
program has high-degree OR-parallel computation, One of the applications
of POPFS is a natural language syntactie parsing for which many Prolog-based
systems are developed [Pereira B0], [Matsumoto 83). POPS-based parsing has
solved the following problems inherent in other Prolog-based parsing
systens [Hirakawa 83]:

(1) Repetition of computation: Since backtracking repeatedly
perferms the same computation many times, the paraing
time increases exponentially with the length of an input
sentence, thereby resulting in poor parsing effieciency.

{2) Left recursive rules: Natural language have a recursive
structure by nature, Reflecting this characteristie,
their syntax rules tend to include left recursive rules,
Interpreting these rules by Frolog's top-down, depth-first
strategy causes the processing to enter an infinite leop; the
computation never stop.

(3) Handling of epsilon-rules: In natural languages, word

Page 2

omission frequently occurs. This correspond to the
epsilen-rule in context-free grammars (CFG). The
epsilon=rule should be handled as it is.

These are qualitative aspects of POPS-based parsing. This paper examines
quantitative aspect of POPS-based parsing and compares it with conventional
CFC parsing =algorithms. section 2 describes a POPS-based syntactic
parsing, and Section 3 discusses POPS-based CFG parsing by caleulating the
order of parsing time, In Section &, the POPS model 4is compared with
Earley's parsing algerithm [Ear 68], Earley Deduction [Per B3], and Chart
parsing [Kay E80].

2, POPS-based Syntactic Parsing
2.7 POPS

POFS is & Pure Proleg OR-parallel interpreter implemented in Conecurrent
Prolog [Sha 83]. POPS has the following features;

(1) Goals are executed serially and clauses are executed in
parallel,

{2) Computational model is based on multiple processes and
messape transfer between processes.

(3) The graph reduction mechanism is introduced to prevent
the same computations from being repeated,

The details of POPS is described in [Hir 83]. In this paper we will show
the brief explanation of POPS and POPS-based syntactic parsing.

POPS consists of four components; processes, channels, a board and a
horn data base. A process plays a key role in computations, that is, the
computational behavior of POPS corresponds te the behavier of processes.
The behavior of a process is defined later, A process corresponds te a
elauvse being computed, such as H<--01,02. A process creates its child
processes which computes the subgoal of the parent process. The parent
process recelves solutions from its ohfld processes wvia a channel. A
channel dis a communieation path between proocesses znd is dynamically
generated during computation., Data transferred through a channel is ecalled
a4 message. Each process has its output channel and input channel. The
cutput channel connects to its parent processes and the dinput channel to
its child processes.,

The board is 2 storage area accessed by processes, and stores ochannel
head pairs, & channel head pair is a pair of one subgoal and one channel
through which the solutions (messages) for the subpoal are sent. A channel
head pair is described in the following format:

Channel+Head

Page 3

The operation on the board is ealled "beard acoess" which registers a new
channel head pair to the board if the head is not in the board octherwise
the new channel is shared with the one of old channel head pair. This
operation realizes the graph reduction mechanism which enables POPBS to
share the sape subcomputations and to aveold the infinite rule zpplication.

2.2 Parsing in POPS

POPE=bazed parsing iz performed in the same way a3 the Definite Clause
Grammar (DCE) incorporzted inte DECID Prolog. First the CFG graomar
deseriptions are translated into the Prolog clauses. Then the parsing is
perfermed by executing the programs using POPS interpreter. To simplify
the discussion, we agsume the given grammar is a pure CFG. The following
shows the example of grammar rules and the eorresponding (Pure) Preolog
clauses.

CFG rule Frolog clause
S ==2 0p, Vp. s(X0, X} := np(X0, X1),vp(X1, X}.
np ==2 [john]. np{[johniX],X).
wp ==» [walks]. vpl[walks|X]1,%).

The gremmar notation znd the translation results correspond to those of
DCG. Two argumentz of the Prelog elauses are D-lists which specify the
position of the input sentence. To simplifly the notatieon, in the remaning
part of this paper we use figures rather than lists to indicate the word
position in the input sentence as follows;

+ npl0,1) + + vp({1,2) +
| H |

0 Jjehn 1 walks 2

Generally, all literals appearing in the parsing stage have the format
al{I,J) where I and J are fipures.

