ICOT Technical Report: TM-0065

Th (0G5

An Operating System for Sequential
Inference Machine PSI
by
Takashi IHATTORI, Toshiaki KUROKAWA.
Ko SAKAL Jlunichiro TSI,
Takasht CHIKAYAMA
Shigevuki TAKAGI, Toshio YOKOI

June, 1984

LICOT, 1984

Mita Kokusai Bldg, M1F 15 456-3191 -5
[(:D I 428 Mita 1-Chome Telex TCOT J32964
Minato-ku Takyo 108 Tapan

Institute for New Generation Computer Technology

An Operating System for Seguential Inference Machine PSI

Takashi HATTORI, Toshiaki FKUROEAWA, Ko SARAI, Junichire TSUJI,

Takashl CHIKAYAMA, Shigeyuki TAFAGI, and Teshio YOKOI

Inatitute for New Generation Computer Technology
Mita Kokusai Building 21F

1-4-28, Mita, Minato-ku, Tokyo 108, JAPAN

Abstract

SIMPOS (Sequential Inference Machine Programming and Operating System) is
a2 programming and operating system for sequential Iinference machine P3I under
development at ICOT. This paper discusses the reasons for adopting an
object-oriented approach in 3IMPOS, and explains the construction of the SIMPOS
operating system by using several examples., The current state of development

is also given in brief,

Table of Contents

1. Introduction

2. Conceptual Framework
2.1 Object-Oriented Approach
2.2 ESF

3. System Construction
3.1 System Constructs
3.2 System Structure

4, Implementation Examples
4.1 Simple Class
4.2 Inheritance

5. Conclusions

1. Introduction

SIMPOS (Seguential Inference Machine Programming and Operating Syat.em_} [4]
is a prograoming and operating system for sequential inference machine PST [1]
under development at ICOT, P2T is considerad to be both a workstation for
rezgarrch and development in logic programming, and a pilot model for future
lnowledge informaticn processing systems (EIPS). SIMPOS was designed and is

being developed as system software suitable for these dual purposes.

The processor and main memory are designed in such a way that PSI can
execute fast and efficiently its Prolog-based machine languape (Kernel Language
version 0, or KLO) [2]. 1In addition to Winchester and flexible disk drives, it
is equipped with a bit-mapped display and an optical mouse in order to enhance
the man-machine interface. It also supports a local area network (LAN) =o that

resources and information can be easily shared among _PSIa.

—— 1= psil
TEE T)
! f==1 f==//
Fo N /i
L
screen | === B3I} 'y
| === H FALA
i] { | ’
b osess, I | | r
O I T T | | /7
} | {2z, P ! |==z==zzzz====//
| | | f====z===z| | i
H i o
H i \
— i i
J ====zcacszzscamzzzz | - i
f =====ssssssss=omcos 1
f \ mouse
keyboard

Figure 1.1 General View of P3I

SIMPOS ains mainly at providing an exaellent programming environment by
effective use of these hardware devices. The SIMPOS programming systenm

includes:

© program/text editing facilities
¢ progran debuggine facilities

o program library facilities

The operating systen [5], underlying the programning system, supports:

o multi-processing
o multiple windows
o filing and direstory management

o networking

In the following, we will discuss the conceptual framework of the SIMPOS

operating system and its structure, and pive several implementation examples.

2. Conceptual Framework

In designing SIIPOS, priority was given to simpliecity and extensibility,
rather than to varisty of facilities. It is partially because we could not
design and develop all the possible faprilities at once given our limited
man-power and schedule, and also because we thought it more important to

clarify the conceptual framework underlying the system structure.

If an operating system is designed only from the functional aspect of the
System without any conceptual framework on which to base these facilities, the
system will have sufficient funetiens for the time being, but it may be too
rigid to be modified and extended in the future. A= SIMPOS will be

2

continuwously modilfied toe provide varicus functions, we first selected the
conceptual framework of SIMPOS, then specified the required facilities based
upen it. Our conceptual framework is an object-oriented approach, and our

programming language is ESP [3].

2.1 Object-0Oriented Approach

Prolog, from which the kernel language FLO was derived, has two drawvbacks

for describing an operating system.

