ICOT Technical Report: TM-0059

TM-00:9

PROBLEMS IN DEVELOPING AN
EXPERIMENTAL SYSTEM
ABLE TO REUSE EXISTING PROGRAMS
hy
Yoshiaki Nagai, Eiki Chigira, Masakazu Kobayashi
{Hitachi, Lid.)
Kouichi Furukawa

{(1COT)
April, 1984
CHCOT, 1984
Mita Kokusai Bldg. 21F {03) 456-3191~5
|DDT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

ABSTRACT

This paper discusses an experimental system for reusable software engineering,

Software productivity can be greatly improved if a "software recycling” system is
developed which, given a regquirement specification, extracts required program
parts, and combines them into a new program.

As a first step toward this goal, an expert system is developed which contains
knowledge of skilled program designers as well as standard program parts.

In this paper a behavior model of a designer is first presented who wants to reuse
existing software. Based on the model functions are defined which are necessary
to support the designer. Behavioral models are studied in detail. This functional
analysis leads to the use of a blackboard-type inference engine as the problem
solver of the system, since the inference engine must have complex problem
solving facilities.

This paper also discusses the use of a knowledge programming language/system,
called Mandala, to implement the experimental system.

Finally we also consider the syntax of preduction rule for the inference engine in

arcordance with the syntax of Mandala.

1 Introduction

Recently, reusable software engineering technology has attracted public attention
as a very reliable tool capable of enhancing software productivity. This is because
the reuse of existing software will bring about many favorable effects, such as
streamlining development procedures and test work, simplifying maintenance,etc.
Reusable software engineering will be a key technology for software development
in the future.

Future reusable software engineering systems are expected to be able to :

1) use only parts of existing programs in accordance with the specifications of new
software.

2) synthesize these parts.

3) modify these parts.

Research on these activities is proceeding in ICOT, We should be able to apply this
research to the development of the first.

However, this paper concentrates on fundamental steps necessary to realize the
seconds.

As a first step, we must recognize the following givens :

1) Standard program parts have already been stored in a data base system.

2) Suitable parts must be selected from the system for a new program.
3) These parts must be put together to form a new program.

Generally, a skilled program designer must utilize this process. Therefore, we seek
to develop an expert system with the knowledge of such a designer in order to
implement these functions.

We first present a behavior model of a man who wants to reuse existing software.
We then study certain functions necessary to implement an experimental system

which will allow him to do this. Next, we develop detailed models for this system

by functional analysis.

In module design, we developed some programs to realize the functions.

Finally, we discuss problems, particularly how to generate the blackboard-type
inference engine coded in Prolog, how to merge the Mandala and blackbeard-type

inference engine, and how to represent the format of a production rule.

2 Cognitive Study of Software Reuse and Necessary Functions

2.1 Cognitive model

We shall construct a madel in which a skilled designer wishes to produce a new
program specification reusing existing program parts. Suppose that the domain of
the new program is business use.

(1) A program designer designs a 'rough’ specification of a new program.

(2) He marks groups of parts applicable to the new specification.

(3} He selects one part from each group.

(4) He modifies these parts.

In this model, there are two decision processes in the design program, one in which
program parts are selected and modified, and another in which a program logic is
configured. |

This model shows a procedure of program design after the system was already
designed. Therefore, the information input to and output from, the functions of,
and the file names used by the system are fixed. In designing a 'rough'
specification, program functions must be fixed, while keeping in mind the relation
between input and cutput information.

Next, the designer confirms the logical flow of the program functions,
simultanecusly marking the program part in accordance with the required
specification. Alternative program part combinations are generated in the process,

and a few are selected by trial and error.

L

Third, the designer studies the logic of the program parts and determine which
parts meet his "expectations". In this process, the logic of the new program is fixed
and the new specification completed. A model illustrating these processes is shown
in Fig.l.

2.2 Functians necessary for the system.

The concept of a system reusing program parts will be discussed in this section
based an the model described above,

The model is divided into two submodels:

1} determining the part to be reused,

2) modifying this part.

(1) determining the program part to be reused

An expert system must have at least a mechanism for reasoning and the relevant
knowledge in order to be able to select a program part.

The first output from this inference engine is a logic chart involving a whole
specification for the new program. This cutput shows that the system reasons what
kind of program is to be solved.

The second output from the engine is the reusable program parts. When 'Ehe expert
system comes to understand the program, it reasons how the problem is to be
solved. It then, outputs the reusable program parts.