3. Parsing Time Order with POPS

3.1 Procedure to Estimate Parsing Time Order

This subsection examines the order of the parsing time with the
POPE-based parsing algerithm. Because POPS itself is based on & parallel
parsing model, the setual computation time depends upon the number of
processors in the =system and other Tflactors. Here we assume that the
parsing system consists of o single processor and estimate how the total
computation amount changes according to the length of an input string.

The syntactic parsing algorithms are classified into two different types
according te their purposes: one type of algorithm determines whether an

input string is acceptable with the given grammar, while the other obtains

Page &

all possible parsings (ie, parsing trees) for the input string. The twa
naturally differ in the computation anmount reguired. M though original
POPS adopted the latter algorithm, one change to the process operation
permits the POPS to perform the former algorithm. In the following
disoussion, we refer to the former and latter algorithms as typel and type2
POPS, respectively. We obtain the parsing time order for the two cases:

Case 1: Parsing using typel POPFS with an upambiguous
Eramnmar.
Case 2: Parsing using type2 POPS with an ambiguous grammar.

Here we call a grammar "unambiguous®™, if it assures the following
relationship:

If £r{T1) = Ffr(T2) then T1 = T2

where T1 and T2 are derivation trees sharing the same
root, and £fr(T} iz the concatenation of T's leaves.

In the subseguent subsections, we ezleulate the order of the POP3-based
parsing time by the fellowing procedure:

(1) Shows algorithms for typet and type? POPS processes
te provide the order of time required for the operations
included in each algorithm.
(2) Gives the order of the total computation cost for
one process,
{3) Estimates the number of processes penerated
during a parse,
(4) Estimates the total parsing cost from (2) and (3).

3.2 Process Cost

This subsection first provides formal behavior of processes of typel and
type2 POP3, then estimates the process cost for each aperation of

processes.

Fig.1 shows the POPS process operation. This definition merges typel and
type2 POPS. The "if typel then ... else" portion selects each Lype.
Sinne the purpose of this paper is the estimate of parsing time order, the
detailed explanation of the POPS process is omitted here,

The operations in Fig.1 have the following functions:

terminated : Determines whether a given clause has the
"Head{--true" format.

send_message ¢ Sends "Head" to "OutChannel".

is new _messags : Checlts whether "Message™ has already been sent to
"outChannel™,

board access : Performs "board_access" operation {See 3ec. 2).

== : Checks whether the right side equals the left

Page 5

side.
clauses : Fetches & collection of expandable rules
from the horn database.
creste new_process: Generates new processes for each element of
MewGoals" (a collection of clauses).
walt_receive : If the process recelves & messapge, it becomes
true as long a2 the messape is not [] (end of
mnessage)] else it becomes false.
crezte_new_process: (Qenerates a new clause and the corresponding new

praocess.

Suppose that 2 particular grammar has been fixed for parsing, we oan
estimate each computation time of the above operations. The parameter of
the operztions is the length (n) of an input string. Since the above
operztions except for Yboard_access" and "is new _messapge™ are osbviously
independent of the input string length, then they costs the constant order
time provided that the grammar is fixed., On the other hand, "board access"
and "is new_message"™ operation costs O{n) time.

Lemma 1: The "board access™ operation costs O(n) time.

Proof': All the literals in the grammar (DCG program) have the format,
a(I,J), and =zany Head =saved on the board hasz the first argument whose
value falls within the range, 0<=i<=n {n i= the length of an Ainput
atring), Therefore, the board can be structured as follows:

Board = { [0,C11+H11,C12+H12, ... ,Clp+Hip]
[1,C021+H21,022+H22, ... ,C2g+li2q]

[n,Cn1+Hn1,Cn2+4n2, ... ,Cnms+Hrm] }

The number of lists [...) iz n+1 and the maxioum number of channel
head pairs in each liszt is eguivalent to the number of the grammatieal
categories in the given grammar. Using this board structure, the board
access related to one channsel head pair is performed in the following

if terminated(Clause) then
if typel then
scnd_message(Head, OutChanrnel);
elee if iz new message(Messape,Outchannel)
send_message(Head, QutChannel):
else begin
board_access(Head+Channel , Result};
if Result == nltyet begin
clauses(Body_top, Wewgoals);
create_new_processes(Newgoals, InChannel);
while wait_receive(Message,InChannel) do
ereate new_progess(Clauvse,Message, QutChannel);
‘end;

Fig.1 The definition of typel and type2 POPS process operation

Page &

oanner:

(1) Fetches a list from the board according to the first
argument of & literal of the channel head pair.

