ICOT Technical Memorandum: TM-0053

I"MA-005 3

Object-Oriented Parser
in the Logic Programming Language ESP

ITideo Mivoshi and Koichi Furukawa

April, 1984

Mita Kokusai Bldg, 21F {013 456-3191~5

]GDT 4-28 Mita 1 Chome Telex 1COT 132964

Muato=ku Tokye 108 Japan

Institute for New Generation Computer Technology

Page 1

Object-Oriented Parser in the Logic Programming Language ESP
Hideo Miycshi and Koichi Furukawa
Institute fer New Ceneration Computer Technolegy(ICOT)

Mitzkokuszai Building, 27F
1-4-28, Mite, Minato-ku, Tokyo, 108, Japan

Abstraet

In this paper we propose an object-oriented parsing mechanise for
logie programming languages. DCG, XG, and MG are well-known formalisms in
logic programming. Because of the correspondence between their grammatical
rules and those of programs (Forn clauses), arguments, and extraconditions,
these formal frameworks have powerful deseription capabilitiss fer
implementing gremmatical rules. However, in the czse of implementing a
large-scale system in these formalisms, the number of arguments and
extraconditicns increases, thus decreasing the readability of the program
and making it diffieult to modify. In our cbject-ariented parser, each
program component ia abstracted as a elass, and sccess between the two
classes is performed by a message-passing mechanism. Crammatical
categories are also abstrazoted as elasses. Therefore, the intrinsic
grammatical features which are implemented as predicate arguments in DCC,
are described as instances of category classes. This helps to simplify
Hern eclause gremmar rule description. Belng implemented in the logie
programming langusge ESP, the fundamental mechanism of DOO is alse
applicable to our parser,

t. Introductien and Background

The logie progremming language Prolog is based on first-order
predicete logic and has features that are especially useful for symbol
computation. DCG (Definite Clause Grammar) [PWBOT, embedded in
DECsystem-10 Prolog [PPWTE], dis a good formalism for analyzing =
context-free language, and XG (Extraposition Grammar) [Pef3] and MG
(Metamorphosis Crammar) [Co78] are good choice for analyzing a type-0
languzge. In DCG, each context-free grammar rule 1s represented as a
Prolog Horn clause , and each grammar category in a rule is treated aa a
predicate in the clause. Therefore, the elements of a context-free Eremmar
are tranzlated, one-to-ohe, into those of =& Prolog pProgram.
Contexte-sensitive information can be handled easily in erguments of Proleog
predicates, Furthermore, Prolog predicates ean be arbitrarily inserted
intc grammar rules. These capabilities facilitate the use of the parser in
combination with sueh auxiliary routines 25 semantie checking.
Consequently, several systens for patural language processing applications,
(for example = database query system), have been implemented in Prolog
[(Da82, MeB2, PeB3]. Hewever, when a large-scale natural language
pracessing system is implemented using these formalisms, the number of
Erammar rules, syntactic and semantic features, and conatraints inevitably
increase. If all of these features and constraints are embedded in the
Erammar rule as the arguments of a category or Prolog predieate eall, the
grammar rule will become too complex. This will decrease the readability
of the grammar and make modifications difficult.

On the other hand, object-oriented methodology has recently begun to
look very attractive in this regard, and several objeet-oriented
programming systems have been developed, such as SIMULA [NDTH],
Smalltalk-80 [RGB3], and Loops [5583). Since the object-oriented notion of

Page 2

data sbstrecticn provides the function of information hiding and loecality,
the internzl detz structure is hidden frem the outside modules and only a
specificelly defined message can be used to asccesas Lhe data [5Y81]. These
facilitiss provide the user with methods to develop programs that are
highly reliable znd understandzble, and can be easily wmodified. 3o far,
several retursl langusge processing systems have been developed using the
ohiect-oriented mechanism [PhE83].

To remedy the defects of DCG or X6 menticned above, we propose an
cbject-crientad persing mechanism to be integreted into the logie
progremming language, and we have implemented an experimental =small-seale
parser. The main features of this parser zre as follows:

{1} Implementation in ESP [ChEi]

A= desoribed in seetion 2, ESF has two aspects: a logie
programming languare, and an object-oriented languege. Therefore,
basic methodologies that have already been established in the logie
prograzoming framework, such 2s DOG, ecan be used, e can also
abstract the progrem components using the object-oriented mechanism.
By doing this, the gremmar rules ¢zn be osimplified,

(2} Abstraction of Grémmaticzl Categories
Ezep premmaticzl ecategory (nenterminal symbol) is abstracted as a

elass. 4 eategory olass has features representing intrinsic
grammatical inforrmation of the category for example syntactie
informatiof. These features are 1mplemented a3 the slots of a

category olass. Whnile these [eatures are implemented as the
argumentz of a category in DOC formalism, an instance which contains
these features is embedded in the category 22 ene ergument in our
program. The number of the zsrguments in the grammar rule can be
reduced uzing this mechanism.