(2) modifying the program part

Modification of pregram parts selected by a systemn with the knowledge of an
experienced program designer will be considered.

In the reconstruction of any pregram part, man illustrates the problem, finds the
difference from the standard part, writes down the new information, and finds
related information. He then modifies the part.

With some information, text or sentences may be maore useful than illustrations to

display the relationship between information represented by sentences and
illustrations.

To implement this system, the following two functions are necessary.

{1} Simultaneous display of illustration, text and sentence for part specification.

(2) Logical connection of information between picture and sentence.

These concepts are shown in Fig.2.

3 Operational Madel of First Implementation

We shall present an example of a file collation program produced by selecting the
proper parts from many standard program parts, modifying them, and combining
them into one program.

(1) Questions from the system{initial questions)

Fig. 3 shows a frame of first communication between man and system. As the
answer of 'autline of process' was 'file collation', the question 'names of file' is
reasoned.

The system will construct a logic chart through these questions and answers.

(2) Logic chart output

As for the arrangement of a logic chart, the system reasons the functional model
that performs the collation of files.

Therefore, the system must have the knowledge necessary for combining any parts.
Fig. 4 shows the logical flow of the collation program.

It is impossible to determine the program part with regard to the matching process
of any records for file collation when the conditions of matching process are not
fixed.
(3} Question for program part selection

In this example, it is necessary to input the numbers of the key word for matching

1

and of 'control break' for writing an errar list.

After receiving this information, the system determines the best program part.

In this reasoning process, the system uses the knowledge it has for selecting
program parts.

[f we input information to the effect that there are two pieces of data in one
transaction file record in accordance with a matching key word and none for
writing the error list, we get the illustration shown in Fig.5.

(4) Support for program part modification

We consider the operational model of the program part editor as an example of the
pragram part 'read a transaction file'

The standard specification of the part is shewn in Fig.6 and 7. We shall add any
OUtput item to the part. In this case, the program designer writes some items, such
as mame of article, volume, unit price, sum’, in the display with text type. The
system will display this data in the logic chart box.

This completes a new specification for a program part, and the experimental

system will have accomplished its goal.

To implement this cperational model by computer, the system must have modules
of inference engine, knowledge and editor for modifying program parts.

We use the Mandala as an engine. However, we intend to develop a production
system which processes certain knowhow.

The editor for program part medification will be constructed with logic chart
editor, program part specificatien editor, and man machine interface.

These modules are illustrated hierarchically in Fig.3.

4 Problems in First Implementation

The following problems have arisen in the design and implementation of the

system:

1) How to implement a blackboard-type inference engine coded in relational
language such as Prolog.

2) How to design a blackboard-type engine consistent with the specification of
Mandala.

3) How to implement the syntax of knowledge represented by production rules.

We shall discuss each problem.

(1) Implementation of the blackboard-type engine code in relational language.

The blackboard-type inference model features

1) easy systemization of problem solving knowledge,

2) the ability to reason a complex problem by hypothesis on the blackboard.

We use the blackboard-type inference engine for complex problem solving.

A blackboard-type inference engine is constructed with forward chaining, backward
chaining, and reasoning using classified knowledge in accordance with the
hypothesis on the blackboard.

Backward reasoning is considered mechanically to contain {orward reasoning, so we
operated rule-interpreter in a blackboard-type engine using backward chaining.

The rule .interpreter and rule are shown in Fig.2.

(2) Designing the blackboard-type inference engine consistent with Mandala.

For implementation, we wanted to describe the blackboard-type inference engine,
which is a rule-oriented system, in the manner of the object-oriented system
Mandala. We considered the configuration shown in Fig.10.

Our proposed system is composed of Problem Solver, Program Parts Base, and
Explanation Handler. Problem Solver consists of three components : a unit world,
which includes methods for production rule interpreter ; a group of unit worlds for

production rule (knowledge sources), which is connected to the interpreter with

is_a link in Mandala; and a group of problem solver instances.

Program Parts Base is a kind of program part data base for a reusable software
svstem. Program parts are described and stored in the hierarchy of the system
with is_a link in Mandala. Explanation Handler explains the inference process
through the journal after inference or anytime the user wants to know.