(2) Semrches the list for the head and, if found, identify both
channels, otherwise, registers the channel head pair to the list,

Since (1) znd (2) takes Q{n) and O(e) respectively, the "board_access"
can be done within time order O(m).

Lemma 2: "is new_nessage" costs O(n) order time

Procf: "is new_message" checks whether a message has already been sent
to the output channel {OutChannsl) which ecorresponds teo the channel of
the channel head pair in the board. A channel in the board contains 2
message 4in the al(i,j) format. Since 'i' eguals the first argument of
the head, it has a speecific value falling within the range, O<=id=n.
Therefore, as many &35 n+1 messages are passed to the channel, providing
Ofn) as the compputation time for the operation.

The execution time order for the process operations are as follows:

O{n)
ofe)

"heard_access", "is new_messags®
the other cperations

I
-
-

3.3 Typel POPS and Unambiguous Grammar

This subsection exanines parsing time order using typel POPS and an
unambiguous grammar. Since the computation cost of each process operation
has already been achieved, we obtain the process cost and the number of
generated processes during parsing.

Generated process can be classified into two types acoording to the
format of a elause in the prooess, One iz the n-type (non-terminate)
process that has a clause whose body is made up of one or more subgoals and
the other i3 the t=type {(terminate) process that has a elause whose body
consists of "truel,

n-type process s(0,X)<~np{C,Y),vp(Y,X).
t-type prococss n(2,3)<{-true.
The n-type process performs one O(n) operation, T"board_ access™ and
geveral constant order operations. The t-type process performs only
constant ardar operations, that iz, "orezte_new_processh and

"send_message". Then the each process cost is as follows:

n-type process cost: O(n)
t=type process cost: O(c)

Page T

Mext, we estimate the number of n-type processes and t=type processes Lo
be generated during the entire parsing.

Lemmz 3: In parsing based on an unambiguous grammar and the typel POPS,
the rnumber of the n-type processes which are generzted during the parsing
iz 0(n).

Proof: The n-type process corresponds to the fellewing clause:

a(i,J)<=b(k,L), rests, D €= i,k ¢= n (n is input length)
J,L are variables
rests is the rest part of the body

When a n-type process is generated, its 'i' and 'k' has been set to
particular values. The process oust be connected to one channel head
pair in the board, because "boazrd access" operation for channel head
pair, bi{k,L}+Channel, should be executed, Conversely, a channel head
pair, blk,L)+Channcl, can connect to at most constant number np=type
processes which have esrtain head ra' (Lemma U4). Since the board
contains 0(n) channel head pairs as shown in Section 3.2, the number of
n-type processes to be generated during parsing is Oi(n).

Lemma 4: In parsing based on an unambigucus grammar and the typet
FOPS, if there is any process which has the clause
"a(i,K)<-b{j,L)},n(L,K)" derived from a grammar rule "a->m,b,n" (b is
not an empty production), there is no process which has
ma(1,K)<-b(],L),n(L,K)" (1 is not egual to i) as a clause.

Froef: Assume the parsing situation where one grammar rule "a->m,b,n"
derives two processes which have the following clauses:

ali,®K)<-b(3,L),n(L,K)
a(l,K)<-b(j,L),n{L,k) 1<1

Since the parsing for the nonterminal 'm' has been completed, both
m{i,j) and m(l,j) simultanecusly hold. The definition of the
unambiguous gremmar and the conditicn, i < 1, requires that the parsing
tree associated with m(l,j) should form a subtree of the parsing tree
for m{i,j).

Page 8

m{i,jjr hji,L}

a i

{f/‘;\h‘ (
m{i,) bli,k
..r""'-"rL-\\-_ = -

i 1 h]

L

ke=j

This structure, however, is not possible unless k = §J or b is an empty
production. Therefcre, the azbove two processes cannot be simul taneously
present.

Lemma 5: In parsing based on an unambipguous grammar and the typel POPS,
the number of G-type processes which are generated during the parsing is
Oln2}.

Proof: A t-type process has & elause in the format, a(k,L)<-true, and
is pgenerated in these two cases;

{2) When an active process that has "x(i,J)<-a(k,L),rests" as a
clavse iz derived

(b) When & waiting process that has a clause in the
a1, J)=-»x(k,L}" format receives a meszage

First we assume k is fixed. Since the grammar is fixed, the number of
'a'-related unit clauses is constant and the number of grammar rules
whozse body contains 'a' is also constant. According to the condition
0<=id=n, the process with the elause "x(1i,J)<¢-al(k,L),rests" produces as
many as m+1 t-iype processes. Thus in ease (a), O(n) processes are
generated. Since, in (b}, the number of grapmmar rules that have 'a' as
their heads is on the constant order, and i for.each rule fzlls within
the range, 0<=zi<=n, alsc 0(n) processes are generated. Therefore the
nuober of processes generated for a(k,L} iz O(n).