{3) Using TInheritance Mechanism
In erder to define the slots of the grammatical categories which
are in X-bar phrasal level [JaT4], the inheritance mechanism 1s
uszed. HFC(Eead Feature Convention) in CGenerzlized Phrase Structure
Graomar {(GPFS3) [GPE2Y by Dr. Gerald Gazdar is easily implemented by
this method,
Exanple.

3 > VF » VERB

V) (V) (V)

Class 'VP' inherits class '3'.
flass 'VERB' inherits eclass 'VP'.

An overview of the programming language ESP ia given in sectionm 2. In
section 3, the obiect-oriented parsing mechanism and its implementation in
ESP are presented.

2. Programming Lz., e ESP

In this section, we give ar cverview of the programming language ESP.
ESP is a logic progriz:ing language based on Prolog; it is intended for
use on the Sequential Inference Machine (PSI) [NYY83] currently being
developed a2t the ICOT research center. The main leatures of ESP are aa
follows:

- Unifieation, as the basie parameter passing mechanism

Pape 3

-~ FBacktracking, as the basic control structure
= Various built-in predicztes
- Object-oriented calling mechanism

2.1 Object

An objeet ip ESP represents an axiom set, and consists of a olass
object and an instance object. The exiom set to be used in a certain ezll
can be specified by giving an ebject as the first argument of a call. An
object may have slots, each of whieh has its own nzme znd value.

2.2 Class end Inheritznee

An object class, or simply 2 class, defines the characteristiocs COmmon
o a group of similar objects, i.e., objects that differ ecnly in their slot
values. A&n object belonging to a class is said to be an instance of that

class. b cless definition consists of nature definitien=s, =slot
cefinitions, and clause definitions. The nazture definition defines the
irheritance relationship between the classes, FEP provides 2 multiple

ipheritance mechanism like that of the Flavor system [WME1]. A1l class
definitiens whose names are given in the nature definition are inherited.
The slot definition defines the siot used in the elass. Clause definitions
are used for defining Preleg=like olauses, The syntax of the class
definition is shown in Figure 2.1.

<elazs definitiond ::=
"elass®™ <{elass npamed
[<macre bank declarationy]
Tlnaﬂﬂ
[<nature definition> fA.n
[<elass slot definitiond ":v }
["instance®
[<instance slot definition> ™;" }
{ <instance clause definition> ";" }]
["localw
{ <loeal clause definition® nent]]
"end™ @

Figure 2.1 3Syntax of the Clazs Definition in ESP

In Figure 2.1, "X" indicates a terminal symbel, X. { ¥ | indicates an
arbitrary number of appearances of X (ineluding zere) . [X] indieates X
or vold, di.e., that ¥ is optional. There zre two kinds of slots
definitions: one is for slots of the class itself, called class slots;
the cother is for szlots eof the claas instance, called instance slots. This
i3 also true of clause definitions. A local clause is a
non-object-oriented loczl predicate used only in cne clasas.,

3. Implementation

In thiz section, we present the implementation of the object-criented
parzer in ESP, The program components are described in 3.1. In 3.2 and
3.3, the exanmples of a =simple progrem and a parsing result are given.

2.1 Program components
This program consists of the following five components.

Page &4

{1} 3e% ol Phorzze Structure Fule Claszses

Bazipally, the methods of analyzing the left=hand-side ocategory
of & context-free grzomar vle are described in ezch phrase
structure rule class. The method generstes an instance of =&
catepory elaszs during parsing. Jome elasses send nmessages far
digtionary locking up to a dieticnary claszs, or s2end messagez for
constreint checking to & constraint class.

{2} Distionary Clazs

The distionary leoking urp methods are desecpibed in this c¢lass.
The methods also perform 2 Peature instantiation to the instance of
z lexiczl catesory class.

t3) Set of Cztegory Claszses

The =zlot definitionz in each category class describe the
intrin=ic gremneticzl fezturez of cztegories. The structure of 2
cctegory fecture iz £ two dipenzional tree, as in BP3CG.