One of these is that Prolog cannot express side-effects. (Although Proleog
has the built-in predicates, 'assert' and "retract', to express side-effects,
they cannot be implemented in (pure) Prelog., These predicates are not built-in
te FLO, because they are too complex to be implemented as machine
instructions.) The concept of state is necessary in the operating system,
which manages and controls the various system resources, Side-effectsz give us
an easy and efficient means for representing states, It iz possible, but not
feasible, to express states as Proleg terms and to simulate state transitions

by creating a2 new term for each time.

The other drawback is that Proleg lacks a modularization mechanism,
Software developed and used by many people, such as an operating system,

requires some method of modular programming.

We have chosen an object-oriented approach as the means by which to solve
both of these problems at the zame time. This approcach has been effectively

adopted in other systems [10][11].

(1) Object

SIMPOS defines an object externally by a set of operations which are
allowed on the object (or which the object accepts), and internally by a set of
clauses and slots., The clauses deseriba the operation procedures, and the
slots hold values or ather objeets to express the state. When an operaticon i=
performed on it, the cbject executes the elauses of the operation, refering to
and changing the contents of the slots., Tt should be noted that as leng as the
external definition remains unchanged, the internal definition of an object can

be modified without affecting the callers of the object,

An object is represented =z= a (heap) vector in KLO, and is identified by
its loecation, used as an object pointer, The First element of the vector holds
the FLO code that is executed when an operation is called, The other elements

are used for slots, Figure 2.1 illustrates the representation of an objeect,

object object

pelnter

=czz===23] N T !
— - i code !
I_ I i !
: slots : ! !
— I
-

Figure 2.1 Representation of Object

(2) Class

A set of objects that behave in the same wanner is defined as a alass, &
class definition gives a template for all objects of the same class; each

objeet is instantiated from this template.

(3) Inheritance

Inheritance allows & new class to be defined using other classes. If clasas
'a' inherits class 'b' and elass 'e', class 'a' has, externally, all the
operations of 'b' and *e', in addition to the operations defined in itself.
Internally, the «lauses of the same operation are ORed, and the slots are

combined.

Inheritance is an "is a' relation between classes. A 'has a' relation (or
the reverse of 'is_part of') is another kind of relation. If class 'z' has
elass 'b' (ar more precisely, has an instance of class 'b'), class 'a' is said
to Thave a' class '"b'. We will not introduce the 'has_a' relation in SIMPOS;
rather, the 'ls a' relation is uscd for comparable constructions. Class
'a_having b" iz defined by inheriting both class 'a' and class '"with_b' which

has an instance of clasz 'h'.,

{4) Demons

Hhen an object consista of several component objects, an operation on the
object may act on these components as well. If many classes are to have these
components, it is unwise that sach of the classes should define explicitly the
operations performing on its components. Instead these classes should be
constructed simply by inheriting a class that has Lhese components and defines
operations on them. Demons (demon calls) provide an easy way that allows such

class constructions.

Azsume that demon predicates are defined in the inherited component
classes, The demons are AlDed with the primary predieczte of the inheritor
claszs, (Note that the inherited primary predicates are ORed &3 mentioned

above,) When the operation on the object is called, the demon predicates are

also called implicitly. Two types of demon calls are supported: ‘'before?
demons and 'after' demons. A4 'before' demon is called before the primary

predicate, and an 'after' demon is called after the primary predicate.

It should be pointed out that 'before! and 'after' demons are not always
sufficient te construct a class having many component classes using multiple

inheritance.

2.2 ESF

ESP is a Prolog=based object-oriented programming language used to describe
SIMPOS. A class definition in ESP is Elven in the feollowing syntasx:
elass <class_named
[<wacro bank declaration®]
has
[<nature definition> :]
{ <class slot definition> : }
{ <class clause definition> i}
[instance
[<instance slot definition> i1
{ <instance clause definition> N
[local

{ €loeal clause definition> L
end,

A3 seen above, the class definition consists of five parts: macro,

inheritance, elass, instance, and local. The manoro pirt does not conecern us

hare,

The inheritance part listz the component classes which this class inherits,
The clause definitions given in these component classes, including those

defined in this elass, are ORed in the order in which they are listed,

The class part defines the olass objeet that is used to ecreate objeots of
this class or to refer to the features comnon to all objects of this class,

i

This part has two sub-parts. The zlot definition defines the slots of the
class object, and the clause definition defines the operations that the class

object accepts.

