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1. Introduction

Toshiaki Kurokawa

The principal purpose of the WG5S of the Inatitute for New Generation Computer
Technology is to investigate the theoretical background on the Fifth Generation
Computer Systems (FGCS in short).

Since last year, we have surveyed the various areas relating to the FGCS such
a5 computational complexities, foundation of mathematics, VLSI algorithms,
logic programming languages, eteo.

This year, we have selected a few major areas and have focused our discussions
to these areas. They are higher order, unification, and parallel computation.

We had the successive meetings from May to August in 1983 teo investigate the
various aspects of "unifiecation'. This report is based on the discussions,

but it contains the extended results since then.

It is well known that 'unification' is a key mechanism of logic programming,
And it is fruitful to pursue the every aspect of "unification', to survey the
current state of the art, to present our new research results, and to list
the cpen problems for the future attack.

It might be unnecessary to the reader, but I will introduct the concept of
'unification' very briefly.

'"Unification' is, in a sense, an extended idea of the variable binding. A

term is defined as a constant, a variable, or a functor denoted as f{x1,...,xn)
where [ is a function designator and the argument, xi is ( recursively defined)
tarm,

Two term is said to be unifiable or not depending the following algorithm:

i) If both term does not contain variables, then they are unifiable only if
they are the same.

ii) If one is a variable, they are unifiable with the condition that the
variable is "unified' with the other terms. The substitution of the
variable is called the 'unifier'. MNote that this case covers when the
both are the wvariables,

i1i) In the other cases, to find the set of 'unifiers' to make the substituted
terms are same in the sense of i} and ii),

Please note thal I omitted the definition of the function and the algorithm
to find the set of 'unifiers'. They are the very theme of the following
sections.

Now I would like to introduce the contents of this report.

In section 2, Mukai and Kasai survey the well known algorithms for unification
of the first order terms, where only the function symbol (constant) is permitted
for the functor. They analyze the computational complexities of these
algorithms. As Hirose commented, we need more elaborated discussions about

the computational complexities, and more specialized algorithms for unification

in the future.

So far, the algorithms are built for the sequential machines. However, the

new VLSI technology provides the highly parallel alporithms for unification.

In section 3, Yasuura presentsz a parallel algorithm for unification and analyze
the computational complexity of the glgorithm, His main result is that the
general unification problem is log=-space complete for PTIME, that is the most
difficult problem. In his conclusion, however, he suggest that there is a



possibility in building the efficient unification procedure for the practical
oases.

To implement the efficient unification algorithm, it is necessary to consider
the hardware supports. The hashing mechanism is one of the candidates, which
is explained in section 4 by Ida.

Moreover, 'upification' has relevances with other fields in the foundation

of computer science. In section 5, Sakal and Matsuda explain the notion of
'upiversal unification' where most of the problems of theoretieal interest

can be discussed under the term 'unification'. And they listed various caszes
for the unifications with the existence of the unification algorithms including
the availability of the 'most general unifier’.

'"Unification' casts another aspect. That is, "unification' can be interpreted

from ancther point of view. For example, in section 6, Ueda and Kurokawa argue
that the unification process can be seen as the constraint process. Ueda claims

that the unification as constraint will play the important role alse in the
knowledge representation.

As for the semantics of unification, in seetion 7, Hagiya discusses the relation
of lazy unification and bind-hook mechanism, which is introduced for the SIM

hardware to support KLO language of FGCS.

In section B, Nagata presents the note concerning unifiecation and formula
manipulation. His point is that the problem solving and the knowledge
representation are the key ideas. He states the problems and the methods about
this impertant area.

Adachi presents another view on the unification in section 9, namely
from the categorical point of view.

We do not claim that we have covered the all area of unification. For example,
we omit the unification in the design and the execution in the programming
language issue. The interesting attempt is made in the compilation of PARLOG
language: it compiles the general unification to the ocne-way unifieation,

i.e. the matehing. [Gregory B3] It means that there iz a way, as Yasuura
suggested, to make a very efficient unification program for the practical
application.

REFERENCE
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2. Complexity of Unification Algorithms

T. Kasai and K. Mukai

There are two classes of unification algorithms for first order terms.
One is for finite terms, and the other iz for infinite trees,
Computastional complexities of unification algorithms for finite terms
are compared in [M&M B2]. The next subsection is a summary of the
comparisan,

A& rough discussion such as to determine whether or not & given problem
can be solved in polynomial time is independent of the machine model
and the way of defining the size of problems, since any of the commonly
used machine models can be simulated by =any other with a polynomial
los= in running time and by no matter what eriteria the size is defined,
they differ from each other by polynomial crder, However, in precise
discussion, for example, in the discussion whether the computation
of a problem requires O(n) time or O(n log n) time, the complexity
heavily depends on machine models, representation methods of problems
and the definition of size. The following discussion, however, uses
the standard model of current computers (RAM models) and uses the same
complexity measure, and hence it would give a good criteria of the
efficiency of the algorithms.

2.1 Unification of Finite Terms
The algorithms to be compared are from [M&M 821, [P&W 78] and [Hu 761.

Complexity result:

[(M&M B82] m + n®log n; where m is the sum of sizes of two terms
given, and n is the npumber of distinet variables
of the input system.

[PEW TB] 1linear

[Hu 76] almost linear

When cccur-checks are performed?;
[M&¥ 82] step by step incrementally
[P&W 78] step by step incrementally
{Hu 76] delayed till last steps

Hight of terms:

[M&M B2] any
[Paw 78] 1
[Hu 761 1

Remark: the conventional unification algorithm used in Dec-10 Prolog
has an exponential order of computational complexity and don't care
ocour-cheak. It has not guaranteed termination.

Comparison of efficiency under some situations: lat Pm, Pe, and Pt
be the probabilities of stopping with success, failure for the detection
of a ¢ycle; and failure for the detection of a eclash.

(1) Pm>>Pe, Pt (very high probability of stopping with success)
[P&W 78] > [M&M B2) > [Hu 76]
(more efficient > less efficient)



{2} Pad>Pt>>Pm (very high probability of detecting a cycle)
[P&W 78] > [M&M B2] > [Hu 76]

(3) Pt>»Pe>>Pm (very high probability of detecting a clash)
[Hu T6] > [M&M 82] > [P&W 78]

2.2 Unification of Infinite Terms

It seems that there are at least two motivations behind introducing
infinite trees into Prolog {Col 80):

{1) the time expensive operation occur-check 1s unnecessary for a
unification algorithm.

{2) data structure like a directed graph can be nicely represented
by the infinite trees and manipulated efficiently.

A unification algorithm for infinite trees don't care ocour-check,
but in stead of +the check it must have the guaranteed termination
property. A theoretical algorithm is in [Col 80] and [Col B82].
Efficient algorithms are proposed in [Me 78], [Fi 78], [Fa 83], and
[Mu 83]. Unfortunately, complexities of these algorithms are not
described explicitly. The followings are only rough estimations of
efficiency.

[Mo 7TB] n®**3 : because 1t maintains a list of pairs of nodes
and take linear searches over the list repeatedly.

[Fi 821, [Fa 83] n log n ; because they seem to be the same
as [Hu TE6] minus ococur-check.

[Mu 83] n * log n ; conjecture

There are two implementation types for Frolog. One i3z "copying" type.
The other is "structure sharing™ one. [Mu 83] is the algorithm which
was designed to work efficiently for the structure sharing
implementation (of PSI machine of ICOT, for instance). The unification
algorithm in [M & M B2] uses "FRONTIER"™ and "COMMON-PART"™ operations
and also uses "counters" and "multi-terma® as data types. The algorithm
in [Mu 83] uses only F"FRONTIER"™ operation out of them. Note that
"COMMON-PART™ operation is wuseful only for "copying" implementatin.

Most recently, J. Jaffar proposed a new algorithm of unification over

infinite terms in [(Ja 84], which has almost linear time complexty.
The algorithm uses "COMMON-PART®, ®FRONTIER®™ and "counters™ mentioned

above, He also gave time efficiencies of the following algorithms
by 4implementations in the programming language C and a VAX 11/T780
running UMIX 4.1 BSD.

J. Jaffar

A, Colmerauer=1

A. Colmerauer-2

E. Muksai

J, Corbin and Bidoit-1
J. Corbin and Bidoit-2



He made & summary his results as follows: all the algorithms have
about equal =peed when the unification is straightforward. His
algorithm progressively grows relatively faster with progressively
more complicated unification.
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On the Parallel Computational Complexity of Unification

Hiroto TASUTRA

Introduction

The unification problem iz defined as follows: Givemn two
terms consisting of functiom symbols and variables, find, if it
exists, a simple substitution which makes two terms egual.