(4} Set of Constrazint Classesn

The wethod of echeclking grammaticzl constrzints is deseribed in
ezch oonstraint class. At present, IIFC (Hesd Feature Convention)
gnd CAP (Control Agreement Principlel in CPSG are implemented.

(5) Set of Feature Classes
A cetegory class festure seb iz defined in the =slot definjticns
ef each feature class.

Thae parszing model fer thiz ocbiect-oriented porszer iz shown in Figure
3.1,

2.2 Program Example
an example of & program that amalyzes a siople noun phrase based on
this ohject-oriented persing model is presented here.

{1} Set of Phrasze Structure Bule Classes
Figure 3.2 =zhows the set of phrase structure rule elaszszes,
The method in the class 'np_rule' analyzes the following phrase structure:

P ==» DET HOUH

The method ealls ":head_of ' and ":control' are messages to the constraint
classes "hifz' and ‘'ezp' reczpectively. The mpetheds in the classes
fdet_rule!' and 'noun_rule' are used to con=ult a dictionary of determiners
and nouns.

{(2) Dieticnary Class
Figure 3.3 shows the dicticnary olass.

* dictiopary class definition
class dicu o3
:dizt(D,these,[these|¥],X,DET) =
DETthesdtagresr ‘nbinumber = plural ,1;
:diot(C,zen, [men)X], X, HOUM) -
NOUNlhead lagreement [number := plural,
HOUNlhead lgender := male ,!;
end.

Figure 3.3 Dictionary Class

Page &

set of p.=s. rule classes set of category clazses
phrase | ! | category | _ __ _ _ categnry.j
|structure: olass=1 | class-n | ¢
jrule ‘ ! — - - |
lclass-1 | 3
! i = instance
. ! i
I i o
i ' : [;’f category \-__"f category
| |phrase | L%, instance-i " instance-n j
I |strusture; | -
rule I fff 77\
‘ |class-n | i e I,’_.-'r;' 1, dictionary look-up
- - ; @ fif 2! constrzint messages
Vs Y =~ fi @% instance generation
J iLf - fj; 4! constraint check
g ‘_,f’ @ / // 5. feature instantiation
I'| ¢ictionary i : - ;i* ! feature instzntiation

| |ela=ss) i
\ B — A _ |
\ ///

N h —

f—— 1 { feature ! |feature;
| | constraint S &Q . instznce-1 | lelass-1|
'lelass-1 | ¥ . ! .
— I i I
! : i i [; 1
H | 4 '] ¢
] i | | ! — ! i
! ' | | instance :
| : | ; | |
' | I | q |
I‘aonstra nt! | L feature lfeature
| [elass-1 |} . instance-k /: class-k |
| S — —
set of set of feature
constraint classes classes

Figure 3.1 Parzing Medel of the Object-Oriended Parser

g* ——— -

Bl e e e e e e B

% np_rule class defipition
class np_rule has
:np{0,np(DETs,NOUNS), X0, X, NP) := :new{#np, NP},
:det(#det_rule,DETs,X0,X1,DET),
rnoun(#Fnoun_rule, HOUNs, X1,X,NOUM),
thead_of { #hfe, NOUM, NF),
ieontrol{decap, NOUN,DET) ,!;
end,
e ——————— e ——————
% det_rule elass definition
class deft_rule has
:det(0,det(DET=),X0,X,DET) :- :new{#det,DET),
:diet{Pdiet,DETs,X0,X,DET),!:

end,

Page £

2 poun class definition
lass nour_rule has
snoun{d, noun{ NCOUMs),X0,X,NOUN) :- :new(#noun,NOUN),
cdiet{#diat,NOUNs,X0,X, NOUN), 1;
end.

Figure 3.2 Set of Phrase Structure Rule Classes

The class 'diet' has methods to look up the words '"these' and 'men'. The
body of the method performs the feature instantiation to the instance of &
lexical category classed.

(3) Set of Category Classes and Set of Feature Classes
Figure 3.4 zhows the class definition of grammaticzl caztegory 'np',

'det', and 'noun'.

g -- L L R L 4 b L
2 cztegory class
£ np class definition
class np hes
instznecs
gttribute
heed is noun_head festures:

[
e
2 patepory class
x t elass definition
olazs det has
instance
attribute
head 1z det_head features;

% mategary class

% noun class definition
claszs noun has
nature
nps
end.