Qur system is initiated when the manager of Problem Solver receives a message
about a problem and a request for problem solving. At this time, an instance of
problem solver (Problem Solver 1), decided by the user before inference, is created,
and interprets production rules in the unit world. According to the reasoning, some
required problem solver instances of knowledge sources are created and begin
reasoning concurrently. On inference, Problem Solver sends a message for refer or
update when the interpreter refers, updates, or creates instances of program parts.
Program Parts Base, which receives the message, searches the corresponding
program part object, changes the state, and replies to Problem Solver.

The instance, created in Problem Solver unit world (for example,Problem Solver 1),
sets some commonly shared variables when it proceeds to reason.

Thus, several problem solver instances can reason concurrently.

The area of these commonly shared variables is called blackboard, a kind of short
term memory, and on the blackboard some hypotheses are constructed in the
reasoning process. The blackboard is a commonly shared area, so it must be able to
merge update requirements from problem solver instances. The effective merging
technique on the blackboard will lead to an extremely powerful blackboard-type
inference engine when the PIM (Parallel Inference Machine) is developed in ICOT in
the near future.

(3) Syntax of rule
We shall describe a preduction rule syntax in Mandala. We shall also consider the

representation of a knowledge source and rules consistent with the unit world of

e

Mandala.

Replace the name cf a knowledge source with that of 2 unit world according to the
representation of the unit world in Mandala. The knowledge should describe the
following.
{knowledge source) = class ((knowledge source name))
Lrulesi..
{knowledge source name) :u={jdentifier}
{rules = (knowledge source named({is_a relation}, truel
<5<n0w ledge source namey ({ruldy, true)
(knowledge source name) (trigger([{level name,...])true)
{knowledge source name) (consequence([(level namé,...]),true)
{is_a relation) 2= {object namé is_a {bject name>
dbject name) :=identifier)
{level nama> =(identifier)
Rules are composed of knowledge source characteristics, production rules, user
predicate definitions, etc. The characteristics of knowledge source for example,
could be hierarchical relation of knowledge sources, levels, or objects on a
blackboard referring to a left hand side of a rule
The unit worlds of “nowledge sources and rule interpreter are connected with the
link of Yis_a' link in Mandala.
The levels on a blackboard are described as follows,
Cknowledge source named(trigger ([{level name) gous])y truel.
The levels and objects on a blackboard referring to the right hand side of rules are
described as follows.
Cknowledge source)(consequence([(level namédy...])ytrue).
The production rule has the following syntax.

¢knowledge source name> ({rule),true)

This rule has a functor of four arguments. These are the name, the left-hand side,
and right-hand side of the rule and the data to execute the next knowledge source.
Using these, we get a rule description method consistent with the unit world of
Mandala.
druley == rule({rule name) , <Lhsy ,{Rhs}, {oantrol informationy)
(rule namey 1= {identlfier}
{Lhsy :={Lhs phrase) ...
{Lhs phraséy ::= {object)

| <user predicat=>
{Rhs) ::= {Rhs phrase? ...
(Rhs phrased = add_obj ({object))

add_attr ({object})

rep_attr ({object))

|
|
| set_goal ({object?)
| add_frame ({frame name) J[Glot) s)
| remove_frame ({frame name))
| add_slot ({frame name) , 5lot))
E chg_slot (frame named, slot))

| | remove slot (<frame name, {slot))
{object) u= ({object name), attributed)
{attribute) ::= {attribute name) (attribute valued)
{object name) ::= {identifier)
attribute name) ii= identifier)
attribute value) = (identifier)
5 Conclusion

We discussed the problems invelved in implementing a system able to reuse existing

programs coded in a relational language.

Y

We described a cognitive model of a skilled program designer producing a new
program by reusing existing software. We also described the functions of the the
Systerm.

In addition, we examined program part reuse based on the model and constructed
modules in detail. In the last part, we examined a rule interpreter in the
blackboard-type inference engine to implement the system. We also discussed
specifications of the inference engine consistent with the unit world of Mandala.
Finally, we described a syntax of rules.

We are going to develop a system able to reuse existing software under the

specifications menticned above.

& Acknowledgement

The authors wish to express their thanks for the practical advice and guidance
received from Mr.Yoshihike Aovama, Department Manager, Systems Development
Labolatory, Hitachi, Ltd. They also acknowledge the help on the technical problems
of knowledge engineering given by Mr.Hirokazu lhara, Deputy Manager of Systems

Development Laboratory, Hitachi Ltd.

