ICOT Technical Report: TM-0055

I'M-0055

Unigue Features of ESP
by
Takashi Chikayama

April. 1984

©ICOT, 1984

Mita Kokusai Bldg, 21T {03) 456-3101~5
I l D l 4=28 Mita 1-Chome Telex ICOT J37964
Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology

Unique Features of ESP

Takashi Chikayama

ICoT
(Institute for New Generation Computer Technology)

Mita Kokusai Building, 21F.
4-28, Mita 1-Chome, Minato-ku, Tokyo 108 JAPAN

ABSTRACT

As the first major preduct of Japanese FOCS {Fifth Generation Computer
Systcma) project, the Personal Sequential Inference Machine called PSI or ¥ is
under development. The programming and the eperating system of ¢ is called
SIMPOUS and is intended to provide a comfortable logic program development
environment. Here, we describe the unique leatures of the language called ESP,
which is used in the development of STMPOS and also is expected to be used
in various application programs which will be developed on ¢ in the following
rtages of the project, ESP is based on the Prolog-like machine language of 4
called KLO (Kernel Language version 0). Thus, ESP naturally has many of the
features available in Prolog. The most important ones among them are the
unification mechenism for parameter passing and the aepth first tree search
mechanism by backtracking, The main festures of the ESP language, except
for those comman in Prolog-like languages arc: objects with time-dependent
states, object ciasses and inheritance among them, and the flexible macro
expansion mechanism.

1. Introduetion

As the first major product of Japanese FGCS project, Personal Sequential Inference
Machine (PSI or ¢) is under development |Uch 83}, SIMPOS is the programming and
operating systemn of ¢ [Tak 84]. The objective of SIMPOS is to provide a comfortable
programming environment for logic programming which will be used in almost all the
research areas of the FGCS project. Thus, SIMPOS is expected to be a truly uzable system
for users with various objectives, Thus, SIMPOS cannot but be a considerably large-scaled
svstern. Besides, the first version of SIMPOS is required to be released at the end of the
first stage of the FGCS project (March 1985) to be available in the following stages of the
praoject.

If 2 cortain standard abstraction method sbould not bave beeo used throughout the
system, the system would be over-complicated, and it would impessible to build up the
system within the given rather short time peried. To enforce a certain standard abstraction
methad, it is required, not if enough, to usge a single language witk appropriate absiraction
eapability throughout the whole system description.

FSP is primarily designed for this purpose, to enforce the object-oriented abstraction
method., Howewver, the design of FST resnlted in the language features appropriate for
not only describing the operating system but also writing variouz application programs,
cspecially for those requiring koowledge description. Objects of ESP is an axiom sect. Sending
a mesiage to an object 13 trying to refute something using the axiom set, This mechanism
matches very well with the model using semantic networks.,

The sequential inference machine ¢, on which SIMPO3S 15 huilt, has a Prolog-like high-
level machine language called KLO. Thus, naturally, many features of ESP is that of a logic
programraing lapguage. The class and inheritance mechanisms of ESP 15 built vpon Lhis
inference mechanism of K1.0. This is similar to the case of the Flavor system of MI'T LIS
Muachine: ESP iz to KLO as Flaver is to LISF [Wei 81].

The wotion of tmre-depesdeat stale bas also beew iotrodoced to ESP, based on the
LISP-like Teatures of KLO. Though this falls out of pure logie, it is required for utilizing tha
ideas widely used on various operating systems on conventional machines,

2. Time-Dependent States

Heal nrograms must communicate with objects cutside of the program, such as 1/0O
devices, ather computers connected via a computer network, the user ab the terinival, ete;
otherwize, the user can never tell the machine to compute what she wantz, and, even if
she could, can pever kpow the result, These ouler objects may have time-dependent states
which are interesting to the program. For example, it might be desicable for the program to
know whal kind of expression is currently appearing on the face of the user at the terminal
to determine which of the available error message display styles irritates her the least,

The system must build up models of such outeide objects inside the the computer.
[z pure logic programuwing style, such time dependency might be represented by logical
relations between time periods and corresponding states. This relation itself is permanent
and has no time-dependency. This may sound elegant, but is quite inefficient. The reason
of this inefficiency is the fact that it is usually a little difficult to dispose of the part of the
relation infermation which is no lopger required by the program. The program will never
wult to know what kind of expression was appearing on the user's face at 3 o'clock the day
before yesterday. Using a simple relation database management scheme, like those used in

2

currently available Proiog implementations, 1his total recall ability not only requires almaost
infinitely large memory space, but alzo slows down the system considerably.