Because k satisfies 0<=k<=n, a total of O(n2) t-type procezses are
generated.

Theorem 1: In parsing based on an unambiguous grammar and the typel POPS,
the ocorder of the total parsing time is 0(n2) where n is input =entence

length.,

Proof: Using Lemma 3 to §, the order of total parsing time is estimated
as follows:

{t-type process cost) x (number of t-type proceszes) +
{n-type procezs cost) x (number of n-type processes)
0{n) x 0{n) + 0(e) x O(n2)

0i{nz)

m n

Page 9

3.4 Type? POPS and ambiguous Graomar

This subsection examines parsing time order using type2 POPS and a
anbiguous grammar, The estimating strategy is same as that of previous
section.

lLemma 6: The n=type and t=-type process cost of type2 POPS are as
follows;

n-type procesa cost: O(n)
t-type process cost: O(n)

Proof: The difference between typel and type2 POPS definition is that
type? POPE executes "is new _messzape™ operation which costs O(n). Then
the n-type process cost is same &5 that of typel POPS and t-type process
costs is O(m) because of "is_new_nessage" operation,

Hext, we estimate the number of n-iype processes and t-{ype processesz to
be penerated during the entire parsing.

Lemma 7: In the parsing with ambipguous grammar and type2 PFOPS, the
number of n-type processes which are generated during the parsing is
Gln2).

Proof: The proof of Lemma 3 can be modified teo provide the n-type
process number in this case. The modification is that the number of the
processes which can be associated with one channel head pair is O(ml.
This is because the given grammar is ambiguous one, Then the order of
n-type process number is given as follows:

{(number of channel head pair) x (n=-type process number) =
Oin) = 0(n) = G(n2).

Lemma 8: 1In the parsing with ambigucus grammar and type2 POPS, the number
of t-type processes which are generated during the parsing is 0(n2).

Proof: The proof of Lemma 5 can also be applied to the parsing with
types POPS and an ambiguous grammar. Therefore, the number of t-type
processes 1s 0(n2).

Theorenm 2: In parsing based on an ambiguous grammar and the type2 POPS,
the order of the total parsing time is O(n3} where n is input sentence

length.

Froof: From Lemma & te B, the order of the teotal parsing time 13 given
by 2

([t-type processz cost) x (number of t-type processes) +
{(n-type process cost) x (number of n=type processes)
= 0(n) x 0(n2) + O(n) x 0{n2)

= 0(n3)

Page 10

4, Farley's Algorithm, Earley Deduction, and Chart Parsing vs. POF3

This seotion compares POP3-based parsing (execution of a DCG
with analyses by other parsing algorithms.

4.1 Earley's Algorithm vs, POFS

program)

Barley's alporithm is a "Oood practical algorithn" of a CFG, It
gererates an (n+1) x (n+1) recognition matrix for an n-long input

string. iz shewn in Fig.2, the recognition matrix has

elements

copsisting of grammar rules and a meta-symbol, and includesz-all parsing
trees. MNote, unlike the POPS-based parsing, &all parsing trees are
generated from the recognition matrix by the algorithm. Fig.3 shows the

Farley's algorithm in the bit vector version.

For details of the algorithm, see [Harrizon T&]. Here we describe
only some key features of the algorithm. The basic operatioms in the

algorithm have the fellewing functions:

predict Expands a collection of nenterminal synbols according te

a granmar rule. (Top-down predicticn).
ex, For 5-»4,B, A-»a, 4 -3D,E,
predict({S}) = { S->*A B, A->#a, A->®D E }

begin PRV A POt i PRt Rl
t<0» = predict({z}) Emra |E=er | ;f—;..F)
0 i
0 . ! [
for j := 1 to n do §“§2£~;"iz-£u£:-s¢~
begln E=cg |E=ur .:-.:-:EE
scanner
Le> 1= b<3=1> ® [adid);
computer:
for k:=j=1 down to 0 do E=rEsE |E— Eref
by = wdd> U (t<k> # tak, 3> i:f*fi:ﬁff
predictor: il =
t<j, > := predict(U t<i,J>)
where D€id]
end
and
Fig.3 Earley's parsing algorithm Fig.2 FRecognition Matrix for

the input "a+a®a™ with

the grammar E-> a | E+E | E®E.