/1

7 References

(1) Furukawa,K., A.Takeuchi, S.Kunifuji:
Mandala: A Concurrent Prolog Based Knowledge Programming
Language/Systemn, [PSJ, Nov.1983.

(2) Nii,H.P., N.Aiello: AGE(Attenpt to Generalize):
A Knowledge-Based Program for Building Knowledge-Based Program,
1JCAI-79, 1979

(3) Hayes-Roth,F., D.A.Waterman, D.B.Lenat:
Building Expert Systems, Addison - Wes|ey, 1983

(%) Sowa,].F.:
Conceptial Structures - Information Processing in Mind and Machine,
Addison - Wes|ey, 1984

(5) Shapira,E.Y., A.Takeuchi:
Object Criented Programming in Concurrent Prolog, ICOT Technical Report,
April, 1983

{&) Shapire,E.Y.:

A Subset of Concurrent Prolog and Its Interpreter, ICOT TR-003 Jan. 1933

f".—u_."‘\\
Program Design
-~ ,

Experts Xnowledge

|
|

Tesign Frazevwcrk of
Tpsired FrogTan
1

|

Tegign Logic Chart . gﬂﬁ?le%ga—ingesigr
for Developing P:ag:-a=::> Logic Chars ~ 1
using seusable program !

paATIs

El

Select | ‘Knawledgﬁ for .

feusahle Program Par<s _—::;:’I FProgrza rart Eelect-nni
accoziing to | | |
Specifisaticn for
| Developing FrogTan

! |
Modify selected Frogmam
Parts appropriately

Progran Ceding
k'n..._.____—_r’/

Figure 1. Operaticn Model for Heusing Progranm Farts and
Experts’ Enowledge

/3

Single Purpose I[/0 egquipment

Frogram Tart

Data Pase
a a7
Heguirements _I pronose
Selection Intelligent to
Mechainsm for Modify Selected
- Similar Praogran Erggzam Paris
Faris

3imilar Program Farts Mpdify Program
Spacificaticon

Floure 2. Image for Fundamental Experizentation
f Reusghle Software Emgineering System

3

Teveloping Pragram ID

? Prpogram Punstion

? Input File Nage

? Qutout File Wace

? Haferred Master File Name

? Error List Hame

ABCOS0

File Matchin
Transaction File
New Transaction File
Yender Mester

Error List

Figure 3, Initicl Action of System

(underlined parts are questions from the System)

File Open

-

" Praparaticn Process

T=ansacticn File F‘eati

Terndar Master Read

Hereat umtil

F;“is'l--i:-_g

T—ansaction 7ile fead —

1]

Terzination Proceas

File Cloam

Tender Master Zey
= Tzansaction Tile Hey

Vernder Master key
< Tzansaction File/Xey

Yender Master Eey
~ Transaction File Zey

Figure 4. New Prog=aa: Logic

16

File Cpen

Frepazaticn Frocess

T—arsantion File Read

e

Tewmder Magter Fead

) 1
Aepeat un+til Finiaking

T=ansacsion File Aead——

Terzina%icz P-ccoess

File Claosme

Pigure 5. Global

lear Hecord Counter

Hegeat Matching Process
until
Venioy Magter Hey
Transaciicn File Hey
I

Tez=iraticn Process
of Matehing Process _

| Tendar Magtex Kn::,r'_,e"'r)r
= Tmansaciion File ey

Ternder Master kev

' < Transaciion File Hey

Vender Master KEI
> Transaction File Zey

lE::;a:a Hecaxd ccunter
fwith 2

1

Tender Magter Zead

Verndar Master Head

Unmatch F-ocess

View of File Matching Progmam Pari(New Prograz

Ermor List Write

T=ansacsion File Head

—'C'Eiﬂ}

Transaction File Read

Functisn This Part Reads Tramsaction File,]
T+ Qives High-Value to Matching ¥ey Area when it finds End of File,

Data Definition

Input
Transaction File
RECCRDING MCDE IS F
LABEL RECORD STANDARD
BLOCK CONTAINS 00080 CHARACTERS
DATA RECORD TRANS-REC
Cutpux

Trang=-r2c

02 TRANS-ZEY IS PICTURE X(02)
02 TRANS-¥EI IS PICTURE X(20)
02 DATE

02 YY IS PICTURE 3(02

03 MM IS PICTURE 5{(02)

03 DD IS PICTURE 3(02)
42 FILLER IS PICTURE X({41)

Flgure §. Program Parts Specification(before medification)