In conventional operating systems on conventional computers, the time of the suter
world to be modeled is directly modeled by the time of the computation itself. Time-
dependent stales of the ouler world are represeated directly by the stale of the computation,
What 15 called real-time programming eszentially means this modeling style. Thus, it i3
usually impassible to recall the state of the day before yesterday because the computation
is being done opow. This is profitable for saving memory space when the program never
uses such information. Mapy of the ideas devsloped [or operating systems of conventional
computers are based oo this programming style, including the efficiency consideration.

By applying a certain unknown optimization technique, keeping relations between time
periods and states in the database migh! be made as eflicient as this real-lime programming
style some day, bul we didn’t have time Lo wall for such an innovation. Thus, the notion
ol time-dependent states 12 introduced into ESP to facilitate direetly utilizing such already
available ideas.

A Ohjects and Classes

An object in ESP represent: an axiom zet, which is basically the same concept as worlds
in some Prolog systems [Can 82](Kah £3|[Nak #3]. The same predicate call may have different
semantics when applied in different axiom sets. The axiom sct to be used in a eall is specified
by passing an object as the first argument of a eall and prefixing the call with a colon, as
in “: open(Doer)". A predicate invoked this way is sometimes called a method as in other
object orienled languages.

An object may have time-dependent state variables called object slots (slots are not
logical variables; they have constant values from the logic programming view point). Values
of slots can be examined using their names by certain predicates defined in the axiom set
carresponding to the object. In other wards, the slot vaiues define a part of the axiom set.
‘T'he slet values can also he changed by certain predicate calls. This corresponds to altering
the axiom set represented by the objest, This is similar to assert and retract of DEC-10
Proiog, though the way of alteration is quite limited. This limitation allows such change
withoul oo much runlime overhead.

An ESI" pragram coasists of one or more class definitions, An object class, or simply
a class, defines the characteristics common in a group of simifar objects, i.e., objects which
differ only in their slot values (only values; slot names are commeon to the objects belonging
to the same class). An object belenging to a class is said to ke an instance of that class. A
class itsell is also an object which represents a rertain axiom set

4. Inheritance Mechanism

Class Hierarehy

A multiple inheritapce mechapism similar to that of the Flavor system [Wei &1] is
provided in ESP. A clazz definition can have a pature definition, which defines one or more
super classes. When one class is o super class of another class, all the axioms in the axiom
set of the former class are alzo iotroduced into the axiom =zet of the latter class, as well as
the original axioms given in the definition of the latter class. MNote that this inheritance is
determined statically at compilation time in ESP, while similar inheritance between worlds

3

is determined dynamically at runtime in various systems with the world feature. This allows
rather complicated inheritance rules stated below without introducing too much inefficiency.

Some of the super classes and the subclass which inherits them may have axioms for
the same predicate. Since basically the axiom sets of the super classes are simply merged,
such axioms are OR'ed together, Using this inheritance mechanism, a semantic network
consisting of [S-A hierarchy can be very easily constructed. Though the order in the OR’ed
axioms has no significance as long as pure logic is concerned, the order might be eszential
when things outside the computer should be treated. Thus, FSP allows the specification of
the order of inheritance.

The PART-OF hierarchy can be implemented using 15-A hierarchy with the object slot
feature. Assume that we want to make instances of the class lack to be a part of ac instance
of the class door. First, the definition of deor should be gpiven. Then, a class with a_lock
shouid be defined so that instances of the class with a_{ock has a slot which holds an instance
of class {ock. Finaliy, the class door_ with a_lock is defined to inheriting both the clasz door
and the class with a_lock: A deor_with_ a_lock iz a door and also is an object with_a lock.

Here, woe have defined the class with a.lock as a separate class rather thau directly
making the class door_with_a_ lock inheriting the clazs door, This is the recommended way
ta fully utilize the multiple inheritance feature of ESP; the class with a lock may be used
afterwards for defining classes such as window_ with a_lock.

Non-monotonjeity

By only the inheritance scheme stated above, the axiom set of a subclass is bound to be a
superset of those of its super classes. This monctonicity is ofien inconvenient in designing the
class hierarchy. Program development will be far more easier if non-monotonic knowledge
can be introduced. ESP provides two ways to introduce nor-wonclonicity,

Une is a well-known way by using cut operation. The cut built-in predicate of KLO
kas the ability to prune alternatives up to the specified predicate call nesting level. Using
this cut along with fail, a contrel structure similar to that provided by catch and throw
in certain LISP systems: can be implemented. ‘This control structure is indispenzable to
implement error handling mechanism required almost everywhere in the operating system.

The other way is by using demons. To explain how the demon feature of ESP warks, we
will give below a little more detailed deseription of how clauses given in the clasz definition
of a clasz and in the definitions of its super classes are organized into one method.