Two linear unification algorithms weré proposed, in
sequential computation, independently by Paterson-Wegman[l] and
Martelli-Montanari[2]. For more efficient implementation of
unification, one may tir to design a parallel unification
algorithm, However, mno such efficient algorithm has been known
and implemented.

Here, we are concerned with the complexity of unification in
parallel computstion. As the result, we show that it is very hard
to design a much more efficient wunification algorithm wusing
parallel computation then sequential one[3]. In other words,
unification contains essentially sequential computation which
might not accelarate by parallel compuatatiom scheme.

For the model of parallel computation, we use combinational
logic circnits construocted of fan—in restricted logic elements.
This model seems to be omne of the most stable models of parallel
computation from computational complexzity view poimt. Moreover,
combinational logic circuits are the most mnatoral model of
implementation of parallel algorithms by hardware. The
computation time is measunred by the depth of circumits.

We adopt a graph representation of terms for mnification. Inm
order te discuss the relation between the complexity of logic
gircuit and wnification, we introduce a new problem, called the
reachability oproblem on directed hypergraphs[3]. A directed
hypergraph is a generalization of a directed graph and the
reachability problem on the directed hypergraph is defined as an
extension of one on the directed graph. We show a parallel

algorithm for unificatiom im which the unification problem is



reduced to the reachability problem of a directed hypergraph. We
discuss about the lower bound of the computation time of
mnification in parallel and show the wnification problem is log-
depth complete for & class of problems that can be solved by
polynomial size circuits[4][5]. Namely, if we can design circuits
with depth Diln;kn} for nnification, all problems in this class
can be computed by circuits with depth ﬁ{lugkn} for any positive
integer k. Therefore, we can say that unificatinm iz the hardest
problem in  this class which includes all problems having
polynomial algorithms in sequential computation. It is also shown
that unification is log-space complete for PTIME, by the simillar

discussion on the above parallel computatiom,

Definitions

Let A; (i=1,2,...) be a set of i-adic function symbols and
hﬂ be a set of constant symbols. .J& A, is denoted by A. Let X
1= t]-:- . 1
be a set of wariables. We mssume that le=ﬁ.

A term t can be represented by an acyclic directed graph

G=(V,E), called a term graph, as the following manner:

(1) Each vertex v in V has a label p in iuI. No two vertices have
a same label in X, and the outdegree of them are 0. A vertex
having a label in A, (1)0) has i outgoing edges each of which
is labeled by 2 distinct positive integer j in {1, 2, ...,
il.

{2) A wertex with label p in AUUI represents term p (p is a
constant or a variable).

{3) A vertex v with label f in Ai (i21) represents term f{tl, tys
ey ti] wvhere tj is a term represented by the vertex pointed
by the j-th outgoing edge of v,

We sometimes call vertices with labels im X variable vertices,

and ones with labels in A function vertices.

A term graph G=(V.E} is encoded in the following set of
tuples,

{[V.D,lefz,...,vi}| v is a vertex in V¥V, p is the label of v,

and {v.vj} (1£j4i) in E has the label jl



We oconsider a binary coding of the tuple sequence fG. Let n be
the number of vertices imn V and m be the nombhesr of adges in E.
Since sach vertex v and its label p can be coded by Ilugjnl bits,
respectively, the length of the binary coding is O(m log n +

n log n) bits.

[Definition 1] The unification problem (TP) is dafined as

follows: For & given coding JG of a term graph G and two verticeas

vl and v, in G, find, 4if it exists, a most general unifier s
for terms tI and t2 which are represented by vy and v,
respactively.

[Definition 2] The uwnifiability decision problem (UDP) is defined
as follows: For & given coding Jo of a term graph G and two
vertices v and v in G, decide whether or not tI and t2 are

1 2
mnifiable.

We adopt combinational logic circuits as a model of parsllel
computation, Combinational logie circuits are the most
fundamental components of digital systems and meny researches
have been carried out on the complexity theory of logic functions
realized by combinationel cirouwits[4]. There is two measures to
eveluate the oomplexity of eciremits, size and depth, which
correspond te the number of resources and the computation time
spent in the compntation respectively. In the following =ection
we will mainly consider the depth of a c¢ircuit that computes UDP
and UP.

[Definition 3] A directed hypergraph H is denoted (V,E), where V
is a set of wvertices and E is n set of directed hyperedges. A
hyperedge & is an ordered pair of a set of vertices ?‘ in V and a
vertex e v—vﬁ, denoted {?o,v']. The cardinarity of ?u is called
the rank of hyperedge e¢. The rank of the directed hypergraph H is
defined by the meximum rank of all hyperedges in E.

[Definition 4] In a directed hypergraph H=(V,E), v in V is said
to he reachable from a subset S of V if and only if v is the
member of S or there exists a hyperedge (Vu, v) such that all

vertices in ?¢ is reachable from 5.



[Definition 5] The reachability problem of directed hypergraphs
(DHGAP) is defined as follows: For a4 givem incidence matrix HSf
of & directed hypergraph 0 snd a subset of vertices 5, obtain all

vertices in H which are reachable from 5.

A Parallel Unification Algorithm
First we show an algorithm for TUDP.

[Algorithm 1] UNIFY
Input A binary coding JG of & term graph G=(V,E) on Ink. and
vertices vl and v2

respactively,

in ¥ which represent terms t1 and t:’

Output If t, and t, are onifiable, the omtput is "1". Otherwise

it is "0".

Method

atep 1. Generate a directed hypergraph H=(V',E’') from G as
follows:
(1) For every pair of vertices vi and vj in ¥V, there is a

vertex v, ., in V' where v, =v,,,

ij ij ji
(2) If v, and vj have the same label in A and the h—th
cutgoing edges of them points to vq and V.

respectively, an edge {?ij' vq:} is in E',
(3) If the label of vq iz a variable in X, a hyperedge

(v, ,+. }, +..}) is in E*,
1q J4gq 1]
Step 2. Compute the reachability problem of H from [vlz} in
parallel.
Step 3. If there exists & wvertex 7ij in V' soch that it is

reachable from Y12 snd vy and Vo have different labels in
A, output "0’ and stop.
Step 4. For all vij's which are reachable from Y12 and v, or vj
has a label in X, add edges into G by the following way.
We call resulting graph G',
(1) If the label of v, {Tj} is in X and the label of vj
{Fil is in A, then add edge tvi.vj} ({vj.vljl into @.
{(2) If both A and vj have distinct labels in X, add edge
i?i,vj} into G, where v, is assumed to be assigned

the smaller integer than v, in the coding.

i



Step 5. Examine whether the graph G’ is acyelic in parallel. If
G' is asyclic output '1°, otherwise '0°.
[Theorem 1] Algorithm TNIFY computes UDP correctly.
It is easy to obtain a most general anifier from graph G'
which is constructed in algorithm UNIFY. Thus we have an

algorithm for TP by trivial modification of UNIFY.

[Algorithm 2] UNIFE-2

Inpot A binary coding JG of a term graph G=(V.E) on IUA, and
vertices '1 and vz in ¥ which represent terms tl and tl'
respectively.

Uotput A most general uwnifier for tl and tz. The mgu is
represented by a term graph and a set of pairs [{vi. 11}}
wherea v, is a vertex in the graph amnd z, is 8 variable in
X.

Method

Step 1. By algorithm TNIFY, generate a directed graph G' im Step
4 of UNIFY.

Step 2. For all pairs {vi, vj}'s in G*, if there is a path from
vi to vj in which all wvertices sxcept v and vj have
labels in X, connect v, with vj directly,

Step 3. For every vertexz v with a variable label x, if there i3
8o outgolng edge from v, make a pair (v', x)} as follows:
(1) If =all outgoing edges from v are pointing only

variable vertices, make pairs (v', =x)'s for every v'
pointed by one of these adges.
f2) If there are function vertices pointed by outgoing

* in them and

edges, gselect a function vertex v
generate a pair (v', x).
Step 4. Delete all edges from wariable vertices.
Step 5. Delete all vertices that are not reachable from vertices

in the pairs obtained in Step 3.