Transaction File Head

- - L -
znd of File P file-end-gw= 1

file—end-sw="1" w-trans-key
.f: ~=high-value

file-cnt=
file=cnt+l

W=trans=key
=irans-key

Figure 7. Program part Specification (befor modificatien)

I

—1 Mandala \

Inference K5 IﬂﬁE:"}"rEﬂtIiﬂr-
Scheduler
| preduction Ruie |
InteTpreter 1EZS Prover
' i
| Interpreter THS Prover
Executcr .
Jouzmal Store
| .
, Produstion
Hule
it Tser Defined
Fredicate
= iR
The System (Fnowledge Source) Srozmam Farts
features
Opersticn
Knowledge
| .
]_iugic Chart | | connecticn Data
rod | Drggram raris
| splay J gf Progra a:
J-Lagic Chazt
iEditnr]
L{ Graphic Patten
| Disglay
f :
| |Progzam Fart | | | ProgTam Fart |
iEditor Epec:ifica.‘.‘.iﬂﬂ
: |I Digzlay

— | |

Dialog Famaper

|

Window ManageE

L‘H&n—ﬂachi:&

- - L |
Interface Color ger

Secaling Manager
|

Figure 8, Mpdule Decompositicn Tree of

Rensable Software Engineering System for Fundamental Experimentation

% twaz+ an a kind of module

20

I interrreter ¥
ag - L o imem e ——— nnn . -
seeindg{lnruil,
saellindlr
read(LTH)

S@eny '
seailnryut)ly
‘recansulti{ruled),

",

rroarbi_s "> ")y

L LT - —— e -

- -t . . e am aE= e e — e

S e e —

rereaty T h TTmEme—m—
nlr
write{'nani o shousei shitai desuka?’'}s - - -
fils
regd(Xly — = —— - e e e e e m

procuce (X LTHiA) s
result (X}, 7 =~ e e —

untiliXl.

untilinashil.

resultipnashirn) i-

1 D m o — . o e ——— — P — e —
-

result(Xst) 1=
Cwrite!{“kotae "l
writelX)s

urite(" ua’)r s e e e e e s . e s . o

writel{’ snouaei sareaashital’)s

hll a1 s R e RS AR - — e e ———
resultid,f) -

HritE("kotae "l» 1 i —_ s
writel(X})s

Cturitel ™ wa’ly - —o—- ——— e .
writel’ shousei fukanocu desul '},
——pli == e = T . e e A I
rroducei{nashis_s.) 1= - -7 ! '
’i
rroduce (X, LTH:R) I- coommo e e Tr——— - -

prad (CXIr XTI LTHsR) »
I L]
prog(llr_r_st).
rrodi{ClHITIrLYZLTHIL) -
rrocl (CHIFCYILTHIL) —_— == -
prod{TsCYIsLTH L),
srodi{_s_r_rf).

eradl (CXTr_sLTH L) t=
megoer{XsLTH}y
outrut (CXs " (eins "LTH ") 0nll) s
[a
srodl (CXI»DYILTHs L) 2=
not{{rulei_;riC=2R)
Fct{AySTH,IXIrnimds
recognize(C)STHined))y
notiX=Y}s
auestion(XsR) s

Figure 9-1., GSxperiment Classification of Production Hule {1/2)

i !
{roduetion Rule Intertreter)

2

rulaicOrriC=0Aly

e (A STHCETmds 77
rapaqnizo{C:5THs»=]
wrrad (STHe LY LTHI L) -

[
e — T ———

prodl{iXT,CYILTH £ -~ I

—_ KXgx=Te

rulelclyril=2A), e e — —_—

- = et lASSTHTXIred ™

recoanize(CrSTHm)y . o

o pemd(STHsCYILTHrL)- °7 7 S

—pxitlhail. —

- —— = - —

c= guestion (XA
reFPo gLy .) .
e 1 — -8 ¢ ———— e

- wrisaiXls .

uri+gl’ w3 tadasnil desura?’ly

= nls

read () _ L . B

Nt 1R .

.

ynatillihail. o S —

— s qegemd
unTiIl{llel,

—ie - me— L —— i —— T —— -

- T-5-4 Sl - N
ae<ifHITIQid5THETHPY 2=
———erzoniH STHLIETH Py —
o= (T+JLaCTH,ETHLF s

-
P e emmam e =

T actianilpsert CXT» U DXICTYNT
gosioniinsers (S e YIRS CTILI L) 8
gotion(insers(Xlrlloblrl " ‘
soeionidelete (Xl IXILIrbr).
—assignireslace{ R YTeRRIYLY IS
acsignireslacelds M) e LI, CYILI).