The clauses are classified into three categories: principal clauses, before demon clauses,
and after demon clauses. Demon clauses are distinguished by the gualifier before ar after put
before them. Principal clauses given in a class definition for the same predicate name anc
the same arity form a principal predicate, just as a set clauses form a predicate in ordinary
Frolog systems. Similarly, before demon clauses form a before demon predicate and after
demon clauses form an after demon predicate,

A method is implemented by a method predicate. The body of 4 method predicate
consists of an AND combination of the following three:

» AND combination of calls of all the before demon predicates defined in templates of
the inherited classes, in the order of inheritance.

OR combination of calls of all the principal predicates defined in templates of the
inherited classes, in the order of inheritance.

4

e ANT) combination of calls of all the affer demon predicates defined in templates of
the inherited classes, in the reverse order of inheritance. The order is reversed so that
before apd alter demon predicates defined in various classes nest properly.

All of these calls shares the same arguments. One typical usage of belore demoas is Lo
cheek out whether the object (3 in an appropriate state and whether the arguments given to
a method call are also appropriate. A typical usape of after demons on this line is checking
the return values. It iz possible because, when a principal predicate refurns some value, it is
through unification of the variables in given arguments a3 i3 common in logic programming
languages. As after demons receive the same arguments, they can be examined there.

For example, assume that the class door_with g lock should have the method epen which
only succeeds when the door is unlocked. We already have a class door which Las the metliod
cpen, but this always succeeds. We should define the class with_ a {ock so thai it has a before
demon clause for epen which checks out the status of the lock and succeeds cnly when it is
unlocked. Now, inheriting two classes, we can define the desired class doer_with_a_lock. In
this case, the open method of the class door withi o lock will be something like:

dagr_twith a lack with_a_leck dear
i= I} I3
methad - apdﬂi:fﬂra ¥ IIjj‘"‘'!‘:’-t','.lrllﬂ.s:'l.;l:ii .

apet

This demon mechanism iz used in various parts of SIMPOS. Especially, the window

subsystem, one of the modules requiring the most complicated control, fully utilizes this

mechanism. Without this kind of non-monotonie mechanism, the dezsign of SIMPOS would
have been much more complicated joh.

5. Macros

Motivation

One of the most-heard-of complaints of the programmers using logic programming
languages is that the languages basically do not allow functional natations except in certain
special cases (like in arithmetical expressions in DEC-10 Prolog). For example, to pass the
sum of X and V7 as an arguinent of a predicale p, it is usually required Lo write a program as
Yadd(X |V, Z), p(Z)" or in a similar way., The motivation of introducing macro expansion
feature of ESP is to allow funclional notation such as “p(X -} ¥Y)", which is apparently
more readable especially when the expression becomes a little longer. To merely solve this
prohlem, schemes like proposed by [Egg 82] would have been encugh. However, we sought
for more general and flexible way.

Macrog are for writing mets programs which specily that programs with 3o and 20
structures should be translated ioto such aned such proprams. One of the most crucial
points in designing the macre expansion feature is choosing the meta language for Lhis meta
program. There are two eommonly vsed lanpguage [amilies 1o which macros are extensively
used: LISP-like languages and assembly languages. Macros are by far usable in LTSP than
in assembly languages because the meta language is LISP itsell in case of LISP, while,
in assembly lunguages, the meta language is a utterly different language with specialized
functions though it wsually looks quite similar. This is because programs can be easily
treated az data in LISP, while it is not pozsible in azzembly language. From thiz view point,
Prolog-like languages are similar to LISD: Programs can be treated as data. Moreaver, with
the built-in pattern matching and logieal inference capabilities of the logic programming
languages, definition of macras can be made mere Aexible than in LISP.

5

In various languages with the macro expansion capability, a macro invocation is simply
replaced by its expanded form. Though this simple expand-and-replace type macro expan-
sion mechanism may be powerful encugh for LISP-like fupctional languages, it is newver
enough far a Prolog-like logic based language For example, a macro which expands Lhe
goal “pla, f(X + V))" to a goal sequence “add(X, Y, Z), pla, f(Z))" rather than to
“pla, fladd(X, Y))" cannot be defined with a simple expand-and-replace mechanism.

Expansion Mechanlsm

The full macro definition form of ESP is:
FPattern ==> Ezpansion when Generator where Checker - Condition.

Fhe pattern which is unifiable with the Pattern is expaoded to the Ezpansion if the
Condition succeeds. At this time, the Generator and the Checker are also spliced into the
expanded program at appropriate places: When a macro invocation appears in a body goal,
the Generator is inserted before, and the Cheeker are appended after the goal including the
macro invocation; when the invocation appears in the head, the Generator is appended at
the end of the hody and the Checker is inserted at the beginning of the body.