Depth Complexity of Algorithm UNIFY

Let n be the number of vertices in a given term graph G, =n’'
be the number of vertices with labels of wariables, and m be the

fumber of edges in G,

[Lemma 1] The reachability problem of & hypergraph H in Step 2
can be computed by & combinational circoit with depth D{Iugzn +

n'log n').
[Lemma 2] We can construct a combinatiomal logiec c¢ircmit with

depth ﬂ{lagzn) which decides whether a graph G' in Step § is

acyclic,
From Lemma 1 and Lemma 2, we directly obtain the following
theorem.

[Theorem 2] Algorithm UNIFY is implemenmted by a combinational
logic circuit with depth ﬂ{lugzn + n'leg n').

Since Step 2-5 im TUNIFY-2 requires a circmit with depth O(log

n'), we have the following corollary.

[Corollary] Algorithm UNIFY-2 is implemented by a combinational
logic circuit with depth O(log®n + n'log n').

Jhe Lower Bound

Before discussing the lower bound of the depth complexity of
UDP, we introdoce several concepts and notetions. First, we
define ocomplexity classes of decision problems. Let P be a
problem on alphabet (0,1}, Pﬁ denotes o subproblem of P with
length n, i.e.,
pn-rnm.i}“.
Thus Pn can be cosidered as an n-variable logic fonction. Ve
define complexity classes related with size and depth of logie

gircunits,

PSIZE={P| For ecach P, there exists a polynomial p{n) swch that

C(P_)<p(n))
LOG*DEPTE={P| For each p, D(P,)=0(10g"n))



Since the =size of & circuit for UDP constructed in the previous
sggtion according to algorithm UNIFY is bounded by a polynomial
of the input leagth, UDP is in PSIZE.

[Definition 6] A problem P is said to be log=depth complete

for PSIZE if and only if P satisfies the following two

proparties:

{1} P is in PSIZE.

{2) For every problem @ im PSIZE, there wexists a ocircunit with
depth ©O(log n) which transduce ﬂn to [Pl, Pz, i ,P-} where

m is bounded by a polynomial of n.

It is directly concluded that if a problem P is leog-depth
complete for PSIZE and P is in LOGkDEPTE for a positive
integer k then PSIZE is included in LﬂGkDEPTH. However, we
have known no evidence to suggest that there 4is some k such
that PSIZE is in LDGkDEPTH. In other words, P is the hardest
problem in PSIZE concermed with the delay complexity.

Here we claim that TDP is one of such problems.
[Theorem 3] UDP is log—depth complete for PSIZE.
Before proving Theorem 3, we prepare three lemmas.

[Lemma 3] For any combinational logic circuit C over a basis {2-
AND, 2-NAND} with a single output vertex and for any input wector
(Il,lz, . .:n} for C, there is a hypergraph H with rank 2, a
subset 8 of wvertices in H and a vertex w such that Y1 is

1
reschable from § if and omnly if C outputs 1 for the input vector.

Note that the number of vertices and hyperedges (including edges)
ere bounded by 2size(C) end 4size(C), respectively., in the above
construction.

A hypergraph H with rank 2 is said to be synchromous if and
only if (1) vertices are partitioned into d levels; (2) for all
edges (n,v) and all hyperedges ({u,wl,v) if v is in level i then
2 and w shonld be in level i—1: (3) each vertex in odd levels has
only renk 1 ovtgoing edges and each vertex in even levels is a

source of at most one hyperedge with remk 2; (4) indegree of each



vertex in even levels 1s just one; and (5) indegree of each
vertex in odd levels except the first one is positive, We call
vartices in odd levels “AND-nodes*, and ones in even levels "0OR-

nodes'*,

[Lemma 4] For any combinational logie cireuit € in Lemma 3, we
can construct a synchronous hypergraph H satisfying the condition
of Lemma 3. Moreover the number of vertices and hyperedges
(inclnding edges) in H is Otsizaiﬂlzl and all vertices in § are

in level 1.

[Lemma 5] For a synchromous hypergraph I, & subset S of vertices
in level 1, and an AND-node Vi
that TDP for G is false if end only if ¥y is reachable from S on
H.

we can find a term graph G such

Note that the number of vertices and edges in G are linearly
proportional to the number of vertices and hyperedges in H,
respectively.

Now, we return to the procof of Theorem 3.

(Proof of Theorem 3) For any problem P in PSIZE and every
positive integer n, there are a polyomomial p(mn) amd a circmit Cn
such that En computes a subproblem P of P and sizaiﬂn) is not
greater than p(n). From En. we can eonstruct a simple hypergraph
H by Lemmao 4. From Lemma 5, for a given iaput vector for Cn. we
obtain term graph G such that UDP for G is false if and omly if
C outputs 1 for the imput vector. According to the constructiom
of H and G in the above discussion, it is easy to make a circumit
transducing Pn to a UDP with constant depth. Indeed it is enough
the circuit only generates edges of G in the first level from the
input to Pn' As shown in the proof of Lemma 4 and 5, these adding
edges in G clearly corresponds to the input for P . Thus the
depth of the cirewit is & constant independent of n. Moreover, it
hes been already shown in the above consideration that the luﬁgth
of UDP also bounded a polynomial of n., Thus we conclude that UDP
is log-depth complete for PSIZE.
a.E.D.



By the simillal discossion of this sectiom, we can also show
that unification is log-space complete for PTIME [6]. MNamely, if
we have an algorithm on & Tuoring machine for unification which
uses O(log n) cells on tapes., we conclade that all problems that
have polynomial time algorithms should be computable in O{leg n)

space complexity.
[Theorem 4] UDP is log-space complete for PTIME.

The wunification problem is related with the reachability
problem on directed hypergraph. In algorithm UNIFY, the
unification problem is reduced to the reachability problem on =
hypergraph. Contrary, someé kind of the reachability problem can
be reduced to the mmificatiom problem, From the considerstiom om
the relation between PSIZE and LﬂGkDEPTE, it seems hard to design
efficient slgorithms for these two problems.

However, we may be able to implement a hardware which can
compute UDP or UP effectively, becanse many practical terms for
wnification inherently include parallelism that may compute
efficiently. It is important to examine the properties of terms
which appear in practical sitnation for designing a good parallel

unification algorithm,
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4. Hashing techniques and unification
This note provides initial reading materials for hashing technigues
vhich would be useful in speeding up unification algorithms.
{1) Building dag using hash cons {1}
Hash cons (abbreviated as hecons) can be used to build
a unique (hence sharable) list cell.
"consdug” defined below is a constructor for dag:
consdag (1} = if atom{l) then 1 else
if nullicdr{l}} lhen hcons{car{ly, "{}) elsc
heons (consdag (car (1}, consdag (edr{1)))
Example:
The result of consdag ('(A (BC)), "(D (BC))) is shown
in the following:

Before

eSO %
BESDENAY

After

e
0
I

Note sharing of "(B C) is realized automatically by virtue of hcons,



(2) Equality checking of dags

Dags constructed solely by hcons can be compared by mere equality
checking of the valucs of pointers. When the struclures to be
constructed are complex structures such as composite of lists and
vectors, we need more sophisticated methods.

One candidate hashing method is v -key hashing discussed in [4}.
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5. UMNIVERSAL UNIFICATION
K. Sakai and T. Matsuda

5.1 HISTORY:

The universal wunification problem for a formal language is the
problem of determining whether or not for any two terms t1 and t2 of
the languape there exists a substitution which makes the terms equal.
The study of unification was begun by J.R.Guard [Guard 64] and
J.A.Fobinson [Robinson 65]. In languages witheut equality, twoe terms
are egqual if and only if they are symbolically identical and the
unification problem for first order language without equality is
decidable. The latter paper includes an algorithm that finds a unique
substitution (called the most general unifier) for two formulas of
a first order language without equality, together with a complete
inference rule (ecalled resolution principle) for mechanizing first
order logic.

Existence of the most general unifier is of eritical impotanoce
for the proof procedure currently used in automatic theorem proving.
Basically it permits us to restrict the rule of substitution te the
most general unifier in order to apply the cut rule (i.e. modus ponens).
Unfertunately, for theories with equality and for higher order theories
there can be pairs of terms with two or more unifiers which are not
more general than each other. In this cese we must characterize
unification problem by the set of maximal gencral unifiers.
Unfortunately again, in some theory there are two terms which do not
have the set of maximal general unifiers. S0 there i3 an extended
problem of universal unification deciding for any two terms of the
language the set of maximal general unifiers:

1) does not exist op

2) existe and is infinite or

3) exists and iz finite or

4) exists and iz a singleten set (i.e. there exists the most
general unifier) or

£} exists and 413 empty (i.e. not unifiable).