5 = - ———— - -

actiogniouseus (Pl dsw) -
gzlliautsusiP)).,

—acsiznlouteusi) slilinm=]

gesioni(Esdsds) o=

“=alliEd s

recsanizelflrosnd - ST o=

rec=gnize CHITIETHPY 2
condition(HeSTHeP)y
recosniza{TrSTHsF Iy

e s o s 2

peadition(insta(X)+2TH) o=
aesoerT X 5TH) .

candition{outrut(Fle_sm} o=

calllgutrutiP)l.
canditicni{outrytilrain®) .

calllE) .

—qputeyt{{I}.
gutsut{InliTI) i-)
L] : -
nir
. outeut(TIT
outerut(CHITI) ==
=——tabilrr
writel{Hl
T putput(TIi%

Figure 5-1. (2/2)

/1 rules z/

=== pulelcdrrl T - =
Cinstei{als
—m = e gytrutilanlll 1T
=
== = = ==—"[rerlacelark)? — - =
putput(Chy "<="7310).
“mmrulelcQyr T -
finsteid):s
- T T —imstalblsy =
puteut (['Dra " ynllll
e s s oy em—e —_ —_ - R
[deleteid)
T deletelbls 7 7
insert{chs
—— kgt (DEy TS I]0Y - T, T ———
ruleleQsr:
= ——= [instaibir — o - == e
cutrutiChrnllll
—_ - =3— -
[rerlaceinre)ls
- = puteput{fes: ="11117
rulel{cher:
s st Eiagkm ()T T T T I
Tinstals)e
=t eyut ([T T 017D - =
=7
—— ——— ~ =" [rerlaceicrel: -
deletel(zly
I— ——— puirueiile:'<="1111." -
rule{ctrrd
{instalel},
sutputiCernill]
———ay i
[reelaceiart)s
- cutpet (I "C="211117% I - =
ruletcirr: -
Cinstai{g)r
= == = = =gyieputi{lyrnll}IT T 7
!) .
—= comr CreslaceisrZ)e Smemmm— - ST T T

gutrutifz"<="1111.

Ceglelelvrr T
[instalwls

e —————— .

TUTT imstminls
putputi i wrn’rallll

=2
[delete{uwls

= = T T dpletein) s
insertig)y
T T puteui (e T4=1010.
ruleicler:
Cinstaduls
output(Curnld)d
% T T !

[rerlace{urvie

Figure 9-2, Zxperiment Classification of Producticn Rules (1,/2)

(Preduction Hules)

putmut{ivs <="111).
ruleiclers
Cinstalvwis ™ —_== T
gutsut{fvenllld .
=5 - : . e er e e me .
[reslacei{vixls
~output {Ixs " <=2110. 7777 e

rulelzlsrl
- T E'inst:.{h}-"'_“_'—“______"'—_'_"-"" "
putrutilbrnll}l
ey o e e e —————— e,
[rerlacelbrals
"—_nutputitu:.’ﬁt"l]:}. —— st T T T
- s LTH pp T e Tome——— T mTmom T -

- E—

Figure 9-2. (2/2)
(Production Rule , Initial Values)

BIEpUE U0 autdug suusdejur adfp-pimoayoelqg ol Bandpg

riﬁ saTny j:e selny — —— | e3amEg FESY | CEELE

WMOFIUnpoag __.E_Eu... 03,4 nuﬂuﬁnnﬂm merfoay| |wmerfoxg weifor,
C N . S e
i \ . f
. _n.umﬁ_uq pIATATOG \ \a
wetaosd walqodd faaafog
we[qoI]
Oy Al L .
BIIE] m.r._sm_ .
A -7 | meadoag Em...m_.unn

(a1981ae, paaegs Lquomwoy)

PIEOG{OR[g /, /
\
1o
T enmg
_ Japusy JaaTog mm.u.m..m
— uot u..:m.nw_lu.-ﬂu_.:_ wWa[qoaq \W.EWIH,H/“
-
[\..\x .
! -
el Bl ... —————
f...\ﬂmfl] S ,,| . W — # Iwum.masm__._
A -} N\ a3 updp 10 dajay N~
8} Nnday aduazajuf S
\. aAaTo

m