For example, in the macro definition:
X LY => F when add{X, ¥, 7)

“X b Y7 isthe Pattern, “Z” is the Ezpansion, and “add(X, Y, Z)" is the Generator. The
Checker and the Condition are omitted in this example. This same definition can be uzed
in two ways. The clause;

add(M, M +1).

i5 expanded into the clause:
add(M, V) = add{M, 1, N).

while the body goal:
o BIM 1), ...

is expanded into a goal sequence:

ey add(M,1,N), p(N}, ...

Note that, in more compiicated macro defivitions, the Condition can be used not
only for deciding whether the invocation pattern should be expanded or not, but also for
computing a part (or whole) of the Ezpansion by writing variables in the Ezpansion and
instantiating them in the Condition. Simple optimizations like computing values constant
expressions in compilation time can also be achieved using this feature.

Modifications of the language details of ESP have been very frequently required for
these several months for various reasans. However, the corresponding modifications of the
compiler were quite easy. This was hecause many of the language features of EST, including
these requiring rather complicated compilation, are actually implemented using this macro
expansion feature. Almest all of the modifications required rewriting of only a few lines of
such macro definition code.

fi. Implementation

Currently [April 1984}, a cross compiler from ESP to KLO, the machine languags of
¢, is available on a maip-frame machine. Lioking the object code with the small runtime
support system written directly in KLU, the program can be executed on Lthe ¢ machines.

I'he implementation of the object oriented features iz rather straightforward. An object
is represented by a vector: [ts first entry iz the pointer ta the table corresponding to the
axiom set associated with the object; other entries are for storing object slot values. The
table actually represented as a KLO predicate and is called the method table. This vector
iz allocated in the heap area rather than in the stack area so that setting slot wvalues as
side-effects 13 possible.

Ohbject-oriented method invocations are translated into eall: to a runtime subroutine
with two arguments: The method name atom and a vector of the original arguments, The
runtime subroutine looks at the first argument, which is the vector representiog the object,
and then itz first item, which is the methed table. This method table i3 called with the
given arguments. The clause of the method table with its first argument being the given
method name is selected and the corresponding method predicate is called from itz body.

Though thiz tabie look up works fairly efficiently by wirtue of the built-in clause
indexing mechanism of KL, certain firmware supports for aceelerationg the exceytion further
are planped. In most eases, seme of the predicate calls appearing in this object-oriented
invoeation mechanism are redundant. For example, when 2 method ecnsistz of cnly cne
principal predicate, the method table may directly call the principal predicate. Compilation-
time optimization of this type is also planned.

In the current implementation, object slots are accessed by their name atoms using
the same table. In certain cases, by a simple optimization, slots can be accessed by their
dizsplacements rather than their names. This optimization iz also planned.

7. Coneclusion

ESP is the language used in the Programming/Operating System (SIMPOS) of the logic
programming based inference machine (¢} now under development in the first stage of the
Japanese FGOCS project. ESI has an object-oriented abstraction mechanism, in which each
object corresponds to an axiom set. ESP also kas a powerful macro expansion feature which
allows functional netation in logic programs. These unigue features has proved their merits
in the earlier stages of the development of SIMPOS,

A cross compiler of ESP to the machine lenguage of ¢ is currently available. SIMPOS
is being debugged using Lhe compiler and its Arst version is expected to be completed at the
end of the first stage of the FGCS projest (March 1985).

REFERENCES

[Chi B4] T. Chikayama, ESP RHeference Manual: [ICOT Technizal Report TH-044, 1984,

[Egg #2] F.R. Eggerd, I V. Schorre: Logic Enhancement: A Method for Extending Logic Fro-
gramming Languzges, Conference Hecord of the 1982 ACM Symposium on LISF and
Functional Pragramming, T4-80, 18582,

T

[Kak 83] K. M. Kahn, M. Carlsson: LM-Prolog User Manual, Heleate 1.0. UPMAIL, Dept. of
Computer Science, Uppedla University, 1983

[Nak 83] H. Nakachima: A Knowledge Representation System: Prolog/KR. METR 83-5, Dept.
of Math. Eng. and Inst. Phys., Univ. of Tokyo, 137, 1983,

ITak 84] 5. Takagi, T Yokoi, S. Uchida, T. Kurokawa, T. Hattori, T. Chikayama, K. Sakai,
J. Tsuji: Overall Design of SIMPQS, to appear in Second International Legic Pro-
gramming Conference, Uppsala, 1984.

[Uch 83] S. Uchida, M. Yokota, A. Yamamoto, K. Taki, H. Nishikawa: Outline of the Personal
Sequential Inference Machine PSL New Generation Computing 1 No. 1, 75-T9, 1983

[Can 82] M. Van Caneghem: PROLOG 1] Manues] D'Utilisation, Groupe Intelligence Artificielle,
Faculté des Sciences de Luminy, Marseille, 1082,

[Wei 81] D). Weinzeb, D, Moon: Lisp Machine Manual, 4th ed., Symbolics, Tnc. 1981,