Page 11

scanner Collates a top-down-predicted terminzl symbol with amn
input symbel,
ex. Iy in the previous example, the input string
contains "a" for the prediction, A->*a, this operation
adds "i->a®" to the recognition mateix.

computer When "scanner® recognizes z nonterminzl symbol, this
operation generztes 2 new element from the recognition
matrix element that has already predicted the symbol
recognized by the scanner. The new element is added to
the matrix, Thisz computation iz applied repeatedly as
many times as possible (depending upon the growth of the
bottom=-up tree).
exX. S=2A%C is generated from A->a® and S->#4 C

These operations relates to the POPS operaticns as follows:

Earley POPS
predict Generation of a child process by
"oreate_ new_processes" operation.
SCEnneEr Processing of a terminated elausze, that is,
"terminate and "send message™ operation,
compuker Transfer of a message from a child process

and the generation of a new process, that is,
"send message™, "wailti_receive™ and
fareate_new_process" cperation.

Hecognition matrix elements of Earley's algorithm can be direetly
associated with POPS processes. Thus, Earley's algorithm is equivalent
with the POPS in parsing operation. A basie difference is that while
Earley's algerithm funetions Gte pgenerate 2 recognition materix, POPS
sparates Lo obtain all parsing trees. Therefore, the generation of =
recognition matrix by Earley's algorithm that reguires 0{(r3) time
corresponds to the parsing with type? POPS and an ambiguous grampmar
which requires 0(n3) time.

4.2 Barley Deduction ws. POPS

The Earley Deduction proof procedure schema based on Earley's
alporithm is applied to two sets of definite elauses: program and
state. A "program™ is a set of input eclauses corresponding to an input
string and remains wunchanged during deducticon. A "state" is a
collectlion of derived clauses and expands during deduction. Each
derived state has a selected negative literal. The derivation rule maps
the current state to new state by adding a new derived eclauwse to the
currant state, and econsists of "instantiation™ and Mreduction®,
"instantiation™, an equivalent of the operation fprediot" of Earley's
algorithm, tries to unify a selected literzl of a clause with a positive
literal of non-unit clause, and if succeeds, adds the unifieation result
to the ecurrent state. By econtrast, "reduction" unifies a sslected
literal of 2 clause in the current state with a wunit eclause 4in the

Page 12

program and current state, and adds the derivation result to the current
atate. When the derivation result has already been subsumed by a clause
in the ourrent state, however, the addition is not rperformed.
tpaduction” can be related to the "scanner" and "computer™ cperatiens of
Earley's algorithm. The operations of Earley Deduction can be
associated with the POPS opersticons as follows:

Earley Deduction POPS

instantiation "alauses™ and "ereate_new_processes"
operations.

reduction fsend_mess", "wait receive" and
"ereate_new_process" operations.

subszume check fhoard_access" cperation.

This relationship permits POPS to be considered an Earley Deduction
processing system with these features:

{1} The POPS uses the idea of multiple processes and
neszage passing as the base for computation to
explicitly express parallel ism.

{(2) POPS introduces channel connection teo optinmize
the state search operation in reduction mode of Earley
Deduction.

{3} POPS processes correspend to Earley Deduction's state
elements. [Note POPS processes disappear, eventually
leeving the board alone.

{4 While Earley Deduction requires clauses to be
subsumed, the POPS requires nothing but the checking
of the eguivalence of a selected literal,

(5] While & selected literal in Fapley Deduction is any
of the subgozls, in POPS, it is asscciated with the
head subgoal (AND-serial left-to-right interpretation).

Thus, the POPS can basically be considered an equivalent to the Earley
Deduction. However, with an additional channel concept included, POPS
can perform processing which can't be performed with Earley Deduction.
This feature will be described in Section 5.

4.3 Chart Parsing vs. FOPS

Chart parsing is a general framework for CFG parsing algorithms
featuring the use of a data structure, Chart, for bookkeeping.

The status of the parser is represented by a chart consisting of
directed graphs. A node on a chart shows the position of an input and
an edge corresponds te an applleation of a grammar rule. For further
details, see [Kay 801, [Winograd 83], and [Hirakawa 83]. According te

Page 13

[Pereira 831, Earley's parsing algorithm can be considered an example of
Chart parsing. M=o according toc the report in which the parsing is
regarded as deduction (ex. Earley Deduction), the following holds:

(1) Chart parsing 1s a proof procedure using chart nodes
2z special arguments.