Fer the mechanical theorem proving, an algorithm which generztes
all maximal general unifiers is quite useful even if there are
infinitely many maximal general unifiers. Another problem of universal
upification is the problem deciding whether the set of maximal generzl
unpifier iz recursively enumerable or not.



There &re few studies approaching to wuniversal unifiecation
universally, but there are many studies about special equational
theories which are important to practieal use (e.g. for dealing with
sets, multisets, strings etc.). The following table contains main
results of such studies,

Theary [Type Unification Recurzively| Referances

T lof T decidable enumerable !
—_— | == —— P — —
FREE | 1 YES YES i [Robinson 65], [Martelli 791,
| | [Paterson T8]
A} IN YES YES | [Plotkin 72], [Siekmann 75],
| ! [Livesey 75]
c | FI YES YES | [Sickmann T6]
I ! FI  ¥ES YES ! [Raulefs TB], [Siekmann 82b],
! . | [Szabo 82]
a+C 1 FI YES YES i [Stickel 75], [Livesey T76]
A+I ] 7 YES ? | [Szabo 82], [Siekmann 82a]
C+I | FI YES YES | [Raulefs T3]
A+C+I ! FI YES YES | [Livesey 76]
b 1IN 7 YES | [Szabe 82]
Ded | IN MO YES | [3zabo 82]
D+«C | 1IN 7 YES i [8zabo BZ]
D+&+C | IN NO YES ! [Szabo B2]
D+A+I | 2 YES 7 | [8zabe B2]
H, E | 1 YES YES | [Vogel 78]
H«& | 1IN YES YES ! [Vogel 78]
H+a+C | FI YES YES | [Vogel 78]
E+A+C | 1IN ? ? | [Vogel 78]
e I EE—————
H I FI YES YES | [Hullot 80]
AG I FI YES YES ! [Lankford 79]
H10 | % NO ? | [Matiyasevich T0)], [Davias 83]
FPA | FI YES YES ! [Lankford 80]
Abbreviations:
FREE: without equality
A: associativity Fif(x,y)sz) = flx,fly,2))
C: commutativity flx,y) = fly,z2)
D: distributivity

DE: f{x,E{ﬁ"pz}}
DL: flglix,y),2)

glif(x,y),flx,2})
gifix,z),f{y,z})

H: homomorphism

E: endomorphism

I: idempotence flx;x) = x

9G: quasi-groups

AG: Abelian-groups

H10: Hilbert's 10th problem

FPA: Finitely Presented Algebras

1: unitary (i.e. the most genmeral unifier exists for
any pair of terms)

FI: finitary {(i.e. the =zet of maximal general unifiers
exists and is finite for any pair of terms)

IH: infinitary (i.e. the set of maximal general unifiers

exists for any pair of terms but can be infinite)



5.2 DEFINITIONS:

We will define formal f[ramework of universal unification from
an algebraic point of view, according to [Siekmann T3ec].

€Algebras> Let F be a set of functicn symbola and Fn be the subset of F
which consiste of all the n-ary function symbols. An F-algebra
is a set A where a function A(f): A -> 4 is defined for any
f in Fn. Note that if f is in FO then A{f) is a constant of
&,

<Homomorphisms, Isomorphisms, Congruence> Let A and B be F-algebras.
A funetion H: A -> B is said to be a2 homomorphism if
H{A(f) (a1, ..., an))} = B{f)(K{a1)}, ..., H({an))
for all £ in Fn and &1, ..., &an in A.

A bijective homomorphism is called an isomorphism.

An equivalent relation R om 4 is said to be a congruence
relation if

A(f)(al, ..., an) B A(£)(bY, ..., DO}
for all a1, ..., an, b1, ..., bn in & such that at H b1, ...,
an R bn.

The guotient algebra modulo R is dencted by A/R.

<Free algebraa> Let EK(F) be the set of all F-algebras. Let FR be an
F-algebra and ¥ be a subset of FR. FR 4is free on X if and
only if for any A in K(F) and for any mapping M: X -> A, there
exists a unique extention of M to a homemorphism M™: FR => A.

(Terms> Let X be an arbitrary set. The set T(F,X) of F-terms on X
ig given by the following recursive definition.

{1} X i= a subset T(F,X). Elements of X are called variables.

{2) If £ i3 in Fn and t1, ..., tn are elements of T(F,X), then
f{al, ..., an) iz an element of T(F,X).

Clearly T(F,X) is an F-algebra and free on X, therefore it
is called the term algebra on X. The term algebra T(F,0) on
the empty set 1is called the initial algebrz (or Herbrand
universe). The term algebras T(F,X) and T(F,Y) are isomorphic
if X and Y have the same cardinality. Therefore let ¥ denote
a fixed denumerable szet of variables hereafter.

<Substitutions> A mapping S: T{F,X) -> T(F,X) is called a substitution
if there is a mapping M: X -> T(F,X) such that M is an identity
mapping but for finitely many points and & is the homomorphism
M" generated by M. We can represent a substitution by Ffinite
set of pairs:

s = {ti/x1, ..., tn/xn}

where xi iz an element of X and ti = M(x4i) for all i =1, ..., DI
and M{x} = x for all x in ¥ other than xi's.

<Egquations> If 5 and t are in T(F,X), then <z = t»> is an equation.
The equation <s = t» is valid in A4, in symbels A4 = =3 = t,
iff and only if M (s} = M (t) for any M: X > A.

& set T of equations (called a theory) induces a congruence =T=
on T(F,X) defined recursively as follows:

(1) t =T= t
(2) If s =T= t, then t =T= =



(3) If & =T= t and £t =T= u, then 5 =T= u
{4) If S5 i3 a substitution amd 3 =T= t, them S{s) =T= S(t}
(5) If =i =T= ti for all i = 1, ..., n, then

f{31p wawy -ﬂ-n} =T= f'fﬂ. TEE tn)

<Unification® Two terms = and £ in T(F,X) are sald to be unifiable
in & if there exists a mapping M: X => A such that M"(s) =
M*(t). The homomorphism M~ is called a unifier in A.

Let T be a theory. Two terms s and t are said to be T-unifiable
if there is a substitution U sueh that U({s) =T= 0O(t). The
substitution U is called a2 T-unifier.

Let U and ¥V be T-unifiers of 3 and t. U is said to be more
general than V, in symbols V {T< U, if there is a substitution
W such that W(U{s))} =T= V(s),

The relation <T< is a pseudo partial order. A T-unifier U
is called most general if it is a maximum element in the pseudo
order; maximal general if it is a maximal element.

5.3 PERSPECTIVES

As mentioned in [Siekmann T2e¢)], there i= a wide variety of areas
where univeraal unification can be applied, In studies of database,
infoermation retrieval and formula manipulation, pattern matching or
unification technique is gquite important.

Especially unification iz a fundamental process for free first
order thecrem provers, since it is embedded as the basic operation
in rules such as resolution. In general theories with eguality, the
absence of the most general unifier prevents us from automated theorem
proving, Four appreoaches to cope with equational axioms have been
proposed:

(1) To write the axiom into the database, and use an additional
rule of inference, such as paramodulation [Woz T73].

{2) To use special "rewrite rules® [Knuth 701, [Wos 671,
[Huet 80a], [Huet 80b)

{3} To design special inference rules incorporating these axioms
[Slagle T21.

{4) To develop special unification algorithms incorporating these
axioms [Plotkin T72]

From the practical peint of view, however, unification algorithms
of a specific theory dis more important than universal unification
algorithms. For example, strings, finite sets and finite_multisets
{corresponding to the theories A, A+C+I and A+C in the above table,
respectively) are quite familiar data structures in computer secience
and algorithms whiech generate the set of maximal general unifiers are
of great use. So the last approach (4) appears to be most promising
for practical use. However, because 1t i3 not wuniver=zal at all,
combination with the approach (2) will be necessary for maintenance
of axiom database.
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fi. COHNSTRAINT AND UMNIFICATION
Kazunori Ueda and Toshiaki Furokawa

DEFINITION OF CONSTRAINT

Constraint is, in a broad sense, any form of information about the
state of program entities, especially the wvalues of wvariables. The
following examples all represent such information:

X=0, X <>0, 0 <= ¥ <= 100,
¥+ Y+ 2 = 180,
prime{Z), X divides Y.