The instance part defines the object template, This part also consists of
two sub=parts. The glot definition defines the slots that an instance of this
clags will have, and the clause definition defines the operations that this

instance will acecept.

The loezl part defines Prolopg predicates that can be called only within

this class definition.

3. System Construction

The facilities that the operating system supperts are defined as olasses
and provided zs the instances of these classes. This section discusses how the

operating system iz constructed with these classes.

3.1 System Constructs

Objects of the classes defined by the operating system are called system
constructs. The baszio features of the operating system will be provided only
with a limited number of the elementary system constructs, each having minimal
facilities, Additional facilities can be provided on top of these elementary
classes. The selection of elementary constructs is ecrucial to achieve a siuple
and conslstent operating system. A processing model is introduced to represent
the system, and the operating system defines the classes to implement this

model. Two aspects of the model are program execution and input/output.

(1) Execution model

In 5IMPDS, an execution entity is called a process, Many processes may
exist in the system. Within iis own execution environoment, each process
executes the a2 given program which performs operations on objects and calls
Prolog predicetes. When necessary, a process can coomunicate with other
processes Lo work in cooperation. A process may also have a collection of

objects in a pool.
To support this model, the following elementary classes are provided:

0 process -=- execution entity
¢ siream -- inter-preocess connunication
o pool -- abject storage

o world -- execution environment

Several eclasses, such as 'processor' and ‘area', are defined to represent
the hardware resources, but they are not be used directly by application

programs.

(2) Input/output model

A process performs input/output fo communicate with the outer world. A4
Window iz used to communicate interactively with the user, a file is used to
store and retrieve data in disk storage, and a network is used to comnunicate
with other machines., I/0 operations are inplenented as operations on the

objects representing windows, files, and network.

The physieal ifo deviees of PSI are also represented as objects. Classes,

such as 'disk' and 'keyboard', are defined.

3.2 3ystem Struecture

The operating systen divides system construects into three layers: ife
nediun systems, the supervisor, and the kernel (see FPigure 3.1). The i/o
nedium systens support logical input/output [7] [8) [9], the supervisor
supports the execution model [6], and the kernel manages hardware resources,
including physical input/output faecilities. Systenm constructs are
hierarchiczl, i.e., those defined in the lower levels are used by the upper
levels, but not vice verza. This layer approach clarifies the structure of the

system.

o

rogramaing systen
Coordinator Editor Interpreter/Debugger Librapy

1 |
1 I
' !
I 1
I i
| Operating systenm |
I 1
I ""l""‘ll'....l""lil"""."‘i‘"'i"l-""".l..l
i : I/0 pedium systens |
1 : Yindow Netwerk File Printer {
I a i
i T, R R W R E W R [sassmasmnma |
: : Supervisor '
i Process Pool Stream World Timer '
[l

i

(]

i

! Hardware |
I 1
[il

Figure 3.1 Layered Structure of SIHPOS

4, Implementation Examples

In this section, some implementation examples are given to show how the

SIMPOS operating system is constructed using an object-oriented approach,

4.1 Simple Class

We take class 'file' as a simple example of a system construet,

This class

provides the facilities for accessing a file in disk storage. Part of the

elass definition is:

elasga file has

attribute
pool_of_filesg;

rereate(Class, File):- I,
new{Class, File);
& Instantiate an object,

imake(Class, File, Pathname):- !, % Create z new file,
inew{Claas, File),
iereate_file(File, Pathnpame);

topen(Class, Pile, Pathname):= I, % Open an existing file,
iretrieve(Class, File, Pathname),
4 Hetrieve the physical file by its pathname.

:open(File);
instance
attribute
region, % keeps the physical file region
opened := no, % open/close flag
disposed, % dispose flagp
io _status;

icreate_rile(File, Pathname):= .,.:
Create the physical file by the given pathname.

:open(File):- ...; % Open the file.
:elose(File):- ,,,; % Close the file,
:dispose(File):~ ...; % Dispose the file,
end.