(2) A proof procedure provides a framework of an expanded
CFG ("gzp" and "dependency" processing).

Because POPS basically is an eqguivalent of Earley Deduction as
deseribed in the previous subsection, the above discussion by Pereirs
can also be directly applied to the relationship between Chart parsing
and POPE. In econelusion, Fig.d gives the interrelaticonship among the
parsing algorithos deseribed in this section.

5. DMscussion

Uzing channels as message-transferring paths, POPS permits processes
to zlways send a message, & channel forms an 'unbounded buffer'
[Takeuchi B3]. The characteristic of the POPS channel determine the
overall computation behavier. If we introduces an '"bounded buffer'
communication to the POPS, the system operation ean be controlled. That
is, the unbounded buffer enables the computation to be executed in an
eapger manner, while the pounded buffer in a lazy fashion. While the
FOF3-based parsing is basically eguivelent to Earley Deduction in
parsing operation, POPS can perform Earley's algorithm in this flexible
manner. Eager &nd lazy executions will be reported on znother paper
[Hir 84].

6. Conclusion

This paper described the natural languzge parsing as an application
field of the POPS and estimated the computation time required for CFG
parsing, then compared the POPS-based parsing with analyses by other
parsing alporithms. Az a result, we ound that POPS-based parsing cen

-

Earley Deduction and POPS

Chart Parsing

Earley's parsing algorithm
and Parsing in POPS

Fig.b The relation between POPS and other systems

Page 14

apalyze an input string on the same time order as Earley's parsing
algorithm when the parsing time estimate is done with the input string
length as a parameter, Also this paper shows POPS has a cleose relation
with Earley Deduction system whieh i= a generalization of Earley's
parsing algerithm.

Aekrnowledgement

We would like to thank Konde for his suggestions on the algorithm
analysis, and Shibayama, Sakai and Yokomori {at Fujitsu Kokusai
Laboratory) for their discussions on the parzing time order.

References

[Pereira 80) Pereira, F. and Warren, D, H.: "Definite Clause Grammar
for Language Analysis -- A Survey of the Formalism and a
Comparison with Augmented Transition Networks," Artificial
Intelligence, 13, pp. 231-278, May, 1980.

(Pereira 83] Pereira, F, and Warren, D. H.: "Parsing as Deduction”,
ZRI Techniezl Hote 295, 1933, '

{Matsumoto £3] Matsumoto, Y., Tanzka, H. et. al,: "BUF: A Bottom Up
Farser embedded in Prolog", Mew Generation Computing wol. 2, 1983.

[Harrison 78] Harrison,M.A.: "Introcduction te formal Lznguage Theory®,
Addison Wesley pub., 1978

[Kay 80] Kay,M.: "Algorithm Schemata and Data Struectures in Syntactie
Processing", Xerox Technical Report, 1980.

[Shapire B3] Shapire,E.Y.: "A Subszet of Concurrent Proleg and Its
Interpreter", ICOT Technical Report TR-003, 1983.

[Takeuchi B3] Takeuchi,A and Furukawa,K: "Interprocess Communication
in Concurrent Prolog", Proe. of Logic Programming Workshop, 1983,

[Hirakawa 83) Hirakawa,H.: "Chart Par=sing in Concurrent Frolog™, ICOT
Teshnical Report TR-008, 1983.

{Hirakawa 83] Hirakawa,H. Onai,R. and Furukawa,K.: "Implementing POPS
in Conecurrent Prolog”, ICOT Techniecal Report TR-020, 1983.

[Hirakawa B4] Hirakawa,H. Chikayama,T. and Furukawa,K.: "Eager and
Lazy Epumerations in Concurrent Proleg", ICOT Technical Memo
Ti-036, 1984.

[Winograd B3] Winograd,T.: "Language as a Cognitive Procezs", Addiscn

Page

Weszley pub., 1978.

[Aho T2] Aho,A.V. and Ullman,J.D.: "The Theory of Parsing,
Translation, and Compiling, wel.1 Parsing", Prentiee-Hall pub.,

1972.

[Ezarley 68] Earley, j., ™An Efficient Context-free Parsing
Algorithm,™ Ph.D. Thesis, Carnegie-lMellon University, 1968.

15