These are constraints in that they certainly constrazin possible values
of variables which might otherwise be unconstrained.

The data type of a variable iz included in the constraint because it
reatricts the possible value of the variable.

EXECUTION OF PROLOG PROGRAMS FROM THE VIEWPOINT OF CONSTRAINT

Prolog programs can be regarded as representing oonstraints in  the
form of predicates, and the execution of Prolog programs can be regarded as
a transformation process of constraints in the form of predicates to those
impesed on variables. For example, if we have the following definitions,

append{[], X, X).
append([& | X], ¥, [A |} 2]) :- append(¥, ¥, ZJ.

the execution of the 'implicit constraint!
i= append([3, 5], X, Y).

results in the more 'explicit' form of a constraint:
Y =[3, 51 Xl

The execution of Prolog programs can also be regarded as an accumulation
process of information (or knowledge) about the wvalues of variables: the
acoumulation is done through successive unification operations and the
obtained information 1is borne by resultant unifiers. YNote that if the
implieit constraint pgiven by the predicate were npot satisfiable, the
execution would simply fail.

Colmerauer, who is the original developer of Prolog, writes as follows:

Prolog is a language which "computes®™ on trees "a" represented by variables
"x". This computation is done by accumulating constraints that final trees
muat satisfy.

During the execution of a Prolog program, the basic operation consistz of
verifying whether a constraint is "satisfiable™ or not (by at least one
tree-assignment). ([Colmerauer 83])

UNIFICATION FROM THE VIEWPOINT OF CONSTRAINT

From the viewpoint of operations on constraints, unification can be
viewed in various ways, Suppose & variable (say, X) which may have been
bound (i.e. constrained) to some term iz to be unified with some other
term {i.e2. a new constraint).

iy



(1) Constraint checking: One can check by the unification whether the two
constraints are compatible or not. They are incompatible if the
unification results in failure.

{2} Constraint merging: If the two terms are unifiable, their unification
yields a new unifier which adds new constraints to X and its partner terms.
This can be viewed a= merging of two constraints.

(3) Constraint inheritance: If the variable i®= unconstrained and gets
information unilaterally by unification from its partner, it can be said to
inherit the constraint of its partner.

A constraint to a variable can also be regarded as an approximation to
its wultimate ({i.e. fully specified)] wvalue. From the viewpoint of
approximation, unifiecation is a process of improving two approximations by
getting information from each other, and the failure of unification iz the
result of overapecilication.

PROBLEM WITH THE EXPRESSIVE POWER OF COMSTRAINTS ON VARIABLES

One of the problems wWwith current Prolog aysteéems is that they restrict
the kind of constraint on variables to syntactic ones. Suppose natural
numbers are represented by the constant 0 and the functor = (corresponding
to the successor function). We can express the constraints "X is equal to
1" and "X is not less than 3" by

£ = 5(0) and X = s(=2{=(_)))
respaectively, but cannot express the constraint "X is not equal to 3" or "X
is less than 3. To express the last case, the system can at best (1)
present three ground sclutionz

0, =2(0), s{s{0))

successively by backtracking, or (2) collect three solutions using ‘'set
abstraction®.

EXTERDING UONIFICATION TO HANDLE POSSIBILITY SETS
The problem above can be partially solved by allowing a new form of

constraint: possibility sets. For example, the constraint "X is less than
3" can be expressed by

X =10, a(o), s(s(0))].

4 possibility =set is created by exhaustive search for possible wvalues, A
constreint expressible by a single term can be regarded as the special case
where the possibility set i3 a zingleton.

The result of unification of two possibility =zets {A1, A2, ...} and

fB1, B2, ...} is the set of all results of successful unificetion of Ai's
and Bi's. Far inatance, the unification of X above and

{3fr:|r Pf:z]}

results in



[={0), =s(=(0))}.

The weakness of this extension iz that it allows only finite
posaibility sets for their generation to halt, though it may still be
useful for database applications [Minker 80]. To allow infinite sets, a
mechanism for binding variables with unevaluated predicates is necessary.
However, there are other troublesome problems with unevaluated predicates,
as will be explained below,

BIND~HOOK AND COMSTRAINT

Bind-hook facilities in KLO [Chikayama 82] and 'geler' predicate in
PROLOG II [Caneghem 82] can be used for imposing non-syntactic constraints
to variables, For example, the call of

bind-hook(X, X<=56)

causes the ‘'heok' X<=6 to be registered for future invocation; it is
invoked as scon as X is instantiated to s=ome non-variable term in  sone
unification (or immediately after the registration if X already has a
value}, and prevents ¥ from getting an inappropriate wvalue., If X i=
unified with some other variable, the check iz inherited. X may have
additional heooks if another bind-hook 1is called before ¥ is instantiated:
these hooks form a conjunctive predicate eall.

However, if X remains uninstantiated after all, the check is never
invoked, i.e., the constraint only disappears. This is undesirable frem
the logical point of wview. Another problem with bind-hoock might be that
what it represents 1s "deferred' constraints. As for normal (syntactie)
eonstraints, the wunification of two incompatible constraints resultas in
immediate failure. On the other hand, the unification of two incompatible
hooks always succeeds and the doom is postponed possibly forever. Put 4in
othér words, unification with bind-hook can no longer be regarded as a
simple ecnstraint checker/merger.

CONSTRAINT IMPLEMENTED BY UNIFICATION

It is interesting that the constraint mechanism can be implemented 4in
DEC=10 Prolog uszing the unification.

Kurokawa implemented the constraint as follows:
a) If the variable is to be unified with a tree, do it as usual.

b) If the wvariable is not to be unified but to be constrained, make a
constraint list. The variable is registered as a constrained variable.

c} When the constraint variable is to be unified, the constraint 1list i=s
searched, If the unification contradiets the constreint, then this
unification must fail. Otherwise, the unification succeeds.

d) At the end of computation, the content of the constraint list is edited
20 that the information iz concise and readable.

Example.

Let's take a very simple example, the problem of taking a8 maximum value
of the twe numbers., A sample Prolog program is shown below:



max(X,¥,X} := X »= Y.
max(X,¥,¥) = X =< ¥.

When both arguments are instantiated as integers, the program works.
However, if the one argument is not instantiated, (X in this case), then

a constraint will be given. Note that there are two cases, and they are
diaplayed through backtracking.

PT-ex{max(X,4,Y)).

it EE T o 1+] -4 4 - B 1 | AR ———
[integer(_1),_1 >=4]_U35]
—-————-———-——'I.FE.].'IJE--———-—--—-—----—---—-—--—-*--—u--—i-
X=_1, ¥=_1

continue?

1t yes.

----------- COnStraint-——————— e e — e
[integer{_1),4>= _1}_#35]
-—----r--------value---------------------------
¥=_1, Y=4

continue?

i: yves,

FAIL

¥X=_31,

Y = _585

yes

In this implementation, the constraint list is realized as a D-=list. The
remaining problem iz that the D-list will grow while the computation
proceeds, and there iz no way to reduce the list.

The bind-hook of KL will help the step e, however, there is the problem
mentioned before. At the step b, the check must be given to see if the
newly-added constraint may lead to the contradiction, i.e. fail.

EXTENDING UNIFICATION TO NON-TERM DATA TYPE--4 NUMERIC TYPE EXAMPLE

For pre-=defined numeric types in current Prolog systems, the values of
variables should either be exactly determined or be totally undefined.
However, we can extend it to represent "ranges of possible values™, The
unification of two ranges can then be defined as an intersection operation
(if the result is an empty range, then it simply fails). For example, the
unification of the two constrailnts

<= X and 2 <z X <= §
yields the new constraint
3 <= X <= 5,

Recall that a set of all Proleg terms can be divided inteo isomorphism
classes by taking renaming relation as congruence, that the resultant
quotient set forms a2 lattice (using instantiation-generalization relation
as partisl ordering) if supplied with the element 'tep', and that the
unification operation is the take-=least-upper-bound operation {(with the
notion of failure corresponding to the result 'top'). Likewise;, a set of



all intervals forms a lattice by wusing interval inelusion as partial
ordering, and the unification operation defined above iz alse the
take-least-upper-bound operation. Thus, the extension above is natural.

EJUATION SOLVINC, UMIFICATION, AND CONSTRAINT

Loocking at the examples listed at the tep of this chapter, the constraint
seems to be the result of the equation/inequation. In =ome case, the
solution would come through wunification. For example, ¥ =1 + ¥ is a
aimple unification.