A file accepts operations such as "open' and 'elose' as defined above, and

has several szlots ('region', 'opened', 'disposed' and 'io_status') to represent

various attributes, The class object of claszs 'file' accepts operations such

as 'make' and 'open'. It has the class slot 'pool_of files', which manages

10

opened files.

Hote that class 'file' actually inherits several classes, ineluding the

classes 'as permanent_object', "as resource', and 'with_lock'.

4.2 Inheritance

Inheritance is esscntial for defining various clasgses that have additional

Features to those of the elementary classes.

{1) S8ingle irheritance

Although ESP supports multiple inheritance, it iz still peossible and of ten
e2sy to produce a systom construct {or to define a class) using single
inheritance., Uith single inheritance, a new class is defined by inheriting a
superclass and modifying it. Hodifications are made by adding new operations

{clauses and slotz) and by overriding the defined operztions.

It should be noted that inheritance plays different roles in spocification
and implementation. In specification, where external definition is relevant,
if' an operation is considered to provide the same functionality in all the
subclasses (the classes which inherit the superclaszs), it should be specified
in the superclass., However, its implementation may differ from one subclass Lo
another; in such cases, a different definition must be provided in each

subclass.

For exanple; class "binary_rile' is defined by inheriting eclass 'file':

class binary file has
nature

11

file:
inatance

:read(Binary_file, Buffer, File marker):- aeat
% Mead the record at the file marker into the burfer,

iwrite(Binary file, Buffer, File marker):- ...;
% Write the record in the buffer at the file markapr,

‘tap(Binary_file, File tap):- !, # Crezte a tap of the file.
tereate(#binary_file tap, File tap, Binzry file):

and.

This class does not override the operations defiped in class '"file', but it
adds new operations, such 25 'read' and 'write'. Hote that externally these

operations should rather be defined in class 'file’.

{2) Nultiple inheritance

Vith multiple inheritance, we should take a different approach. First we
decoagpose the necessary facilities into abstract classes, then build concrete
classes by selecting from these. Conerete classes are those which ean
instantiate objects, whereas abstract classes provide a set of faecilities to
the conerete elasses, However, it is not always easy Lo define an appropriate
set of abstract classes., In pracgtice, we will make use of both single and

multiple inheritance,

The window system is a pood example of how multiple inheritance is used.
Various types of windows can be defined using multiple inheritance from the
window=building elasses., For example, 1 some windows have borders, some have
labels, and others have both, then an elementary window class, a elass having
a label, and a class having a border are defined as window=-building classes.
Windows having the required features are defined by inheriting these classes,

12

Clasz 'bare window' is an elementary class that all window classes must

inherit either dirgctly or indirectly.

elass bare window has

neture
with_display, as_inside, & .

rereate{Cizss, Parcmeters, Yindow) - % Create 2 new window.
inew(Class, Yindow),
tinitialize(Windou, Paremeters),
istart(Window) ;

instancge

atiribute
width, height ;

irefresh{liindew) = 1,
iget_size(Window, Width, Height),
ielear_rectangle(Window, 0, O, Width, Height) ;
:initialize(VWindow, size(Width, Heipht)) :- I
Uindow lwidth := Width,
Windowlheight := Height ;

end,

Class "with_beorder' supports fupnctions that drav & window border. The

border consists of the four lines which outline the window.

class with_border hos

nature
as_insdde, # ;
instance
component
border_x, border_y,
border_area width, border_sarea height :
attribute
border_flag i= on,
torder_width = 2
idrav_border{Window) := ...; % Draw the barder.

13

alter irefresh(indow) :=
Uirndow!border_flag == ¢, 1 ;

after :refrean(iindow) :- I,
rdray_border(Window) ;

end.

Clasgs "with_label' supportz functions that drav & window label. The label

shows the naoe of the wirdeow.

clazs with _label has

nature
ag_inszide, #, as label ;
instance
sdraw_label{Vindouw) :- ,,, ; & Drew the label,
relear label(Vindow) :- .., ; % Erase the lzbel.

irefresh_lzbel (Window) :-
telear label({Window),
tdraw_labal(Window) ;

after :refresh{lindow) :-
irefresh label(Window) ;

end.