Figure 3.0 BSet of Category Classes

Figure 3.5 shows the clasa defirition of the =zet of fezture classes,
The semantics of the claszs definition 'np' is as follows:

The instanee eof the clzss "np' has a slot 'head', and itz =zlot
yalue is sn inztance of the feazture class "noun_hesd_lesture' in
Figure 3.5. The feature class 'noun_head_feature' has twe B8lots,
ramely ‘gender' and 'agreement'. The slot value of 'agreement' is
an instance of the feature class 'noun _head agreement features’.
The class 'noun_head_sgreement_features' has a slot 'number'. By
the mechaniss -entiened above, the instance of the elass 'np' ecan
have & complex festurs structure in its slot, as shown in Figure
3.5.

By the =ame mechanism, the instance of the c¢lass 'det' has the
following feature structure (Figure 3.7):

By the nature definition *nature np;' in the class definition of the
category 'noun', the class definition of the 'mp' i3 inherited te the class
'noun'. Therefore, an instance of the class 'noun' has the same feature
structure as the instance of the claas 'np'.

Page T

-

) - i o -

% feature class
T noun_head_feature class definition
¢lass noun_head_features has
instance
attribute
gender,
agreement 1s noun head_agreement_features;
end.
L
£ feature class
¥ nourn_hezd_agreemant_festures class definition
class noun_head agreement_festures has
instance
attribute
number;
end.
e 5 e et e et e e Ao e e
% faezture class
£ det_hezd_features class definition
claas detl head_feztures has
instance
attribute
agreement is det_head_agreement_feztures:

end.
-]

B 0 50 e e e e B e e e B B B B B B
7 featurse class
% det_head agreement_features elass definition
elass det_hesd_agreement_ features has
instance

attribute

number;

end.

Figure 3.5 Set of Feature Classes

render

headﬁ::::
gpreemelt ———— number

Figure 3.6 Feature Structure of an Instance of a
Class '"np'

head numbepr

agreemnent

Figure 3.7 Feature Structure of an Instance of a
Class 'det?

(4) Set of Constraint Classes
Figure 3.8 shows the constraint classes used in this program.

The class 'hfe' is an implementation of Head Feature Convention (HFC),
whieh is the terminclogy used in GPSG, such that mother and head carry the
same feature. The class 'cap' 13 an implementation of the OGFSG Control
Agreement Principle (CAP) 4in GPSG, CAP 4is a relation holding between
slsterz in a2 rule, such that, if A4 controls B, then the agreement feature
of A is the same as that of B. Figure 3.9 shows an illustrative example of

Page @

HFC class definition
Head Feature Convention
If A is the head of B then HEAD(A)
¢lass hf'e has
chead_of (HFC,HEAD, PAREXT) :-
PAREMT thead := HEAD'head ,1!;

It

=i wd wL LG

HEAD(B)

]
=]
(a8
*

e e e i . i T T v

CAP olass definition
Contrel Agreement Principle
If & controls B then AGR({A} = AGR{E)
lass cap has
:contrel (CAP, CONTROLLER,CCHNTROLLEE) ==
zpr_equal (CONTROLLER!headlagreement,
COMTROLLEE'heod lagreement) ,1;

N wh R R

loecal
agr_ecqual(a,B) :=
Alnumber == Blnumber ,!;
agr_equal(4,B) :-
Atnumber == wvold ,!;
agr_equzl(A,B) :-
Blnurber == woid ,!;
end.

Figure 3.8 Set of Constraint Classes

HFC and CAP [GPREZ].

s
#J#f,,f'[PLUHAL]"hh“kh
NP > VP

7

IFL[]R{ [PLURAL]
Det &————HN V——————— NP
[FLURAL] [PLURAL] [PLURAL] [PLURAL]
| ! { |
these men are N
[FLURAL]
|
engineers

Fipure 3,9 An Example of FFC and CAP

In Figure 3.9, an arrcw indicates the control relation, and & bold
line indicates the HFC.

3.3 Parzing Example
Here, we show the parsing result by the program prezented in 3.2. The
program parses the input noun phrase 'these men'. The top geal is given by

t:= :np{#np_rule,N_St,[these,men],[],NP).!

and an agreement feature check is performed between "these' and '‘men' by
CAP. The term which indicates the phrase structure (Figure 3.10) is
inatantiated to the second argument of ':np', and the instance of 'np' that
has the feature structure shown in Figure 3.11 is instantiated to the fifth

Page ¢

argument of ":ap'.