But as for the cazse of X + 1 = ¥ + 2, it cannot be handied by the simple
unification. If the X and Y are known to be numbers, the formula will be
simplified as ¥ = Y + 1, and the unification will do. When the inequality
is introduced, for example X > I - 1, this is just this type of extending
unifieation, i.e. the constraint.

The =zbove discussion is also an example of higher-crder unification where
associativity, commutativity, ete. are known for the numericzl wvariables.
fAgain, we are uszing the constraint that the variable is type numerie,

LINKING REDUCTICN AND UNIFICATION

Reduction is one-way computation, on the other hand, unification is
two-way computation. However, both reduction and unifieztion have a
beautiful property that is more desirable than usual assignmenta.

Also, the user wants both reduction and unifiecation fer his warious
purposes. The problem is that how you can link the both mechanism.

As Colmerauer points out:
This (verifying the constraint)} iz done by "reducing" it,

&

the purpose of "reducing" is to =zimplify the constraint in order to make
all its solutions explieit. ([Colmerauer 83])

30, the constraint 13 a plausible point of linking preduction and
unification. However, it will take more examination.

TOWARDS THE UMIVERSAL UMIFICATION

There are several attempts to extend unification incorporating equality.
The attempte are, in & s=ense, categorized inte the constraint works

explained here.

Je will leave the attempts not explained here, but referring some papers
handling the subjects. They are as follow:

[Kornfeld B3] - inheritance mechanism

[Kahn B1&82) - knowledge representation
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T. Lazy Unification and Bind Hook

Masami Hagiys
T.1 Bind Hoaok

Bind-hook was devised by T. Chikayama as a data-driven
computation mechanism of KLO (Fifth Generation Kernel Lauguage Version
0 [1]). When bind-hook(X, H) is executed, and if X is (bound to) a
variable at that time, then H iz added to the chain of bind-hook
handlers for X, and the execution of bind-hook(X, H) immediately
gucceeds. The bind-hook handlers for X are actually called, when the
variable X is bound to some non-variable term. If two variables are
unified, their bind-hook handlers are just merged to make a new chain

for the unified variable.

From the declarative meaning of the program, bind-hook(X, H) ecan
be interpreted just as H (or eall(H)), and in fact they are logically
equivalent provided that X will eventually be bound to a non-variable
term. But, when the caller of bind-hook succeeds before binding the
variable X, its bind-hock handlers just vanish with having never been
called. This situation is similar to that of the normal order
reduction in a term-rewriting system, where a term, which possibly has
no normal form, vanishes in the cource of a normal order reduction.

It is, in another word, the problem of how to treat a term that may
have no value or may be undefined.

T.2. Lazy Unification

Lazy unification was proposed by M. Hagiya in [2] for formalizing
the semantics of the concurrent Proleog that processes infinite terms
(typically infinite streams). By analyzing the greatest fixed-point
semantics on the universe of infinite terms, he conecluded that the
process of unification should be broken into pieces, each of which is
processed as a separate process.

Here, we consider an implementation of lazy unification by
bind-hook.

lu(X, Y) 1= var(X), vaer(Y), !, X = Y.

lulX, Y) := var(X}, !, bind-hook(X, 1u(X, Y)).

luEX, ‘I% := var(Y), !, bind-hook(Y, 1u(X, Y)).

lu(X, ¥) := !, X =.. [P]Xs], Y =.. [Fle], lu_list(Xs, Ys).
lu_listE[], (1) - 1.

lu_list([XiXs], {Yi¥s]) :- !, lu(X, Y), lu list(Xs, Ys).

1f X and Y are both variables, then they are just unified with the
built=in unifier of Prolog. If X is a variable and Y is a
non-variable term, then X is bind-hooked with 1u(X, Y); i.e. the lazy
unfication of X and Y resumes after X iz bound to some non-variable
term. If X and Y are both non-variable terms, their functors are
first checked and their arguments are lazy-unified with each other.

When
?= 1u(X, [0]X]}, producer(X).

is executed, Lu(X, [0!X]) works as a consumer that checks if the term



X producer(X) produces is an infinite stream of the form [0, ©, ...].

Since bind-hook is a paseive mechanism, lu cannot serve as a
producer. Thus

?- 1lu(X, [0}X]), 1u(Y, [O|Y]), X =Y.

Jjust suspends, since there is no producer.

T.%. Bind Hook Hook

To make & productive lazy unifier, we need the reverse of
bind-hook, i.e. bind-hook-hook; bind-hook-hook(X, H) will enter E to
the chain of the bind-hook-hook handlers of the variable X. The
bind=heok-=hook handlers will be called when X iz bind-hooked with some
handler, or X is unified with 2 bind-hooked variable. The productive
lagy unifier, plu, will be defined by replacing lu by plu and
bind=heocok by bind-hook-hook in the definition of 1lu.

If we execute
7= 1u(X, [0]X]), plu(¥Y, [0!Y]), X = Y.
1u(X, [0iX]) and plul(Y, [0!Y]) work will as the consumer and the
producer of the infinite stream [0, ©, ...], after the execution of
I =1.

Anyway the usefulness of lazy unification and bind-hook-hook is
of great doubt, even if interesting.
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E. FORMULA MANIULATION AND UNIFICATION
Moric WNagata

A FORMULA MANTPULATION SYSTEM AS THE KMOWLEDGE BASE

Algebraic formulas are useful for representing knowledge or facts in a formal
manner. Moreover, much knowledge has been represented in mathematical formulas.
Thus, a formula manipulation system can be considered as the knowledge base,

If both logical and algebraic formulas were manipulated by & computer, users
would have a flexible system for their problem selving. On the other hand,
there are common technigues in the implementation of logical and algebraic
formula manipulation systems, Therefore, we inspect such techniques and some
problems of the manipulating both logical and algebraic formulas. Especially,
we shall examine preoblems on unification and formula manipulation because it
iz a core problem of such 2 system.

PROBLEMS

The problems on unification and formula manipulation are classified inte
problems of several levels. In the most general level, the problem corresponds
to one on unification and reduction. Hules of formula manipulation are
considered as reduction rules in this level.

However, if we inspeect the relationship of formula manipulation and unificaticn
in detail, we can find some problems peculiar to several types of foroulas.
These types are divided into polynomials, rational functions, transcendental
functions and =0 on. For example, a polynomial

{(x+1) (x=1)

e
equals to x - 1, therefore

Pilx+1)(x=1))
must mateh

2
Fix - 1).

When we take the position that the Prolog system uses knowledge on algebraic
formulas, some functions of formula manipulation is useful. For instance,
if the Prolog system knows that

¥ = x+1

is always false, then this faet ocan be used in "occur check™, In addition
te such a faet, i the system have common sense on elementary mathematies,
represented by algebraic formulas, we cen develop its ability of problem
swlving, For example, if it knows that a quadratic equation representing a
motion of the ball thrown by a2 man

2
X + X+ 3 =10

has no real roots, then some propositions including 'x' may be false or
undefined in the situation.

Moreover, we should conaider certain types of manipulation of formulas [Bundy
81]. Bundy and Welham proposed meta-level inference and object-level inference.
In their system czlled PRESS (PRolog Equation Solving System), algebraic
expressions are manipulated by a series of methods, The appropriate method

is choszen by meta-level inference and itself uses meta-level reasoning to select



and aply rewrite rules to the current expression, One of rules of meta-level
inference of PRESS is represented as follows:

If an equation L=H contains precisely one occurence of
X located at position P in L and 1f the result of
isolating ¥ in L=RK is Ans, then Ans is a solution of
L=R with respect to X.

An example of rules of object-level inference, isclation, consists of "stripping
of f* the functions surrcunding the single ccourences of the variable by applying
the inverse function to both sides of the equation. Many techniques of formula
manjpulation can be used in the object-level inference, but metheds Ffor the
meta=level inference should be =tudied for our purposa.

METHODS

We have already research reports on methods for formula manipulation. Some

of them are useful hints for the study of unification and formula manipulation.
For instance, Moses examined algebraic simplification from points of views

of a user and a designer of an algebraic manipulation system [Moses T1], He
classified such systems into radical, conservative, liberal, new left an
Cathelic ones. For example, radical systems can handle a single, well-defined
clacs of expressions. Thus

2 2 2 2 304
3x ¥ =2% yz +4x+y +2

would be represented as

2 2 2 34
(3y =(2z Jylx +(W)x+(y +z ).

This type of the system i= suited for unification.