Class 'zg lzbel', which is inherited by elass 'with_label', provides

conerete faecdlities for labeling a window,

A WUindow that has beth a border and = label is instantiated from the

following elass:

class window_with_border_and label hzs

nature
bare windew, with_border, with_label;

end.

In the above window class, the 'refresh! predicate uszes demons. Class

14

'bare_wincdow' has the primary *refresh' predicate, which refreches the window
arez. Class "with_label! and class 'with border' heve 'af'ter' demenzs of the
'refresh' predicate, Refreshing this window first clears the windeow arez, and

then redraws the border and the label,

. Coneclusions

The design of SIITPOS was bemun at ICOT in the fall of 1982, and the
functicnal specification was prepared et the end of fiscal 1982. In June 1933,
a soltuare group was established for the detailed functional specification and
ioplenentation. After several modifications, the class specification was

Finally completed at the end of fiscal 1083,

In parallel with these activities, the requirement specifications of ESP
were discussed and finalized by the summer of 1983. The lanzuage design and
implementation of ESF was then started. The ESP support system is now
operationzl on a development system. It includes an ESP eross compiler, an ESP

cross linker, and an ESP simulator,

SIMPOS has been coded in ESP from the class specificationz., It is now
under cross-debuggping on the ESP sipulator. Sinoe PSI was made available to
the software group in larch 1984, some programs have been ported to P3I and are
also being debugped on this machine, The preliminary version of SINPOS will be
ready for internal uses at the end of September, and the first version will be

completed at the end of the current fiszcal year.

From our experience with 3IMPOS, we feel that the object-oriented approzch
is an effective mezns of reducing the effort of both specification and
implementation. However, one of the well-known drawbacks of this approach is

15

the overhead orizinated frem ite dynamic nature of execution., Since SIMPOS is
not conpleted as & running system yet, it is too early te judge if our
approach, eventually SIMPOS, is alzo accepiable in terms of efficiency.
Considering that nost conventieonal operating systens are foresd to chenl passed
paramelers at run-time, we are hopeful that our epproach will not significantly
degrade systen perforzance, 2s it does not require such checking {(an chject=-

oriented ezll performs this funcetion),

Acknowledpgement

We would like to thank all the members of the software group for thelr
aciive involvenent in the =IMDOS project, and glso the File and YWindaw

Subgroups for providing the class definition eranples given in this paper,

Reference

(1] 5.Uchida, et al., "Outline of the Personzl Sequential Inference llzchine
P5I", Hew Generation Computing, vol.T, ne.1, 75-79 (1983).

(2] T.Caikayama, "XLO Reference Hapuzl®, to appear as ICOT TR,

[3] T.Chikayana, "ZSP Reference Hanual"™, ICOT TRE-O44 (Feb. 1984).

[4] 5.Takagi, et 2l., "Overall Design of SIMPOS", ICOT TR-05T (April 1984) and
to appear in the Proceedings of Second International Logic Programming
Conferonce (July 1984},

(5] T.Hattori, et al., "SINPOS: An Operating System for a Personal Prolog
Machine PSI", ICOT TR-055 (April 1984),

[6] T.Hattori and T.Yokoi, "The Concepts and Facilities of SIMPOS Supervizar",
ICOT TR=-05&6 (April 1984),

[7] T.Hattori and T.Yokoi, "The Concepts and Facilities of SINPOS File System",

16

IC0T TR-050 (April 1084},

[8] T.Hatteri and T.Yokoi, "The Conceptz znd Faeilities of SINMPOS Networl
Systen™, to appear as ICGT TE.

[6] J.Tsuji, et al., "Dizlosue llanagement in the Personal Seguential Inference
Mfachine {PSI)®, ICOT TR-0Qu& (Harch 1984), and also to appear in the
Proceedings of ACH "84 Arnuzl Conference (Oct., 1984).

[10] A.Goldberz =znd D.Robson, "Smalltalk-80: the Langpuage and its

Tmplementation®, Addison-lesley (1983).
[11) D.Weinreb and D.Moon, "Flavers: lessage Passing in the Lisp tlachine",

A.I.lMena o 602, MIT A.I.Lzb. {lovember 1880}.

17