{=np
i=det gender —— male
! l-these head <
|=-noun agreepent -——— nurcber =—— plural
|-men
Figure 3.10 Phraze Structupe Figure 3.11 Feature Structure of
of 'these men' the Instance of 'np'

§, Zummary

This work describes an object-oriented persing mechanism and dits
implementation in the logic programming language ESP. EFach program
component, as well as grammaticzl categories, are abstracted as class
objects. Access between program compenents is performed by a
message-passing mechanism, The zbstrzction of grommatiecsl categories helps
0 reduce the number of arguments in 2 rule, and enables the usep to update
category feztures without changing the gremmar rules. The inheritance
oechanism is used to fix the features of a category class. This framework
is thought to be suitable fopr implementing a complex fezature system such as
GP3G. This object-oriented parser is implemented in the ESP Cross System
on DEC-2060.

Aeknowledgenents

The authors are thankful te H. Yasukawa of ICOT for his helpful
discussions. The authors would also like to thank to Dr. Q. QGazdar of
Univ. of Sussex and Dr. T. Gunji of Toyahashi Univ. of Technology for
their helpful comments on GPSG, and Dr. T. Chikayama of ICOT for his
useful comments on ESF, The authors are grateful to the Dr. K. Fuechi,
Director of the ICOT Research Center, for providing the opportunity te
conduect this research.

[References]

(PWE0] Pereira, F. and Warren, D.; Definite Clause Grammar for Language
Analysis - & Survey of the Formalism and a Comparison with Augmented
Transition Networks, Artificial Intelligence, 13, 1980, pp231=278.

[(FFWT7B] Pereira, L. and Pereira, F. and Warren, D.; User's Guide to
DECsystem-10 Prolog, Dev. de Informatiea, LNEC, Lisbon and Dept. of &I,
University ef Edinburgh, September, 1978,

(Da82] Dahl, V.; On Database Systems Development through Logic, ACM
Transactions on Databaze Systems, Vol.7, MNo.1, March 1982, ppt02-123,

[McB2] MeCord, M. C.; Using Slots and Modifiers in Logie Grammars for
Natural Language, Artificial Intelligence, 18, 1982, pp327-36T.

[PeB3] Pereira, F.; Logiec for Naturel Language Analysis, Technical MNote
275, SRI International, January, 1983.

[CoTB] Colmerauer, A.j Metamorphosis CGrammars, Natural Language
Communication with Computers, Bole, L.{ed.}, Springer-Verlag, 1978.

Page 10

[NDT8] Mygaard, X. and Dahl, O. J.] The Development of the SIMULA
Languages, ACHM SIGPLAN Notices, Vel.13, Ne.B, August, 1978, pp2ls=272.

[RGB3] Goldberg, A. and Robson, D.; Smalltalk-80: The Language and its
Implementation, Addison-Wesley Publishing Company, 1%€3.

[BS83] Bobrow, D. G. and Stefik, M.; The LOOPS Manual {Preliminary
Version), XEROX PARC Knowledge-based VLSI Design CGroup Memo, KB-VLET-81-13,
1983,

[8Y81] Sado, K. and Yonezawa, A.; A Tutorial on Absiract Data Type
Oriented Languzges (in Japanese], Journzl of Information FProcessing,
Vol.2z, Ne.6, June, 19871,

[PhB3] Philiips, B.: An Object-Oriented Parser for Text Understanding,
Proceedings of the Eighth International Joint Conference on Artificial
Intelligence, 1983, ppfo0-692.

{chBY4] Chikayama, T.; ESP Reference Manuzl, ICOT Research Center Technical
Peport, Ne.lld, February, 198H.

[JaT4] Jaekendoff, H.; Introduction to the X=bar Convention, Indiana
University Linguisties Club, October, 1974,

[GPA2] Gazdar, G. and Pullum, G. K.; Generalized Phrase Structure
Grammar: A Theoreticel Synopsis, Indiana University Linguisties Club,
&fugust, 1982,

[NYY83] Nishikawa, H., Yokota, M., Yamamotoc, A., Taki, K., and Uchida, 3.;
The Personal Inference Machine(PSI): Its Design Fhilosophy and Machine
Architesture, ICOT Research Center Techniczl Report Ko.13, June, 1983,

[WMB1] Weinreb, D. and Moon, D; Lisp Machine Manuwal, 4th ed., Symbolics,
Ine., 1981.