An easy answer to the problem of unification and formula manipulation is to

ineorporate Prolog with a radicel formula manipulation system.

We can easily represent much, mathematical common sense in such a system.

However, there is widespread disagreement with the radiecal approach usually
1000

concern expressions which contain powers of sums, e.g. (X+1) . Moreover,

we sometimes want the partial fraction decomposition, thus we leave the

expression as it atands,

If' we use non-radical systems, we must pay attention to strategies for combining
unifiecation with formula manipulation. Especially, controlling unification

of logieal expresszions and manipulation of algebrazie formulas is a core problem.
The method for controlling two kinds of processing should be develaoped.

4 practical answer to our problem is that our system have a redical subsystem
like the MACSYMA system [Martin T71]. That i=, ir the subsystem all formulas are
translated inte a single class of expressions. Thus, unification or cccur check
is easily performed. In a non-radical subsystem, we must discover rules of
meta-level inference on fermula manipulation and unification. An example of
such rules is the following:

If two expressions to be unified have mathematical
formulas a3 sub expreszsions, then try to =simplify thosze
expressions by factoring, computing GCD, and so on.

Using all facilities of existing formula manipulation systems, we can develop
similar rules,

CONCLUSION



We have inspected the problems on unifiecation and formula manipulation from
point of view of problem solving. In order to represent knowledge or to solve
problems by using & computer, we should construct a system which accepts logical
and algebraic expressions.

Finally, some ideas of this report will be useful for non-resclution theorem
provers [Bibel 83, Bledsce T7].
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9. Unification in Categories
Takanori Adachi

In this section we will look at wunification and a

computation model based on it from a ecategory theoretical point
of view.
First, in 9.1 we generalize the notion of universal unification
explained in section 5 by Sakai and Matsuda. In 9.2 we introduce
the notion of kites which is corresponding to that of clauses in
Logie Programming, and give a categorical computation model that
is to be efficient using unification algorithms, in 2 sense. In
9.3 we consider the category determined by a program which is
called an information system.

9.1. Unification from a Categorical Point of View

The notion of wunification was intreoduced by J. A.
Robinson in +the context of formulating first-order logic which
is designed for use as the bmsic theoretical instrument of a
computer  theorem  proving program [Rob65], and this was
generalized to problems in several algebras |Plo72, 83882]. Using
the terminology of algebraic theories in the sense of Lawvere
[Lawt3 ], the definition of = unification problem is restated as
follows:

9.1.1. Definition. Let A be an algebraiec +theory, and £, g
: &b be a parallel pair of arrows in A.

(1) Uplg, g) ={ h | fh = gn } (subscript may be omitted).
(ii) An element of Up (f, g) iz called e upifier for <f, g>.
(iii) A pair <f, g» is called unifisble when it has a unifier.

(iv) A unification problem for A4 is to decide whether or not
{f, g» is unifiable.

9.1.2. Definition, Let f, g be a parallel pair of arrows.
(i} For h, h' € U(f, g), we write h < h' when there is an
arrow i such that h = h'i.
(ii) The subset E C U(f, g) is called complete if for every
h € U{f, g) there existe ¢ € E such thaet h < e.
(ii1) CUp(f, g) = { E | E is a complete subset of U(f, &) .
(iv) MCUL (£, &) = {2 | Eecu(f, g is a minimal element
with respect to set-inclusion ordering }.



Note +that U(f, g) is itself a complete subset of U(f,
g) -

9.1.%. Pact. Por E € MCU(F, g) and e, &' € E,
e ¢ e' implies e = &'.

Proof. BSuppose that e $ e'. Define E' by E' = E - { e }. Then
we can eagily check that B' is complete. But this contradicts
the minimality of E. lence e = e'.

9.1.4. Proposition. For E and E' in MCU(L, z), #E = #E', where
#E ie the cardinelity of E.

Proof. Since E and E' are both complete,

Ve e 2 ¥e' € B' . e<e' 2nd Ve'e B' Je € E . 8 < e.

Hence there are two functions ¥ : E #E' and ¥ : E' - E such
that Ye e £ . & ¢ Y(e) and Ve € B' . e ¢ Yie').

Then we have & < (¥.¥)(e) for every e in E. Thus, ¥.¥ = 1E.
Similarly we have f.¥ = 1.,.

Therefore ? is bijective.

This proposition asserts that we may classify algebraic
theories by the cardinality of some E in MCU(f, g). In fact,
Siekmann and Szabo investigated this eclassifieation in [SSEE].

Note thet for an element E in MCU(f, g), if E = { e |,
then e corresponds to a usual meost general unifier (EEE]- and
merecver categorically e is a weak equalizer in the =sense of
MacLane [MacT1].

The above discussion does not depend on any structure of
algebraic theories. B¢ we can easily give 8 generalization of
the above discussions in the case that two arrows to be wunified
need not have same domain.

9.1.5%. Definition. Let X be a category, and f and g two arrows
in ¥ with cod(f) cod(g).

(1) Uy(f, g) = { <4, 3> | £f1 = g5 . _

(11) A pair <i, j» in Ux{f, g) is callled s unifier for <f,
2.

(iii) A peir <f, g> is called unifiable when it has a unifier.

{iv) A wunification problem for X is to decide whether or not

<f; g isg unifiable.




9.1.6. Definition. Let f and g be arrows in X with the same
codomain.

For <i, j> and <i', j'> € U(f, g}, we write <i, j> < <i', j'»
when there 1s an arrow h such that 1 = i'h and j = j'h.

The notion of complete subsets of Ux(f, g) and the sets
CUy(f, &) and MCUyx(f, g) are similarly defined in the case of
aelgebraic theories. Moreover we can have the same result as

Proposition 9.1.4.

9.1.7. Proposition. Let X be a category. Then E, E' € HCUx{f, g)
implies #E = #E'.

Proof. Omitted.

Note that for an element of MCU(f, g), if E = { <i,
Jj» }, <i, j» is a weak pullback of <f, g» in the sense of
MacLane [MacT1].

9.1.8. Remark. Let X be & category with products, £ : x — 2z and
£t ¥y =2z be arrows in ¥. Define f£f' = fp and g' = gg, where
p: X xy-—-sxandq: xx y—= Yy are projections. Then there is =
bijection ¥ : Uy(f, g)={ e | f'e = g'e }.

Thus, the notion of unifiers in categories is, in fact, a
generalization of that of algeraic theories.

9.1.9. Definition. A unification algorithm for a category X is
an algorithm &4 which takes two arrows f and g with same codomain

a8 input and generates a complete subset A(f, g) of Uy(f, g).

9.2. Kites over Categories
The theses of +this subsection are in categories that

arrows are information and that compositions are instantiations.

G.2.1. Definition. Let X be & category.
(i) PFor an object x in X, [X;x] = { u I u is & finite
subset of arrows in X such that for all f in u dom(£f) = x §.
(i) [x] = A [%x].
(iii) A kite of +type x is a pair <u, v> where u and v are
elements of [X;x] for some x in X.
(iv) A& Horn kite of type x is a kite <u, v> of type x where
#v = 1.



9.2.2. Definition. Iet X be a category and x an object of X.
(i) For uw € [X;x] and an arrow g with cod(g) = x,
ug = { fg | feul.

(ii) For =a kite k = <u, v> of type x and an arrow g with
cod{g) = x, kg = <ug, vg», called an instance of k. We sometimes
write k¥ < 1 when k is an instance of 1.

(iii) PFor kites k = <u, v> and k' = <u', v'> of type x, k.k'
iz the kite of +type x defined by k.k' = <(u - v') U u', vr,
called a rescolvent of k and k'.

{iv) For kites k = <u, v> and k'
write K € ¥' when u € u' and v = v',

(v) For kites k = <u, v> and k'
k Vk' = ¢u, v Uy,

<u'y, v'» of same type, we

u, v'>,

Note that the set of all Horn kites is closed under the
operations of creating instances and resolvents.

9.2.%. Fact. Let k, 1 and m be three kites of type x.
(i} kX € 1 implies k.1 = 1 [especially k.k = k].
(1i) (k.1).m € k.(1.m).
{iii) For an arrow f with cod{(f) = x, kf.1f € (k.1)f.

Proof. Straightforward.

9.2.4. Definition. Let ¥ and L be sets of kites.
(i} K = i k' | ¥' is an instance of some k in K j.
(1) K.L ={ k.1 | k €K and 1 € L have same type ].

9.2.5. Definition. Let K be & set of kites.
(1) K* ie the smallest set of kites satisfying:

(1) kK c &%,
(2) <u, v> € K* whenever u 2V,
(3) xVY1ex*
whenever k¥ = <u, v» and 1 = <u, v'> € K*,
(4) |K®* c k*,
(5) x*.x*cxh

(ii) k$ = {u | <& w €K }.

(1iii) K3u = {vekxs I v i an instance of u }.

Intuitively, a kite is a clause in the sense of Logic
Programming, and K is & program of computation. Hence K*$u is
the output obtained by the execution of K with an input u.



G,2.6. Definition. Let ¥ be a set of kites. Then K" (n= 0, 1,
2...) is inductively defined by K° = I and K™' = k¥".lK, where I

{ <u, w | uelx]}

9.2.7. Lempma. For every kite k in K*, there exisgtes 1 in HK“ such
that 1 C k.

Proof. By Fact 9.2.3 (ii) and (iii}.
9.2.8. Proposition. K¥§ - H(K“$}.
Proof. By Lemma 9.2.7.

9.2.9. Definition. Let K be a set of kites and u € [X].
(i) The =set Compin, K, u) (n =0, 1, 2...) [we may omit K
and u] is inductively defined by
Comp(0) = L} <u, w } and Compin + 1) = Comp(n, K, u).bK.
(11) Comp(k, u) = Ycomp(n, Kk, u).

9.2.10. Theorem. K'$u = H{Gomp{n, K, u)s).

Proof. It ie immediate by Proposition 9.2.8 because for every n
=0, 1, 2..., Comp(n, ¥, w)$ = K"$u.

In the rest of this section we assume that the program K
ig a set of Horn kites. But this restriction raises noe 1leoss of
generality. Because for an arbitrary set of kites, say L, we can
define the progrom K which is equivalent to L (in other words K*
=L ) by
K=1{<u {f£}> 1| there is v such that <u, v> € L and £ € v |.
We =also assume that the category X has a unification algorithm
L.

9.2.11. Definition. lLet u be an element of [X].

(i) The set Mcomp(n, K, u) (n =0, 1, 2...) [we may omit X
and u] is inductively defined by Meomp(0Q) = { <u, uw } and
Mcomp(n + 1) = { ki.1j | ¥k = <u, v> € Mcomp(n) and

1=<w, {&g}> €K and
there is f € u such that <i, 3> € A(f, &) |.
(ii) Mcomp(K, u) = ﬁﬂcamp{n, K, u).

We want to show that Mcomp is a somewhat efficient
universal machine, in a sense. In order to show that, we
introduce & special preordering between kites.



9.2.12. Definition. Let k and 1 be two kites. Then we write
k 4 1 when there exists a kite m such that k D m < 1.

9.2.13%. Fact. Let k, k', 1 and 1' be kites.
(i) k"> k<1 < 1' implies k'<4 1°'.
(ii} % < 1 whenever there is a kite m such that k¥ < m > 1.
{ii1) The relation «{ is a preorder.

Proof. (i} Immediate since < is transitive.
(i1} Put k = mf. Then k = mf > 1f < 1. Hence k 4 1.

{iii) Suppose that k 4 1 < m. Then there are kites k' and 1°'
sueh that k 2 k' ¢ 12 1' ¢ m. Thus, by (ii) k2 k'< 1' < m.
Hence by (i) k 4 m. Therefore the relation 4 is transitive.

The reflexivity of <4 is trivial.

5.2.14. Lemma. For every k € Comp(K, u) there exists
1 € Heomp(K, u) such that k < 1.

Proof. Let k be a kite in Comp(n, K, u). And we prove by
induction on n.

n=0: k& ComplO) = W o<, o ]. Then k < <u, u> € Meomp(O).
Hence k < <u, u>r.

n>» 0: Let k € Comp(n} = Compln - 1).},K. Then there exist k! in
Comp{n - 1) and ky in LK such that k = ky ko,

By hypothesis, there is m; € Mcomp(K, u) such that EI-{ P
Hence there is f; such that kl 2 mf,.

Cn  the other hend, there are M, in K and an arrow f2 such that
ky = mpfp. Let my = <uy, @> and m, = <u,, {g}>.

Then there is v 3 u1f1 with kl = <v, qf;>.

Thus, k = k .k, = <(v - { gf, FYy YVouyty, afy>.

Let w = { h € u, | hf; = &f, }.

Then since Uy ig finite, s0 13 w.

Let w = { by, hy, ..., hg } (s 2 0).

Now we define the errowe r, (t = 0,...,8); 1., J§ (t =1,...,8);
sets v¢ (t = 0,...,8) and kites cy (¢ = 0,...,8) by the
following program:

begin
CG HE mt;
if 5 £ O then

begin

Ty = fl;



P= Ly
for t = 1 to &
if hti!"'it—1 € Vel then
begin
let ies jt’ r, be those such that
the diagram

fy
~N 3t
i
T
t-1 i .
Ilt g
[
:* Ll
T
commutes
and
Cig, Jp> € alngiy...iyy gls
Ve 3= \Vt-lit - 4 gjt} JRY. uzjt;
end
elze
begin
it- .= lt'i;
ry 3= Ty
Vg 3= vt_l;
“r TS Cgayd
end

end
end

Note that +the outer sguare of the disagram in this program
commutes because lyse+lg_yrg_q = £y And the existence of arrows
ips Jy and ry are assured since the wunification algorithm A
generates a complete set.

Now there i a relation between Cy and Vi

such that Cp = Vg, qitiz"'it>'

Thus, we can easily check that each cy is in Meomp(K, u).

Using the above data, we can show that



£ U
vgrg = (u,f, = { &f, 1) U,y
Hence k 3 ¢ r,. Therefore k {cg & Mcompl(K, u).

9.2.15. Theorem. K*Su = [(Mcomp(K, u)$).

Proof. By Theorem 9.2.10 and Lemma 9.2.14.

9.%. Information Systems over Categories

Let X be a fixed category throughout this subsection. We
have already defined the set [X;x] in the previous subsection.
This zet iz obvicusly a poeset with the ordinary set-inclusion
relation. Wereocver this is clesed under union. Hence the duel
category of [X;x]°% has finite products.

%9,%.,1. Definition. Let £ : x =y be an arrow in X.
(i) [X:£] ie a function from [X;y] to [¥;x] defined by
[X;f](u) = uf, for every u € [¥;y].
This function is clearly monotonic, and hence a funetor.
(1i) [%;3-]1 : %x°P = Cat is a naturally defined full functor,
where Cat is the category of all small categories.

9.3.2. Definition. An information gystem over X is a pair <%,
£», where Y : 1% = cat ic a functor such that for every object
x in X Tx is & category with finite products and € : [¥;-]1 97Y

iz & natural trensformetion suchkh +that for every x in X,
€ : [%;x] —#¥x is a product-preserving functor  that is
kijective on the object class.

Now since €, is bijective on the objects, we denote the
corresponding objects in ¥Yx and in [X;x] with the same =signs,

end also denote the product object of w and v in Yx by u Vv,

9,%.%3, FPact. Let I = <Y, &> be an information system over X.
Then for every x in ¥ and u, v in ¥x,

Yx(u, v) ¢ ¢ end ¥Yx(u', v') # ¢ implies

Yx((u = v') Yu', v) # 2.

Proof. FTor k : u—vend o : uw'" —=v' wa define

k.m = K.p .{1“_v,n mn}. Then k.m : (u - v') Uy = v.

viku,u
9.%.4, Theorem. Let K be & set of kites over X, and £ : x—=y an
arrow in X. Define ¥Yx az a poset whose objeets are those of

[X;x] =and ordering is defined by u £ v iff <u, v> € k*, and Yf



as an arrow from Yy to ¥x such that Yf{u) = uf. Then Y is a
functor from I“P tec Cat. Moreover define € [X 3 x] = Yx the
natural embedding since [¥;x] is & subposet of ¥x.

Then the pair <Y, €> is an information system over X, denoted by
I(K).

Procf. Straightforward.

In the beginning of the previous subsection we pointed
out that we would consider arrows as informztion. According to
this thesis, we can think of elements of Yx =as informetion -
property. And arrows in Tx mey be considered to be proofs which
indicate derivations from one property to another.

Essential weaning of the last +theorem 1is that every
program determines a categorical structure. 3¢ we conclude this
gection with stating the final thesis:

"Frograms are Categories".
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